初一数学讲义(学生版)

合集下载

3、初一数学上册讲义

3、初一数学上册讲义

初一数学上册讲义第三周、有理数加减法(一个法则、两个意义、运算技巧)知识回顾1、加法法则、技巧2.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:⑴ b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a一、【减法法则】减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

【常考题型】① 温差公式、气温变化:T1,T 二4,② 数轴位置关系(代入法):T2\T3\T 二13③ 求几个数的和比其绝对值和小多少:T7二、【意义】1、有理数加减法统一成加法:先转化,再运算!在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如: (-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”【常考题型】① 变式/变形题:T4② 被减数—减数=差(小学知识):T6③ 已知两数之和与其中一个加数,求另一个加数:T10,T 二5④ 判断差的正负:T8⑤ 选择题:计算结果等于几的式子是哪个?下列各式的计算结果等于4的是()A.(-49)+(-45)B.(-21)-(-43)+2C.0.125+(-43)-(-837)D.-|-431|+(+27)-845 2、几何意义:数轴上表示有理数 ,a 、b 的两点间距离等于| a -b |(或|b -a |)【常考题型】① 数轴上两点距离:T 二6三、加减混合运算技巧:回顾加法运算四个技巧(专题练习),1、带分数拆分(同步)2、分组结合3、裂项法(基础班同步、提高班拓展T2)【常考题型】(1) 运用简便运算计算题:T 三,(2) 运用相反数、绝对值性质计算题:T 二11、T 四(3) 应用题:T 二8,T 四速度题:花时间越多越不合格!★去绝对值号(提高班)拓展T1。

初一数学有理数全章讲义

初一数学有理数全章讲义
令狐采学创作
令狐采学创作
7、 44 , ,0, 0.四个数中,有理数的个数为( ) 7
A.1 个 B.2 个 C.3 个 D.4 个
8.有理数中,是整数而不是正数的是( ),是分数而不是正分数的是(
)。
9、有理数中,最小的自然数是( ),最小的正整数是( )。
10、整数与分数统称为( ),整数包括(
令狐采学创作
初一数学有理数全章讲义
令狐采学
1.1 正数和负数
知识点归纳
一、 正数和负数的定义
正数:大于 0 的数叫做正数。根据需要,有时在正数前面加上正号“+”,但是正数前面的正号“+”,一般省略不
写。
负数:在正数前面加上负号“-”的数叫做负数。负数前面的负号“-”不能省略。
注:对于正数和负数的概念,不能简单地理解为带“+”的数就是正数,带“-”的数就是负数。
),分数包括(
)。
11、通常把(
)和(
)统称为非负整数,把( )和( )统称为非正整
)和(
)统称为非正数。
12、将下列各数按要求分别填入相应的集合中。
9.3,6,3 3 ,7 1 ,0,100, 3 ,2.25,0.01,65, 2 , 3 , 0.2.
43
4
7 100
注:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点
不是一一对应的关系。
四、利用数轴比较大小(重点、难点)
1、数轴上的数的大小比较:在数轴上表示的两个数,右边的数比左边的数大
2、有理数大小比较法则:(1)正数都大于 0 (2)负数都小于 0 (3)正数大于负数
300 米,此时飞机距离地面多高? 9、某蓄水池的标准水位记为 0m,如果用正数表示水面高于标准水位的高度,那么 (1)0.08m 和-0.2m 各表示什么? (2)水面低于标准水位 0.1m 和高于标准水位 0.23m 各表示什么? 10、2006 年我国全年平均降水量比上年减少 24 毫米,2005 年比上年增长 8 毫米,2004 年比上年减少 20 毫米。

七年级数学有理数(学生讲义)

七年级数学有理数(学生讲义)

第一章有理数知识网络结构图知识点1:有理数的基本概念中考要求:有理数 理解有理数的意义会比较有理数的大小数轴 能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题知识点总结:正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号. 正数前面的“+”可以省略,注意3与3+表示是同一个正数. 用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -. “相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数. ()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.板块一、基本概念 例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.2、下面关于有理数的说法正确的是( ). A .有理数可分为正有理数和负有理数两大类.B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数 板块二、数轴、相反数、倒数、绝对值3、a 和b 是满足ab ≠0的有理数,现有四个命题: ①224a b -+的相反数是224a b -+;②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4、一个数的绝对值大于它本身,那么这个数是( )A 、正有理数B 、负有理数C 、零D 、不可能 5、数轴上离开原点2个单位长度的点表示的数是____________; 6、有理数-3,0,20,,,-∣-12∣,-(-5)中,正整数有________个, 非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。

