初中数学竞赛预赛试题及答案

合集下载

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. 根号2C. 1/3D. 4答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 16B. 18C. 20D. 22答案:C3. 一个数的平方等于16,这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 以下哪个方程的解是x=2?A. x^2 - 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - x - 6 = 0答案:B5. 一个圆的直径为10,其面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题(每题3分,共15分)1. 一个直角三角形的两个直角边长分别为3和4,其斜边长为________。

答案:52. 如果一个数的立方等于-8,那么这个数是________。

答案:-23. 一个数的绝对值是5,这个数可能是________或________。

答案:5 或 -54. 一个圆的周长是2πr,如果周长是12π,那么半径r是________。

答案:65. 如果一个二次方程ax^2 + bx + c = 0的判别式Δ=b^2-4ac小于0,那么这个方程的解是________。

答案:无实数解三、解答题(每题10分,共20分)1. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-3,c=2,求这个函数的顶点坐标。

答案:顶点坐标为(3/2, -1/4)。

2. 一个长方形的长是宽的两倍,如果周长是24,求长方形的长和宽。

答案:长为8,宽为4。

四、证明题(每题15分,共30分)1. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。

答案:略2. 证明平行四边形的对角线互相平分。

答案:略。

初中数学竞赛题试卷及答案

初中数学竞赛题试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001……2. 已知a,b是实数,且a+b=0,则下列选项中错误的是()A. a和b互为相反数B. a和b都是0C. ab>0D. ab≤03. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是()A. 32cmB. 34cmC. 36cmD. 38cm4. 若x^2-4x+3=0,则x的值是()A. 1或3B. 2或3C. 1或2D. 2或45. 下列各式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a - 3b = 2(a - b)C. 2a + 3b = 2a + 3bD. 2a - 3b = 2a - 3b6. 已知函数f(x) = 2x - 1,则f(3)的值是()A. 5B. 6C. 7D. 87. 一个长方形的长是8cm,宽是5cm,则该长方形的对角线长是()A. 5cmB. 8cmC. 10cmD. 13cm8. 若a > b,且a + b = 0,则下列选项中正确的是()A. a < 0,b > 0B. a > 0,b < 0C. a = 0,b = 0D. 无法确定9. 下列各式中,分式有意义的条件是()A. 分子为0,分母为0B. 分子为0,分母不为0C. 分子不为0,分母为0D. 分子不为0,分母不为010. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 以上都是二、填空题(每题5分,共50分)11. 若a,b是实数,且a + b = 0,则ab的值是______。

12. 一个圆的半径是r,则该圆的周长是______。

13. 若x^2 - 4x + 3 = 0,则x^2 - 4x + 4的值是______。

14. 函数f(x) = 2x - 1的图象是一条______。

初中数学竞赛试题及答案解析

初中数学竞赛试题及答案解析

初中数学竞赛试题二、填空题1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为.9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

2024全国初中数学竞赛试题

2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。

中学数学竞赛初赛试题及答案

中学数学竞赛初赛试题及答案

中学数学竞赛初赛试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(-1) \)的值。

A. 0B. 4C. 6D. 82. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8二、填空题(每题4分,共16分)1. 一个长方体的长、宽、高分别是2cm、3cm、4cm,它的体积是________cm³。

2. 一个数列的前三项是2, 4, 6,如果这是一个等差数列,那么第四项是________。

3. 一个正六边形的内角是________度。

4. 一个分数的分子是7,分母是14,化简后是________。

三、解答题(每题12分,共48分)1. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + 3^3 + ... +n^3 = (1 + 2 + 3 + ... + n)^2 \)。

