华师大版初中数学九年级下册第21讲 圆的基本性质
数学九年级下华东师大圆的认识圆的基本元素PPT课件

作业 练习册 圆的第一课时
第16页/共17页
感谢您的观看。
第17页/共17页
第3页/共17页
回顾思考
A
50% 20% 30%来自OCB
半径有: OA、OB、OC 直径: AB
第4页/共17页
动手画一画
第5页/共17页
圆的确定
●O
要确定一个圆,必须确定圆的圆__心__和_半__径_ 圆心确定圆的位置,半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”.
第6页/共17页
C
劣弧有:
⌒ AB
⌒ BC
半圆有 : 优弧有: A⌒CB
A⌒BC
B⌒AC
判断:半圆是弧,但弧不一定是半圆.( ) 第9页/共17页
圆心角
定义:顶点在圆心,并且两边都和圆周相交的角叫做圆心角
A
O B
找出⊙O中的圆心角: C
∠AOC ∠BOC
思考:∠ABC是不是 圆心角?
第10页/共17页
判断正误:
第11页/共17页
思考
D O
A
: 变式:在矩形ACBD中,对角线AB、CD相交于点O,
思试考说明在A⊙、OB中、,CA、B、D4C个D是点直在径同.一AD个与圆B上C平行吗?说说 你的理由.四边形ACBD是矩形么?为什么?
B
温馨提示:
C 1、对角线相等且互相平分的四边形是 矩形。 2、由内错角的相等也可以得到线的 平行
探求新知把车轮做成圆形车轮上各点到车轮中心圆心的距离都等于车轮的半径当车轮在平面上滚动时车轮中心与平面的距离保持不变因此当车辆在平坦的路上行驶时坐车的人会感觉到非常平稳这也是车轮都做成圆形的数学道理
魏义华
华东师大版九年级数学圆的有关性质课件

中点的线段。
相交弦定理
03
在圆中,相交弦的长度乘积等于以两弦为直径的两个弦之间的
弧所夹的弦的长度乘积。
圆的应用
01
圆的对称性
圆具有中心对称性和旋转对称性,因此在建筑设计、图案设计等方面有
广泛应用。
02
圆的运动轨迹
在物理学中,圆可以用来描述物体的运动轨迹,例如行星绕太阳的轨道
等。
03
圆的几何性质在生活中的应用
华东师大版九年级数学圆的有关性 质课件
目 录
• 圆的定义与性质 • 圆的周长与面积 • 圆与直线的位置关系 • 圆的切线与割线定理 • 圆的定理与推论 • 圆的综合应用题
01 圆的定义与性质
圆的定义
1 2
圆上三点确定一个圆
在一个平面内,通过三个不共线的点可以确定一 个圆。
圆上两点之间的距离为半径
弦切角定理指出,弦 切角等于它所夹的弧 所对的圆心角的一半。
切线长定理
切线长定理是关于圆的切线上 一点的性质定理。
切线长定理指出,过圆外一点 作圆的两条切线,则该点与圆 心连线平分两条切线的夹角。
切线长定理的应用也非常广泛, 例如在几何作图、证明和计算 中都有应用。
06 圆的综合应用题
圆的运动问题
相交弦定理
若两弦相交于圆内一点,则该两弦与 另一条过该点的直径的交点所形成的 两条线段的积等于定值。
切割线定理
若一条直线自圆外一点向圆作切线, 则该切线长等于过该点作圆的切线的 两条线段长的积的平方根。
弦切角定理
弦切角定理是关于弦 切角与它所夹的弧所 对的圆心角的关系的 定理。
弦切角定理的应用非 常广泛,例如在几何 作图、证明和计算中 都有应用。
华东师大版九年级下册:圆的认识

圆的认识教学目标1.理解圆的定义;理解半径、直径、等圆的概念;2.理解圆的对称性;3.并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;学习内容知识梳理一、圆的定义1.圆的定义如图,平面内到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点叫做圆心,定长叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.总结:⊙圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;⊙圆是平面内到定点的距离等于定长的点的轨迹.2. 等圆的概念圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:⊙定点为圆心,定长为半径;⊙圆指的是圆周,而不是圆面;⊙强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.3.弦(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.注意:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD⊙AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)⊙直径AB是⊙O中最长的弦.4.弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.总结:⊙半圆是弧,而弧不一定是半圆;⊙无特殊说明时,弧指的是劣弧.5. 等弧在同圆或等圆中,能够完全重合的弧叫做等弧.总结:⊙等弧成立的前提条件是在同圆或等圆中,不能忽视;⊙圆中两平行弦所夹的弧相等.二、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.注:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.(一)圆心角与弧的定义1.圆心角定义:顶点在圆心的角叫做圆心角.如图所示,⊙AOB 就是一个圆心角. 要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)圆心角∠AOB 所对的弦为线段AB ,所对的弧为弧AB. 2.1°的弧的定义1°的圆心角所对的弧叫做1°的弧。
华师大版九年级数学下册2711圆的基本元素课件