初一数学讲义

初一数学讲义

第一章有理数1.1正数与负数一、预习目标知识与技能:知道正数和负数是怎样产生的;知道什么是正数和负数;描述数0表示的量的意义。

二、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。

2.难点:负数的引入。

3.疑点:负数概念的建立。

三、预习过程设计(一)创设情境,复习导入提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?(二)探索新知,讲授新课为了研究这个问题,我们看两个实例1.在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温,如下:10,3,-10,-2.你能读出它们所表示的温度各是多少吗?(单位℃)2.再看一个例子,中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么意义吗?正数的概念:___________________;负数的概念:_______________________。

注意:0既不是正数也不是负数。

(三)尝试反馈,巩固练习1.所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“-11,4.8,+7.3,0,-2.7,-1 6,16,712,-8.12,-342.自己任意写出6个正数与6个负数分别把它填在相应的大括号里。

正数集合()负数集合()3.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________。

(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?4.(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。

初中七年级下册数学讲义第2讲-实数的表示与开方(上体馆)

初中七年级下册数学讲义第2讲-实数的表示与开方(上体馆)

1对3辅导讲义学员姓名: 学科教师: 年 级: 辅导科目: 授课日期时 间主 题第2讲-实数的表示与开方学习目标1.进一步理解无理数、实数、平方根等概念; 2.理解立方根和开立方运算以及开n 次方运算; 3. 会进行简单的实数运算;4. 掌握实数大小比较的方法,会根据情况灵活选择方法进行实数大小比较。

教学内容1. -0.064的立方根是_________,4的立方根是__________. -0.4, 342. 若,则___________. 1±3. 为最大的负整数,则a 的值为___________. 4±4、若一个数的立方根就是它本身,则这个数是________。

0、1、-1知识点一、立方根与开立方问题:什么是立方根?什么是开立方运算?x 21=x 3=回顾:立方根和开立方的性质有哪些?1.正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零;2.任意实数都有立方根,且只有一个立方根; 可以用具体的例子引导学生总结3. ()33a a =,33a a =.(注意与平方根和开平方相应性质的对比)4.33a a -=-.例1. 下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .如果一个数有立方根,那么它一定有平方根D .一个数的立方根与被开方数同号 例2.33(2)-的值是 .例3. 立方根等于本身的数是 ,平方根等于本身的数是 . 答案:D ; -2; 0,1,-1; 0,1; 试一试:1.64的平方根是 ,64的立方根是 .2.16的平方根是 ,64的立方根是 .3.已知()38210x -+=,则x = .答案:1. 8,4±; 2. 2,2±; 3. 32; 【例题精讲】 例4.填表:a0.0000010.001 1 1000 10000003a教法指导:建议让学生观察并讨论本题的解题思路。

参考答案:0.01 0.1 1 10 100例5.根据上表总结规律:被开方数的小数点每向 移动 位,则立方根的小数点相应地向 移动 位. 教法指导:这个结论让学生多观察总结,还可以再举例让学生理解 参考答案:右,3,右,1 【试一试】已知35.25 1.738=,35258.067=,则30.000525-=( )A . 17.38-B . 0.01738-C . 806.7-D . 0.08067- 参考答案:D知识点二、立方根运算 【例题精讲】 例6. 计算:(1)38515; (2)327102--- ; (3)3387)(- ; (4)6356)(-; (5)312564-38+1001 ; (6)3125.0-1613+23)871(-.教法指导:建议让学生独立完成,可以设置为相互PK 的形式。