2. 一个圆的直径是14cm,求它的周长和面积。

3. 解方程:\( 2x^2 - 5x + 2 = 0 \)。

4. 一个直角三角形的斜边长是13cm,一条直角边是5cm,求另一条直角边的长度。

四、证明题(每题16分,共16分)1. 证明:在一个直角三角形中,如果斜边的中点与一个顶点相连,那么这条线段的长度等于斜边长度的一半。

答案一、选择题1. B. 4(将-1代入\( f(x) \)得到\( 3(-1)^2 - 2(-1) + 1 = 3 + 2 + 1 = 6 \),但题目要求\( f(-1) \),所以是4。

)2. B. 50π(面积公式为\( πr^2 \),代入\( r=5 \)得到\( 25π \),但题目要求的是圆的面积,所以是\( 50π \)。

初三数学竟赛试题及答案

初三数学竟赛试题及答案

初三数学竟赛试题及答案初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √42. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -13. 如果一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 54. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm5. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 任意数6. 一个数的绝对值是它本身,这个数是:A. 0B. 正数C. 负数D. 0或正数7. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-18. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -19. 一个数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -110. 一个数的平方是它本身,这个数是:A. 0B. 1C. -1D. 0, 1二、填空题(每题4分,共20分)11. 如果一个数的平方是25,那么这个数是______。

12. 一个数的绝对值是5,那么这个数是______。

13. 一个数的倒数是1/2,那么这个数是______。

14. 一个数的平方根是3,那么这个数是______。

15. 一个数的立方根是2,那么这个数是______。

三、解答题(每题10分,共50分)16. 计算:(3+2√2)(3-2√2)。

17. 证明:对于任意实数a和b,(a+b)^2 = a^2 + 2ab + b^2。

18. 已知一个等腰三角形的两边长分别为5和8,求第三边的长度。

19. 一个圆的面积是π,求这个圆的半径。

20. 解方程:x^2 - 5x + 6 = 0。

全国初中数学竞赛预赛试题(含答案)

全国初中数学竞赛预赛试题(含答案)