与圆有关的概念
2 课时流程 同圆的半径相等
逐点 导讲练
课堂 小结
作业 提升
我们已经学会将收集到的 数据用扇形统计图加以 描述. 如图就是反映某学校学生上 学方式的扇形统计图.
我们是先用圆规画出一个 圆,再将圆划分成一个个 扇形来制作扇形统计图的.
(来自《教材》)
知识点 1 圆的定义
(来自<典中点>)
知3-练
2 (2015·绍兴)如图,已知点A(0,1),B(0,-1),以点 A为圆心,AB为半径作圆,交x轴的正半轴于点C, 则∠BAC等于________度.
知2-讲
(3)等圆与等弧: 能够重合的两个圆叫做等圆.所以半径相等的两个圆是 等圆. 在同圆或等圆中,能够互相重合的弧叫做等弧.
(4)圆心角:顶点在圆心的角叫做圆心角. 2.弦与弧之间的关系: (1)弦是圆上两点间的线段,有无数条;弧是圆上两点间的
部分,弧是曲线,弧也有无数条. (2)每条弧对一条弦;而每条弦所对的弧有两条:优弧、劣
知2-练
3 下列说法中,错误的是( ) A.直径相等的两个圆是等圆 B.长度相等的两条弧是等弧 C.圆中最长的弦是直径 D.一条弦把圆分成两条弧,这两条弧可能相等
知识点 3 同圆的半径相等
知3-讲
圆的特性: (1)圆上各点到定点(圆心O)的距离都等于定长(半径r),
即同圆的半径相等. (2)到定点O的距离等于定长r的点都在同一个圆上,即
(2)“点在圆上”和“圆过点”表示的意义都是:这个点在 圆周上;
(3)圆将平面划分为三部分:圆上、圆内、圆外. 特别提醒:圆是“圆周”而非“圆面”.
知1-练
1 下列关于圆的叙述中正确的是( ) A.圆是由圆心唯一确定的 B.圆是一条封闭的曲线 C.到定点的距离小于或等于定长的所有点组成圆 D.圆内任意一点到圆心的距离都相等
2019年华师大版中考总复习知识点梳理:第21讲圆的基本性质

第六单元圆第21讲圆的基本性质一、知识清单梳理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图c点,∠BAC=40°,则∠D的2019-2020学年数学中考模拟试卷一、选择题1.一个不透明的袋子中装有红球3个,白球1个,除颜色外无其他差别随机摸出一个球后不放回,再摸出一个球,则两次都摸到红球的概率是( ) A .916B .34C .38D .122.如图,一个半径为r 的圆形纸片在边长为8 (8>)的等边三角形内任意运动,则在该边三角形内,这个圆形纸片“接触不到的部分”的面积是( )A .283r π B .24)3r π C .8﹣πr 2D .(π)r 23.安居物业管理公司对某小区一天的垃圾进行了分类统计,如图是分类情况的扇形统表,若一天产生的垃圾的为300kg ,估计该小区一个月(按30天计)产生的可回收垃圾重量约是( )A.900kgB.105kgC.3150kgD.5850kg4.如图,在平面直角坐标系中,过点A 且与x 轴平行的直线交抛物线y =13(x+1)2于B ,C 两点,若线段BC 的长为6,则点A 的坐标为( )A.(0,1)B.(0,4.5)C.(0,3)D.(0,6)5.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD ,则△ACE 的面积为( )A .1B C .2D .6.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,则CD 的长为( )A .B .4C .D .87.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=26,BD=18,AB=x,那么x 的取值范围是 ( )A .4< m <13B .4< m <22C .9< m <13D .4< m <98.如图所示,四边形ABCD 是边长为3的正方形,点E 在BC 上,BE =1,△ABE 绕点A 逆时针旋转后得到△ADF ,则FE 的长等于( )A .B .C .D .9.在Rt △ABC 中,∠C =90°,a =1,c =4,则sinB =( )A .5B .14C .13D .410.一个不透明的袋子中装有4个标号为1,2,3,4的小球,它们除标号外其余均相同,先从袋子中随机摸出一个小球记下标号后放回搅匀,再从袋子中随机摸出一个小球记下标号;把第一次摸出的小球标号作为十位数字,第二次摸出的小球标号作为个位数字,则所组成的数是3的倍数的概率是( ) A .14B .13C .512D .51611.二次函数y=ax 2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c >3b ;(3)5a+7b+2c >0;(4)若点A(-3,y 1)、点B(12-,y 2)、点C(72,y 3)在该函数图象上,则y 1<y 2<y 3;(5)若方程a(x+1)(x-5)=c 的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2,其中正确的结论有( )A .1个B .2个C .3个D .4个12.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA+MD+ME 的最小值为( )D.10二、填空题13.把多项式34x x -分解因式的结果是______.14.如图,在正方形ABCD 中,AB =4,分别以B 、C 为圆心,AB 长为半径画弧,则图中阴影部分的面积为______.15.将6 800 000用科学记数法表示_____.16.函数y x中,自变量x 的取值范围是 . 17.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.18.计算()322x-的结果等于_____.三、解答题19.现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x亩,大黄鱼10y亩,蛏子10z亩.(1)用x的式子分别表示y、z;(2)问如何安排劳力与养殖亩数收益最大?20.为了让学生了解环保知识,增强环保意识,红星中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:______.(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)”答:______.(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?答:______.21.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。
九年级下册华师大版数学圆知识点