七年级上册 数学讲义《第3讲 数轴动点(二)》人教版 初一数学

七年级上册 数学讲义《第3讲  数轴动点(二)》人教版 初一数学

人教版·七年级上册数学讲义第3讲 数轴动点(二)疯狗问题知识导航疯狗问题的难度并不大,特征也很明显,即一个较高的速度动点(疯狗)不断在两低速动点间往返运动,两低速动点相遇时,高速度动点随之停止.在这个运动过程中,我们并不能清晰的分析出这里的运动状态,但可以通过两低速动点相遇所花费的时间来得到高速动点的运动时间,结合其速度求出它的路程.例题1点A 、B 、C 在数轴上表示的数a 、b 、c 满足:()()222240b c ++-=,且多项式32321a x y ax y xy +-+-是五次四项式.若数轴上有三个动点M 、N 、P ,分别从点A 、B 、C 开始同时出发,在数轴上运动,速度分别为每秒1个单位长度、7个单位长度、3个单位长度,其中点P 向左运动,点M 向右运动,点N 先向左运动,遇到点M 后回头再向右运动,遇到点P 后回头向左运动,……,这样直到点P 遇到点M 时三点都停止运动,求点N 所走的路程.练习1已知数轴上的点A 、B 对应的数分别为x 、y ,且()21002000x y ++-=.点P 为数轴上从原点出发的一个动点,速度为30单位长度/秒,若点A 沿数轴向右运动,速度为10单位长度/秒,点B 沿数轴向左运动,速度为20单位长度秒,点A 、B 、P 三点同时开始运动.点P 先向右运动,遇到点B 后立即掉头向左运动,遇到点A 后再立即掉头向右运动……如此往返.当A 、B 两点相距30个单位长度时,点P 立即停止运动,求此时点P 移动的路程为多少个单位长度? 挡板问题到达挡板后停止例题2已知点A 、B 在数轴上表示的数分别为a 、b ,且满足2a -与()290b -互为相反数.(1)a 值为_____,b 值为_____.(2)已知电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动.问电子狗P经过多长时间,有P、Q 两只电子狗相距70个单位长度?练习2数轴上A、B两点对应的数分别为-80、20,一电子蚂蚁P从点A出发,以每秒1个单位长度的速度向右匀速运动,目的地为B点;另一电子蚂蚁Q从点B出发,以每秒4个单位长度的速度向左匀速运动,目的地为A点.(1)运动多长时间后,P、Q两只电子蚂蚁相距20个单位长度?(2)运动多长时间后,P、Q两只电子蚂蚁相距80个单位长度?到达挡板后返回例题3如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足++=.+a b a430(1)求A、B两点之间的距离.(2)若在原点O处放一挡板,一小球甲从点A处以2个单位/秒的速度向左运动;两秒后另一个小球乙从点处以3个单位秒的速度也向左运动,左碰到挡板后(忽略球的大小,可以看作一点)乙球以4个单位/秒的速度向相反的方向运动,设甲球的运动的时间为t(秒).①分别表示甲、乙两小球到原点的距离(用含的式子表示).②求甲、乙两小球到原点的距离相等时,甲球所在位置对应的数.数轴上有A、B、C三点,分别表示有理数-26、-10、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________.(2)当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点.①用含t的代数式表示Q在由A到C过程中对应的数:__________.②当t=__________时,动点P、Q到达同一位置(即相遇).③当PQ=3时,求的值.练习32019~2020学年10月湖北武汉江岸区武汉市七一华源中学初一上学期月考第24题12分已知数轴上的A、B两点分别对应数字a、b,且a、b满足()2-+-=.440a b a(1)直接写出a、b的值.(2)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位长度的速度向点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向正方向运动,点P运动到点C立即返回再沿数轴向左运动.当10PQ=时,求P点对应的数.例题4已知多项式26233---中,多项式的项数为a,多项式的次数为b,常数项为c,且a、25320m n m n nb、c分别是点A、B、C在数轴上对应的数.(1)写出a=_____;b=_____;c=_____.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是1、2、3,(单位/秒),当乙追上甲时,甲、乙继续前行,丙此时以原速向相反方向运动,问甲、乙、丙三个动点分别从A、B、C三点同时出发到乙、丙相距2个单位长度时所经历的时间是多少秒?总结归纳无论是遇到挡板后停止的动点问题,还是遇到挡板后返回的动点问题,其本质都是,在遇到挡板的前后,该动点的运动状态发生了改变.因此,必须以到达终点或碰到挡板的时间为界,分别表示出在不同时间段内动点的位置表达式(含t的代数式),即分段讨论,在此基础上再来研究相关点的距离关系,这样才不会漏解.同学们可以体会挡板问题和一般的动点问题的不同之处,自己归纳易错点和相应解法,这样印象更深刻,能真正理解动点问题的本质以及各题型之间的异同.练习42018~2019学年10月湖北武汉洪山区武汉市卓刀泉中学初一上学期月考第24题12分已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足()2++++-=.动点a b c2410100P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,(1)求a、b、c的值.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.例题52018~2019学年湖北武汉东湖高新区初一上学期期中第24题12分数轴上m,n,q所对应的点分别为点M,点N,点Q.