BD第3题图6 74 51 2 3第2题图20XX 年全国初中数学竞赛预赛试题及参考答案一、选择题(共6小题,每小题6分,共36分) 以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若有理数a、b 满足 (1))0a a b ++=,则ab 等于【 】 (A )1- (B )1 (C )0 (D )无法确定 【答】A .解:因为a 、b 都是有理数,且(1))0a a b +++=,所以10a +=,且0a b +=,得1,1a b =-=,所以1ab =-.2. 如图,由7个小正方形组成的平面图形折叠(相邻的 两个面垂直)成正方体后,重叠的两个面所标数字是【 】(A )1和7 (B )1和6 (C )2和7 (D )2和6 【答】B .解:若将图中标有1的面去掉,则标有2、3、4、5、6、7的六个面恰好是正方体的一种展开图,其中标有3和6的面是对面;只看题图最下面一行,标有3和1的面应是对面,所以重叠的两个面是标有1和6的面,应选B .3. 如图,在四边形ABCD 中,AD ∥BC , BD 平分∠ABC 交AC 于点O ,AE 平分∠CAD 交BD 于点E ,∠ABC =α,∠ACB =β,给出下列结论: ①∠DAE =12β;②AD AO CB CO =;③∠AEB =1()2αβ+; ④∠ACD =180()αβ︒-+.其中一定正确的有【 】(A )4个 (B )3个 (C )2个 (D )1个 【答】B .35A 解:(1)∵AD ∥BC ,∴∠DAE=111222DAC ACB β∠=∠=,∴①正确; (2)∵AD ∥BC ,∴△AOD ∽△COB ,∴AD AOCB CO=,∴②正确; (3)∠AEB =∠DAE +∠ADB =∠DAE +∠CBD =1()2αβ+,∴③正确;(4)∵∠BAC =180()αβ︒-+,只有当AB ∥DC 时,∠ACD =180()αβ︒-+才能成立.∴④不正确.综上,应选B.4.如图,直线l 1、l 2相交于点)2,3(A , l 1、l 2 与x 轴分别交于点(1,0)B 和(2,0)C -,则当012>>y y 时,自变量x 的取值范围是【(A )2->x (B )1>x (C )13x << (D )23x -<< 【答】C .解:由图象可知当12y y >时,3<x ,当01>y 时,1>x ,所以当012>>y y 时,13x <<. 故应选C .5.关于x 的不等式33ax a x +>+的解集为3x <-,则a 应满足【 】 (A )1a > (B )1a < (C )a ≥1 (D )a ≤1 【答】B .解:由33ax a x +>+,得(1)(3)0a x -+>,由不等式的解集为3x <-,知30x +<,所以10a -<,得1a <.故应选B .6.如图的象棋盘中,“卒”从A 点走到B 点,最短路 径共有【 】(A )14条 (B )15条 (C )20条 (D )35条 【答】D .解:如右图,从点A 出发,每次向上或向右走一 步,到达每一点的最短路径条数如图中所标数字,如: 到达点P 、Q 的最短路径条数分别为2和3. 以此类推, 到达点B 的最短路径条数为35条. 选D.第6题图第4题图y二、填空题(共6小题,每小题6分,共36分) 7= .【答】1-.解:原式1=- 8.如图是三个反比例函数xk y 1=,x k y 2=,xk y 3=在x 轴上方的图象,则1k 、2k 、3k 的大小关系为 . 【答】123k k k >>.解:由图象可知1k 为负数,2k 、3k 为正数,不妨取x =1,代入解析式,显然点2(1,)A k 在点3(1,)B k 的正下方,所以320k k >>,又1k 为负数,所以123k k k >>.9.有6个小球,其中黑色、红色、绿色各2个,它们除颜色外其它都一样,将它们放入一个不透明的袋子中,充分摇匀后,从中随机摸出2个球,摸出的球颜色一样的概率是 . 【答】15. 解:摸出的2个球都是黑球的概率是2116515⨯=,所以摸出的球颜色一样的概率是113155⨯=. 10.如图,点C 是线段AB 上一个动点,∠A =∠B =30°,∠ADC =∠BEC =90°,若AB =8cm ,则CD +CE = cm . 【答】4.解:在Rt △ADC 中,∠A =30°,得AC DC 21=,同理BC EC 21=,所以4212121==+=+AB BC AC EC DC ( cm). 11.关于x 的方程2(1)20x m x m +-++=的两实数根之积等于272m m -+,则的值是 .【答】4.第8题图y解:由题意得2272m m m +=-+,解得120,8m m ==,当10m =时,原方程无实数根,当28m =4==.12.计算:1111111111111145667134567034567145⎛⎫⎛⎫⎛⎫⎛+++⋅⋅⋅++++⋅⋅⋅+-+++⋅⋅⋅++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝ 116670⎫++⋅⋅⋅+=⎪⎭. 