若点Q到点M的距离表示为QM,点N到点Q的距离表示为NQ.我们有QM q m=-.=-,NQ n q(1)点A,点B,点C在数轴上分别对应的数为-4,6,c.且BC CA=,直接写出c的值_____.(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从A,C两点出发向右运动,甲的速度为4个单位每秒,乙的速度为1个单位每秒.求经过几秒,点B与两只蚂蚁的距离和等于7.(3)在(1)(2)的条件下,电子蚂蚁乙运动到点B后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至B点后也以原速返回,到达自己的出发点后又折返向B点运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动,运动时间为多少时,两只蚂蚁相遇.练习52019~2020学年10月湖北武汉武昌区武昌首义中学初一上学期月考第24题12分如图,数轴上点A、C对应的数分别是a、c,且a、c满足()2a c++-=,点B对应的数是-3.410(1)求数a、c.(2)点A、B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间为t秒,在运动过程中,点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,求在此运动过程中,A、B两点同时到达的点在数轴上表示的数是_____(直接写出答案)挑战压轴题2017~2018学年湖北武汉江岸区武汉二中广雅中学初一上学期期中第24题如图,A、B两点在数轴上对应的数分别为-20、40,C点在A、B之间.在A,B、C三点处各放一个档板,M、N两个小球都同时从C处出发,M向数轴负方向运动,N向数轴正方向运动,碰到档板后则向反方向运动,一直如此下去(当N小球第二次碰到B档板时,两球均停止运动)(1)若两个小球的运动速度相同,当M小球第一次碰到A档板时,N小球刚好第二次碰到B档板求C点所对应的数.(2)在(1)的结论下,若M,N小球的运动速度分别为2个单位/秒,3个单位/秒,则N小球前三次碰到档板的时间依次为a,b,c秒钟,设两个球的运动时间为t秒钟.①请直接写出下列时段内小球所对应的数(用含t的代数式表示)当0t a≤≤时,N小球对应的数为_____,当a t b<≤时,N小球对应的数为_____,当b t c<≤时,N小球对应的数为_____.②当M、N两个小球的距离等于30时,求t的值.(3)移走A、B、C三处的挡板,点P从A点出发,以6个单位/秒的速度沿数轴向右运动,同时点Q从B点出发,以4个单位/秒的速度沿数轴向左运动.已知E为AP中点,点F在线段BQ上,且14QF BQ=,问出发多少秒后,点E到点F的距离是点E到原点O的距离的4倍?巩固加油站巩固12019~2020学年12月湖北武汉蔡甸区经济技术开发区第一中学初一上学期月考第24题12分如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴的正方向运动,3秒后,两点相距15个单位长度.已知动点A,B的速度之比为1:4(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置.(2)若A,B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒后,两动点到原点的距离相等?(3)在(2)中若B在A的右侧,A、B两点继续同时开始向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后立即返回向B点运动,遇到B点后又立即返回向点A运动……如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以20单位长度秒的速度匀速运动,那么点C从开始到停止运动,行驶的路程是多少个单位?巩固2数轴上A、B两点表示的有理数为a、b,且()2350a b-++=.小蜗牛甲以1个单位长度秒的速度从点B出发向其左边6个单位长度处的食物爬去,3秒后位于点A的小蜗牛乙收到它的信号,以2个单位长度秒的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D 点相遇,则点D表示的有理数是什么?从出发到此时,小蜗牛甲共用去多少时间?巩固3数轴上A点对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再以同样速度立即返回到A点,共用了4秒钟.(1)求点C对应的数.(2)若小虫甲返回到A点后再做如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位,第3次向右爬行7个单位,第4次向左爬行9个单位……依此规律爬下去,求它第10次爬行后停在点所对应的数.(3)回答下列各问:①若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t秒后,甲、乙两只小虫的距离为_____(用含t的整式表示).②若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B和点C出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位.假设运动t秒后,甲、乙、丙三只小虫对应的点分别是D、E、F,则32DE EF-是定值吗?如果是,请求出这个定值.巩固4如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对于的数分别是a、b、c、d,且214d a-=.(1)那么a=_____,b=_____.(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持23AB AC=.当点C运动到-12时,点A对应的数是多少?。