【答】12013.解:令1111456670a +++⋅⋅⋅+=,则原式=1671a ⎛⎫+ ⎪⎝⎭13a ⎛⎫+ ⎪⎝⎭113671a ⎛⎫-++ ⎪⎝⎭×a=211132013671a a a +++2113671a a a ---=12013.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某单位职工参加市工会组织的健身操比赛进行列队,已知6人一列少2人,5人一列多2人,4人一列不多不少,请问这个单位参加健身操比赛的职工至少有几人?【答案】设这个单位参加健身操比赛的职工有y 人,6人、5人、4人一列分别可以整排a 、b 、c 列,则62524y a b c =-=+=.(a 、b 、c 是正整数)∴ 6252,624.a ba c -=+⎧⎨-=⎩①②·························································· 4分由②,得 62312(1).422a a a a c --+-=== 因为c 为正整数,可令12,a m -= 所以21,a m =+(m 是正整数) ③ 将③代入①,得6(21)25 2.m b +-=+ ∴ 122102(1).55m m m b +++== ··························································· 7分 因为b 为正整数,可令15,m n += 所以51,m n =-(n 是正整数) ④ 将④代入③,得 2(51)110 1.a n n =-+=- ·············································· 11分 ∴ 626(101)260y a n n =-=--=-(n 是正整数). 当n =1时,y 有最小值52. 即参加比赛列队的至少有52人. ······················ 14分 14.如图,在边长为1的正方形ABCD 的边AB 上任取一点E (A 、B 两点除外),过E 、B 、C 三点的圆与BD 相交于点H ,与正方形ABCD 的外角平分线相交于点F ,与CD 相交于点G .(1)求证:四边形EFCH 是正方形;(2)设BE =x ,△CGH 的面积是y ,求y 与x 的函数解析式,并求y 的最大值. 【答案】(1)∵ E 、B 、C 、H 、F 在同一圆上,且∠EBC =90°,∴ ∠EHC =90°,∠EFC =90°. ······························································· 2分 又 ∠FBC =∠HBC =45°,∴ CF = CH . ···················································· 4分 ∵ ∠HBF +∠HCF =180°,∴∠HCF =90°. ············································· 6分 ∴ 四边形EFCH 是正方形. ································································· 8分 (2)∵ ∠GHB +∠GCB =180°,∴ ∠GHB =90°,由(1)知∠CHE =90°, ∴ ∠CHG +∠CHB =∠EHB+∠CHB . ∴ ∠CHG =∠EHB .∴ CG =BE =x , ∴DG =1DC CG x -=-. ·········································· 12分 ∴ △CGH 中,CG 边上是高为11(1).22DG x =- ∴ 211111(1).224216y x x x ⎛⎫=⋅-=--+ ⎪⎝⎭ ············································ 15分当x =12时,y 有最大值116. ······························································ 16分 15. 数学活动课上,李老师出示了问题:已知,如图①,在△ABC 中,∠BAC =45°,AB =AC ,AD ⊥BC ,垂足为D ,设BD =a ,用含有a 的式子表示AD 的长.图①图②EC经过思考和探讨,小明展示了一种解题思路:如图②,作∠DAE =45°,AE 和BC 的延长线相交于点E ,过点C 作CF ⊥AE 于点F.通过证明△ABD ≌△ACF ,得到CF =a ,进而推出CE,所以AD=DE =CD +CE =(1.a a +=+在此基础上,李老师又提出了如下问题:图③EC图④E已知△ABC 中,∠BAC =45°,AB >AC ,AD 是BC 边上的高,设BD =a ,CD =b ,求AD 的长.请你画图并解答这个问题.【答案】(1)当∠ACB 为直角时,△ABC 为直角三角形,b =0,AD=AC=BD =a .2分 (2)当∠ACB 为锐角时,如图③,作∠DAE =45°,AE 和BC 的延长线相交于点E ,过点C 作CF ⊥AE 于点F .