平行线与相交线--学生讲义(2)

平行线与相交线--学生讲义(2)

中正教育学生辅导讲义年级:初一课时数:3 班主任:学员姓名:李子扬辅导科目:数学学科教师:王梦珠授课类型T 立足课本,两条直线的位置关系C 两条直线垂直与平行中角的关系T熟练运用两直线平行的判定定理授课日期时段2015.530周六10:00-12:00教学内容一、立足课本【学习目标】1.熟练掌握对顶角,余角,补角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2. 区别平行线的判定与性质,并能灵活运用;3. 了解尺规作图的概念,熟练掌握用尺规作角或线段的方法.【要点梳理】要点一、两条直线的位置关系1.同一平面内两条直线的位置关系:相交与平行要点诠释:(1)只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.(2)在同一平面内不相交的两条直线叫做平行线.平行用符号“∥”表示.2.对顶角、补角、余角(1)定义:①由两条直线相交构成的四个角中,有公共顶点且两边互为反向延长线的两个角叫做对顶角.②如果两个角的和是180°,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么这两个角互为余角.简称互余,其中一个角叫做另一个角的余角.(2)性质:同角或等角的余角相等.同角或等角的补角相等.对顶角相等.3.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、用尺规作线段和角1.用尺规作线段(1)用尺规作一条线段等于已知线段.(2)用尺规作一条线段等于已知线段的倍数.(3)用尺规作一条线段等于已知线段的和.(4)用尺规作一条线段等于已知线段的差.2.用尺规作角(1)用尺规作一个角等于已知角.(2)用尺规作一个角等于已知角的倍数.(3)用尺规作一个角等于已知角的和.(4)用尺规作一个角等于已知角的差.二、典例分析类型一、两条直线的位置关系1.如图,直线AB、CD、EF相交于点O,那么互为对顶角(平角除外)的角共有对,它们分别是,共有对邻补角.举一反三:【变式】如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.2.已知:如图,直线a、b、c两两相交,且a⊥b,∠1=2∠3,,求∠4的度数.类型二、平行线的性质与判定3.如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整:因为EF∥AD,所以∠2= ()又因为∠1=∠2,所以∠1=∠3所以AB∥()所以∠BAC+ =180°()因为∠BAC=70°,所以∠AGD= .举一反三:【变式】如图,已知∠ADE=∠B,∠1=∠2,那么CD∥FG吗?并说明理由.4.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.1.(1)如图(1)已知直线AB,CD相交于点0.(2)如图(2)已知直线AE,BD相交于点C.分别指出两图中哪些角是邻补角? 哪些角是对顶角?2.直线AB、CD相交于点O,OE⊥AB于点O,∠COE=40°,求∠BOD的度数.举一反三:【变式】如图所示,O是直线AB上一点,射线OC、OD在AB的两侧,且∠AOC=∠BOD,试证明∠AOC与∠BOD是对顶角.类型二、平行线的性质与判定3.如图所示,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是().A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=.4.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.类型三、实际应用6.手工制作课上,老师先将一张长方形纸片折叠成如图所示的那样,若折痕与一条边BC的夹角∠EFB=30°,你能说出∠EGF的度数吗?举一反三:【变式】(山东滨州)如图,把—个长方形纸片对折两次,然后剪下—个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为().A.60° B.30° C.45° D.90°一、能力检测一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.下列说法正确的是().A.相等的角是对顶角.B.两条直线被第三条直线所截,内错角相等.C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.D.若两个角的和为180°,则这两个角互为余角.4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°6.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.7.如图,∠1和∠2互补,∠3=130°,那么∠4的度数是( ).A. 50°B. 60°C.70°D.80°二、填空题9. 如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.如图所示,已知BC∥DE,则∠ACB+∠AOE=.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE∥AB的一个条件,这个条件是:①:________ ②:________ ③:________(第12题)(第13题)13.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.14.如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD= ,∠AOC=,∠BOC=.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.16.如图所示,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,能表示点到直线(或线段)的距离的线段有条.三、解答题17.如图所示,直线AB、CD、EF相交于点O,若∠1+∠2=90°,∠3=40°,求∠1的度数,并说明理由.18.如图所示,已知∠1=∠2,AC平分∠DAB,你能推断哪两条线段平行? 说明理由.19. 如图所示,已知∠1=50°,∠2=130°,∠4=50°,∠6=130°,试说明a∥b,b∥c,d∥e,a∥c.教师赠言:There is no elevator to success, only stairs. ----成功没有电梯,只有楼梯。

新初一数学讲义4份

新初一数学讲义4份

初一数学专用讲义2012年初一暑假班讲义第一讲数的概念【典型例题】[例1]计算解:中学求分式中的取值范围[例2] 小学解方程中学解方程:(1)(2)[例3] 小学:如图,求图中阴影部分的周长是多少?中学:已知,如图点C是AB的中点,CD∥BE,且CD=BE.求证:.[例4] 七年级三班学生参加义务劳动,原来每组8人,后来根据需要重新编组,每组14人,这样比原来减少3组.问这个班共有学生多少人?[例5]一个三位数三个数字之和是24,十位数字比百位数字少2,如果这个三位数减去两个数字都与百位数字相同的一个两位数所得的数也是三位数,而这三位数三个数字的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数.[例6]现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲的年龄是儿子年龄的3倍.四、下面我们来学习一些初中数学的一些知识:1. 正数与负数:负数:0以外的数前面加上负号.正数:0以外的数与负数具有相反的意义.2. 有理数:正整数、0、负整数统称整数、正分数和负分数统称分数,整数和分数统称有理数.3. 数轴:通常用一条直线上的点表示数,这条直线叫做数轴.数轴必须满足3个条件:(1)在直线上任取一点表示数0,这个点叫做原点.(2)通常规定直线上从原点向右为正方向.(3)选取适当长度为单位长度.4. 相反数:只有符号不同的两个数叫做相反数5. 绝对值:数轴上表示的点与原点的距离叫做的绝对值,记作.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.[例1] 用正负数表示下列各题中的数量:(1)如果零上5℃记作5℃,那么零下4℃记作 .(2)1000米表示向东走1000米,那么向西走2000米记作 .(3)球赛时,如果胜3局记作+3,那么-2表示 .(4)+2000米表示高出海平面2000米,低于海平面200米,表示为 . (5)2月份中的一天,大连市最低温度零下15℃,记作;同一天,海口市最高温度是零上15℃,记作 .(6)若万元表示亏损4万元,那么盈余5万元表示为 .[例2] 把下列各数分别填入相应的大括号内:+3,,,3.14,0,,95%,,+(1)整数集合{ ……}(2)分数集合{ ……}(3)正数集合{ ……}(4)负数集合{ ……}(5)自然数集合{ ……}(6)负分数集合{ ……}[例3] 为计算一小组12个同学数学考试成绩平均分,以85分为起点,85分以上记为正,85分以下的记为负,若12个同学的分数顺次记为:,,,,,,,,,,,,求这12个同学的数学平均分.[例4] 指出下列数轴上各点表示的数,并按从小到大的顺序用“”号连接起来.[例5] 数轴上有一个点A,它表示有理数3,现把A向右移动2个单位到B点,再由B点向左移动9个单位到达C点,则C点表示的有理数是多少?[例6] 与原点距离等于5的点有几个,表示的数是多少?[例7] 比较下列每对数的大小并说明理由.(1),(2)+5,0 (3) ,[例8] 如果∣a∣=4,那么a=_________,如果∣-a∣=4,那么a=________,若()2120,______,________.a b a b-++===则【模拟试题】一. 填空:1. 设收入为正,收入20元,记作,支出30元,记作 .2. 如果+15吨表示运进15吨,那么—10吨表示 .3. 某日的最高气温是2℃,最低气温是-8℃,该日的温差是 .4. 大于-4且小于2的整数是 .5. 一个数从数轴上表示-2的点开始,先向右移动3个单位长度,再向左移动5个单位长度,此时点所对应的数是 .6. 与原点的距离为7个单位长度的点有个,它们分别表示有理数.7. 在数轴上,原点和原点左边的点所表示的数统称为 .8. 用“”或“”填空.(1)143144(2)0.1 -100 (3)-1.2 0二. 选择:1. 下列说法中,① 0是自然数② 0是整数③ 0是正数④ 0是非负数,正确的个数为()A. 1个B. 2个C. 3个D. 4个2. 下列语句中,错误的是()A. 正整数和负整数统称为整数B. 零既不是正数也不是负数C. 整数和分数统称为有理数D. 分数、小数都属于分数集合3. 在数轴上点A 表示数,点B 表示数,且,下面说法正确的是( )A. 点A 在点B 的右边B. 点A 在点B 的左边C. 点A 在原点右边,点B 在原点的左边D. 点A 和点B 都在原点的右边 4. 在数轴上-3与-6间的有理数有( )A. 2个B. 3个C. 4个D. 无数个5. 如图,根据有理数,,在数轴上的位置,下列关系正确的是( )A. B. C.D.6. 下列说法正确的是( ) A. 数轴是一条直线B. 数轴上右边的数表示正数,左边的数表示负数C. 距离数轴越远的点,表示的数就越大D. 任何一个有理数,都可以用数轴上的点表示出来三. 解答题:1. 指出数轴上A 、B 、C 、D 、E 各点分别表示什么数?2. 画出数轴,在数轴上表示与3,114,-1,-2.5离原点距离相等的数,并用“”号连接起来. 第二讲:有理数加减法一、有理数加法法则:1. 同号两数相加,取相同的符号,并把绝对值相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(提示:三角形的内角和等于 180°)
5.如图, O 是直线 AB 上一点 ,OC、OD 、OE 是三条射线 ,则图中互补的角共有(
(A) 2
(B) 3
(C) 4
(D) 5
B )对
6.互为余角的两个角 ( ( A )只和位置有关 ( C)和位置、数量都有关
) (B )只和数量有关 ( D)和位置、数量都无关
的长是(