则△CEF 和△ADE 都是等腰直角三角形.设AD DE x ==,CF EFm ==. 则AE=. ∴AF m =-. ······· 4分∵ ∠FAC +∠CAD =45°,∠DAB +∠CAD =45°, ∴ ∠FAC =∠DAB . 又 ∵∠AFC =∠ADB =90°,∴△FAC ∽△DAB . ……………………6分 ∴.FA FCDA DB=即.m m x a -=解得m=∴2axCE x a===+. ···························· 8分 ∵CE CD DE AD +==, ∴2axb x x a+=+. ··································· 10分 整理得 2()0x a b x ab -+-=.解得1x=2x =(舍去).····································································································· 12分 (3)当∠ACB 为钝角时,如图④,作∠DAE =45°,AE 和BC 的延长线相交于点E ,过点C 作CF ⊥AE 于点F .与(1)中的求法类似,可设AD DE x ==,CF EFm ==,则AF m =-.同(1)中的理由,得△FAC ∽△DAB ,2axCE x a=+. ∵AD DE CE CD ==-, ∴2axx b x a =-+. ······································· 16分 整理,得 2()0x a b x ab --+=,解得2a b x -=…17分综上,AD的长为a或或或. ········································································ 18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX 年全国初中数学竞赛预赛试题及参考答案(竞赛时间:20XX 年3月2日上午9:00--11:00)一、选择题(共6小题,每小题6分,共36分) 以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则201520132014c b a ++的值为【 】(A )2013 (B )2014 (C )2015 (D )0 【答】D .解:最大的负整数是-1,∴a =-1; 绝对值最小的有理数是0,∴b =0; 倒数等于它本身的自然数是1,∴c =1.∴201520132014c b a ++=201520131020141+⨯+-)(=0. 2. 已知实数z y x ,,满足542 2.x y z x y z ++=⎧⎨+-=⎩,则代数式144+-z x 的值是【 】(A )3- (B )3 (C ) 7- (D )7 【答】A .解:两式相减得3-3-3441 3.x z x z =-+=-,则3.如图,将表面展开图(图1)还原为正方体,按图2所示摆放,那么,图1 中的线段MN 在图2中的对应线段是【 】(A )a (B )b (C )c (D )d图2图1d cb aNM【答】C .解:将图1中的平面图折成正方体,MN 和线段c 重合.不妨设图1中完整的正方形为完整面,△AMN 和△ABM 所在的面为组合面,则△AMN 和△ABM 所在的面为两个相邻的组合面,比较图NM B A B A 图2图1dc b aNM (第3题图)2,首先确定B 点,所以线段d 与AM 重合,MN 与线段c 重合.4. 已知二次函数c bx ax y ++=2的图象如图所示,则下列7个代数式ab ,ac ,bc ,ac b 42-,c b a ++,c b a +-,b a +2中,其值为正的式子的个数为【 】(A )2个 (B )3个 (C )4个 (D )4个以上【答】C .解:由图象可得:0>a ,0<b ,0>c ,∴0<ab ,0>ac ,0<bc . 抛物线与x 轴有两个交点,∴042>-ac b .当x =1时,0<y ,即0<++c b a .当x =1-时,0>y ,即0>+-c b a .从图象可得,抛物线对称轴在直线x =1的左边,即12<-ab,∴02>+b a .因此7个代数式中,其值为正的式子的个数为4个. 5. 如图,Rt △OAB 的顶点O 与坐标原点重合,∠AOB =90°,AO =2BO ,当A 点在反比例函数xy 1= (x >0)的图象上移动时,B 点坐标满足的函数解析式为【 】(A )xy 81-= (x <0) (B )x y 41-=(x <0)(C )x y 21-= (x <0) (D )xy 1-=(x <0)【答】B . 解:如图,分别过点,A B 分别做y 轴的垂线,AN BM ,那么ANO ∆∽OMB ∆,则.4)(2==∆∆OBOA S S OMB ANO .81,2121=∴=⨯=∆∆OMB ANO S AN ON S Θ(第5题图)-11O yxOABxy41=⨯∴BMOM,故xy41-=.6.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6【答】B.解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点, 即在点P运动过程中,G始终为PS的中点,所以G的运行轨迹为△CSD的中位线,∵CD=AB-AC-BD=6-1-1=4,∴点G移动的路径长为421⨯=2.二、填空题(共6小题,每小题6分,共36分)7.已知223<<-x,化简2)9(32--+xx得.【答】6-3x.解:∵223<<-x,∴032>+x,09<-x,原式=63932-=-++xxx.8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为52,那么,随机摸出一个为红色玻璃球的概率为.SDCGFEPNQ【答】256. 解:设口袋中蓝色玻璃球有x 个,依题意,得5296=++x x ,即x =10,所以P (摸出一个红色玻璃球)=25610966=++. 9. 若214x x x ++=,则2211x x++== . 【答】8.解:∵412=++x x x ,∴31=+xx . 则9)1(2=+x x ,即7122=+xx .∴.81122=++x x10.如图,在Rt △OAB 中,∠AOB =30°,AB =2,将Rt △OAB 绕O 点顺时针旋转90°得到Rt △OCD ,则AB 扫过的面积为 .【答】π.解:∵Rt △OAB 中,∠AOB =30°,AB =2,∴AO =CO =32,BO =DO =4,∴阴影部分面积=AOB COD OBD OAC S S S S +--△△扇形扇形=OBD OAC S S -扇形扇形=360)32(9036049022⨯⨯-⨯⨯ππ=π.11.如图,在矩形ABCD 中,AB =3,BC =4,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰落在∠BCD 的平分线上时,CA 1= .【答】122±. 解:过A 1作A 1M ⊥BC ,垂足为M ,设CM =A 1M =x ,则BM =4-x ,在Rt △A 1BM 中,(第10题图)A 1E D CBA (第11题图)222121)4(9x BM B A M A --=-=,∴2)4(9x --=2x ,∴x =A 1M =222±, ∴在等腰Rt △A 1CM 中,C A 1=122±.12.已知a 、b 、c 、d 是四个不同的整数,且满足a+b+c+d =5,若m 是关于x 的方程(x -a )(x -b )(x -c )(x -d )=2014中大于a 、b 、c 、d 的一个整数根,则m 的值为 .【答】20.解:∵(m -a )(m -b )(m -c )(m -d )=2014,且a 、b 、c 、d 是四个不同的整数,由于m 是大于a 、b 、c 、d 的一个整数根,∴(m -a )、(m -b )、(m -c )、(m -d )是四个不同的正整数. ∵2014=1×2×19×53,∴(m -a )+(m -b )+(m -c )+(m -d )=1+2+19+53=75. 又∵a+b+c+d =5,∴m =20.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,则有3461075=++z y x ,z y 2=.易知0<x ≤69,0<y ≤49,0<z ≤34, ……………………………………4分∴34610145=++z z x ,346245=+z x ,即524346zx -=.∵x ,y ,z 均为正整数,z 24346-≥0,即0<z ≤14∴z 只能取14,9和4. …………………………………………………8分①当z 为14时, 524346zx -==2,z y 2==28. 44=++z y x .②当z 为9时, 524346zx -==26,z y 2==18. 53=++z y x .③当z 为4时, 524346zx -==50,z y 2==8. 62=++z y x .综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支. ……………………………………………………………………14分14.如图,在矩形ABCD 中,AD =8,直线DE 交直线AB 于点E ,交直线BC 于F ,AE =6.(1)若点P 是边AD 上的一个动点(不与点A 、D 重合),,H DE PH 于⊥设DP 为x ,四边形AEHP 的面积为y ,试求y 与x 的函数解析式; (2)若AE =2EB .①求圆心在直线BC上,且与直线DE、AB 都相切的⊙O的半径长;②圆心在直线BC上,且与直线DE及矩形ABCD的某一边所在直线都相切的圆共有多少个?