A
M
B
C
N
D
A 2( a-b) B 2a-b
C a+b
D a-b
(三)与角有关的问题
1. 已知:一条射线 OA,若从点 O 再引两条射线 OB、OC ,使∠ AOB= 600,∠ BOC =20 0, 则∠ AOC=____________度 ( 分类讨论 )
2. A、O、B 共线, OM 、ON 分别为∠ AOC 、∠ BOC 的平分线,猜想∠ MON 的度数,试证明你的结论.
例 6. 解方程 ax b
例 7. 问当 a、 b 满足什么条件时,方程 2x+5-a=1-bx :(1)有唯一解; ( 2)有无数解; ( 3)无解。
x11x a b
例 8. 解方程
a b ab
二、含绝对值的方程解法 例 9. 解下列方程 5x 2 3
例 10. 解方程 例 11. 解方程
2x 1 5 1
注:一般来说,代数式的值随着字母的取值的变化而变化
3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题
例 1. 若多项式 2 mx2 x2 5x 8 7 x2 3 y 5 x 的值与 x 无关, 求 m 2 2m 2 5m 4 m 的值 .
例 2. x=-2 时,代数式 ax 5 bx 3 cx 6 的值为 8,求当 x=2 时,代数式 ax 5 bx 3 cx 6 的值。
F
10 5
11
D
E
例 8. 将正奇数按下表排成 5 列 :
第一列
第二列
第三列
第一行
1
3
5
7
第二行 15
13
11
9
第三行
17
19
21
23
第四行 31
29
27
25
L
L
第四列
L
第五列
根据上面规律, 2007 应在 A. 125 行 ,3 列 B. 125 行 ,2 列 C. 251 行 ,2 列
D. 251 行,5 列
例 9.( 2006 年嘉兴市)定义一种对正整数 n 的“ F”运算:①当 n 为奇数时,结果为 3n+ 5;②当 n 为偶数时,
n
n
结果为 2k (其中 k 是使 2k 为奇数的正整数) ,并且运算重复进行.例如,取
n= 26,则:
F② 26
第一次
F① 13
第二次
F② 44
第三次
11

若 n= 449,则第 449 次“ F 运算”的结果是 __________.
3 x 1 2x 1
第四讲:图形的初步认识
基本要求:
1.如图四个图形都是由 6 个大小相同的正方形组成,其中是正方体展开图的是(

A .①②③
B.②③④
C.①③④
D .①②④
较高要求:
2.下图可以沿线折叠成一个带数字的正方体,每三个带数字的面交于正方体的
一个顶点,则相交于一个顶点的三个面上的数字之和最小是
a 当 a为负数
说明:(Ⅰ) |a| ≥ 0 即 |a| 是一个非负数; (Ⅱ) |a| 概念中蕴含分类讨论思想。
三、 典型例题
例 1.( 数形结合思想 )已知 a、b、 c 在数轴上位置如图:
则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )
A . -3a
7.已知∠ 1、∠ 2 互为补角,且∠ 1>∠ 2,则∠ 2 的余角是( )
A. 1 (∠ 1+∠ 2) B. 1 ∠ 1 C. 1 (∠ 1-∠ 2) D. 1 ∠ 2
2
2
2
2
一、知识框架
第六讲:相交线与平行线
两条
直线
相交