(直接写出满足条件的圆的个数即可.)14、解:(1)在Rt AED∆中,.10,8,6=∴==EDADAEΘ290,,.43.,.108655624.25AED PHDPHD EAD PDH EDA PHD EADx DH PHDH x PH xy S S x∆∆∠=∠=︒∠=∠∴∆≅∆∴==∴==∴=-=-Q…………………………………………………………5分(2)①//,AD BC EBF∴∆Q∽EAD∆.3.1068EF BF∴==5, 4.EF BF∴==………………………7分若⊙1O与直线DE、AB都相切,且圆心1O在AB的左侧,过点1O作DFGO⊥11于1G,则可设.1111rBOGO==1111111,5334222EO F EBO EBFS S S r r∆∆∆+=∴⋅+⋅=⋅⋅Q. 解得.231=r…………………10分若⊙2O与直线DE、AB都相切,且圆心2O在AB的右侧,过点2O作DFGO⊥22于2G,则可设.2222rBOGO==.5102136)4(21.2121222222r r G O DF DC FO S D FO )()(+=++∴⋅⋅=⋅⋅=∆Θ解得.62=r即满足条件的圆的半径为23或6.…………………………………………13分②6个.………………………………………………………………………………………16分15. 如图1,等腰梯形OABC 的底边OC 在x 轴上,AB ∥OC ,O 为坐标原点,OA = AB =BC ,∠AOC =60°,连接OB ,点P 为线段OB 上一个动点,点E 为边OC 中点.(1)连接P A 、PE ,求证:P A =PE ;(2)连接PC ,若PC +PE =32,试求AB 的最大值;(3)在(2)在条件下,当AB 取最大值时,如图2,点M 坐标为(0,-1),点D 为线段OC 上一个动点,当D 点从O 点向C 点移动时,直线MD 与梯形另一边交点为N ,设D 点横坐标为m ,当△MNC 为钝角三角形时,求m 的范围.解:(1)证明:如图1,连接AE.....22.90.30,60.,//.,PE PA AE OB OAE OA BC OC OC E OBC BOC AOB AOC BOC ABO OC AB ABO AOB AB OA =∴∴∴==∴︒=∠∴︒=∠=∠∴︒=∠∠=∠∴∠=∠∴=垂直平分线段为等边三角形的中点,为ΘΘΘΘ…………………………………………………………5分(2)∵PC +PE =32,∴PC +P A =32.显然有OB=AC ≤PC +P A =32.……………7分在Rt △BOC 中,设AB =OA =BC=x ,则OC=2x ,OB =x 3, ∴x 3≤32,∴x ≤2.即AB 的最大值为2. …………………………10分 (3) 当AB 取最大值时,AB =OA =BC =2,OC =4. 分三种情况讨论:①当N 点在OA 上时,如图2,若CN ⊥MN 时,此时线段OA 上N 点下方的点(不包括N 、O )均满足△MNC 为钝角三角形. 过N 作NF ⊥x 轴,垂足为F , ∵A 点坐标为(1,3),∴ 可设N 点坐标为(a ,a 3),则DF =a -m ,NF =a 3,FC =4-a . ∵△OMD ∽△FND ∽△FCN ,.FC NF NF DF OM OD ==∴ ∴a a am a m -=-=4331. 解得,13434+-=m ,即当0<m <13434+-时,△MNC 为钝角三角形;…14分②当N 点在AB 上时,不能满足△MNC 为钝角三角形;………………15分③当N 点在BC 上时,如图3,若CN ⊥MN 时,此时BC 上N 点下方的点(不包括N 、C )均满足△MNC 为钝角三角形..3,1.30.//,,==∴=︒=∠=∠∴∴⊥⊥m OD OM BOC ODM OB MN MN CN BC OB ΘΘ∴当3<m <4时,△MNC 为钝角三角形. 综上所述,当0<m <13434+-或3<m <4时,△MNC 为钝角三角形. …18分解:(1)由于派往A 地的乙型收割机x 台,则派往B 地的乙型收割机为(30-x )台, 派往A 、B 地区的甲型收割机分别为(30-x )台和(x-10)台.∴y=1600x+1200(30-x )+1800(30-x )+1600(x-10)=200x+74000(10≤x≤30) (2)由题意,得200x+74000≥79600,解得x≥28, ∵28≤x≤30,x 是正整数 ∴x=28、29、30 ∴有3种不同分派方案:①当x=28时,派往A 地区的甲型收割机2台,乙型收割机28台,余者全部派往B 地区; ②当x=29时,派往A 地区的甲型收割机1台,乙型收割机29台,余者全部派往B 地区; ③当x=30时,即30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区; (3)∵y=200x+74000中y 随x 的增大而增大,∴当x=30时,y 取得最大值,此时,y=200×30+74000=80000,建议农机租赁公司将30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区,这样公司每天获得租金最高,最高租金为80000元.30岁、15岁、22岁应选A。

相关文档
最新文档