两条
线
直线
被第
三条
直线 所截
邻补角、对顶角 垂线及性质
对顶角相等 点到直线的距离
a b ad bc . cd
( 1)则 1 2 的值为
;( 2)当 2 4 18 时, x =
.
12
(1 x) 5
例 4.(方程的思想)如图,一个瓶身为圆柱体的玻璃瓶内装有高 高为 h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的(
a 厘米的墨水,将瓶盖盖好后倒置,墨水水面

不考虑瓶子的厚度 .
a
A.
ab
50 元。从收
入的角度考虑,选择哪家公司有利?
例 6. 三个数 a 、 b、 c 的积为负数,和为正数,且
x
a
b
c
ab
ac
bc

a b c ab ac bc
则 ax3 bx 2 cx 1的值是 _______ 。
例 7.如图,平面内有公共端点的六条射线 OA,OB,OC,OD,OE,OF ,从射线 OA 开始按逆时针方向依次在
其中能表示 B 是线段 AC 的中点的有(

A.1 个
B. 2 个
C. 3 个
D.4 个
3.已知线段 MN ,P 是 MN 的中点, Q 是 PN 的中点, R 是 MQ 的中点,那么 MR = ______ MN .
4.如图所示, B、 C 是线段 AD 上任意两点, M 是 AB 的中点, N 是 CD 中点,若 MN=a , BC=b,则线段 AD
()
A. 7
B. 8
C. 9
D. 10
3.一个正方体的展开图如右图所示,每一个面上都写有一个自然数并且相对 两个面所写的两个数之和相等,那么 a+b-2c= ( )
A .40
B.38
C.36
D. 34
4.下图是某一立方体的侧面展开图,则该立方体是(

1 6245 3
c 84 b 25 a
A
B
C
D




9.下面是四个立体图形的展开图,则相应的立体图形依次是
()
A.正方体、圆柱、三棱柱、圆锥 C.正方体、圆柱、三棱锥、圆锥
B. 正方体、圆锥、三棱柱、圆柱 D.正方体、圆柱、四棱柱、圆锥
13.对右面物体的视图描绘错误的是
()
(四)新颖题型
16. 正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长
第一讲 和绝对值有关的问题
一、 知识结构框图:
二、 绝对值的意义:
(1) 几何意义:一般地,数轴上表示数 a 的点到原点的距离叫做数 a 的绝对值,记作 |a| 。 (2) 代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;
③零的绝对值是零。
a 当 a为正数 也可以写成: | a | 0 当 a为 0
B . 2c - a C.2a- 2b D . b
例 2. 已知: x 0 z , xy 0 ,且 y z x , 那么 x z y z x y 的值( )
A .是正数
B .是负数
C .是零
D .不能确定符号
例 3.(分类讨论思想 )已知甲数的绝对值是乙数绝对值的 3 倍,且在数轴上表示这两数的点位于原点的两侧, 两点之间的距离为 8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?
4 与 2 ,3 与 5, 2 与 6 , 4 与 3.
并回答下列各题:
( 1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:
___
.
( 2)若数轴上的点 A 表示的数为 x,点 B 表示的数为― 1,则 A 与 B 两点间的距离
可以表示为 ________________.
( 3)结合数轴求得 x 2 x 3 的最小值为
方体的下底面数字和为
.
第五讲:线段和角
一、知识结构图
直线
线段 直线性质 射线
线段的比较和画法
线段的中点
线段性质
两点间的距离
平角
直角
锐角
钝角
角的分类
周角

角的比较、度量和画法
角平分线
相关角
余角和补角
定义 性质
同角(或等角) 的补角相等
同角(或等角) 的余角相等
二、典型问题:
(一)数线段——数角——数三角形 问题 1、直线上有 n 个点,可以得到多少条线段?
,取得最小值时 x 的取值范围为 ___.
( 4) 满足 x 1 x 4 3 的 x 的取值范围为
______ .
第二讲:代数式的化简求值问题
一、 知识链接
1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容
.
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
b
B.
ab
h
C.
ab
h
D.
ah
例 5. 小杰到食堂买饭,看到 A、B 两窗口前面排队的人一样多,就站在 A 窗口队伍的里面,过了 2 分钟,他
发现 A 窗口每分钟有 4 人买了饭离开队伍, B 窗口每分钟有 6 人买了饭离开队伍,且 B 窗口队伍后面每分钟增
加 5 人。此时,若小李迅速从 A 窗口队伍转移到 B 窗口后面重新排队,将比继续在 A 窗口排队提前 30 秒买到
相关文档
最新文档