九年级下册华师大版数学圆知识点数学是一门抽象而理性的学科,而圆则是数学中非常重要且常见的一个概念。
在九年级下册的华师大版数学教材中,圆的知识点是一个不可忽视的重点内容。
接下来,我们将对九年级下册华师大版数学中关于圆的知识点进行系统地介绍与讨论。
首先,让我们回顾一下圆的基本概念。
在数学中,圆是由平面中所有到定点距离相等的点组成的集合。
圆通常由圆心和半径来描述。
圆心是圆的中心点,而半径则是从圆心到圆上任意一点的距离。
了解这些基本概念可以帮助我们更好地理解和应用圆的知识。
一、圆的周长和面积是圆的基本属性,也是圆的重要应用。
圆的周长可以通过公式C=2πr计算得出,其中C表示圆的周长,r表示圆的半径。
同样,圆的面积可以通过公式A=πr²计算得出,其中A表示圆的面积。
这些公式的应用可以帮助我们计算圆的周长和面积,解决实际问题,如园艺设计、建筑设计等。
二、在九年级下册华师大版数学中,圆与直线的关系也是一个重要的知识点。
首先,我们来讨论直径与弦之间的关系。
直径是通过圆心的一条直线,而弦是圆上任意两点之间的线段。
在任何一个圆中,直径始终等于两个相对的弦之和。
这个关系在解决实际问题中非常有用,特别是在解决圆形活动场地的划分、圆形轮胎等问题时。
三、九年级下册华师大版数学中,圆和角的关系也是重要的一个内容。
在圆的内部或外部,同一个圆心对应的两条弧所对应的角相等。
这个性质被称为圆心角的性质。
在解决圆环编织、风力发电机桨叶运动范围等问题时,这个性质可以帮助我们得出准确的结论。
四、欧拉公式是九年级下册华师大版数学中关于圆的一个高阶概念。
这个公式被认为是数学中最美丽的公式之一。
欧拉公式是通过圆的半径、弧度以及复数等概念而得出的。
以上是九年级下册华师大版数学中关于圆的知识点的重要内容。
通过对这些知识的学习与实践,我们可以更好地理解和应用圆的性质。
圆是数学中一个富有魅力的概念,它在我们日常生活中随处可见。
掌握圆的知识,不仅可以帮助我们解决实际问题,还可以培养我们的抽象思维和数学推理能力。
华师大版九年级圆知识点

华师大版九年级圆知识点华师大版九年级圆知识点按照如下格式进行讲解:一、圆的概念与性质圆是平面上所有离圆心的距离都相等的点的集合。
圆上的每一条线段都是圆的弦,而通过圆心的弦称为直径。
圆的性质包括:1. 圆心角:圆心角是指以圆心为顶点的角,它的度数等于所对圆弧的度数。
圆心角的度数范围是0°到360°。
2. 弧长:圆上任意弧所对应的圆心角所在的圆弧长度称为弧长。
弧长公式可以表示为:L = 2πr(θ/360°),其中L是弧长,r是半径,θ是圆心角的度数。
3. 弦长:圆上的弦的长度称为弦长。
弦长公式可以表示为:l = 2r*sin(θ/2),其中l是弦长,r是半径,θ是圆心角的度数。
4. 切线:切线是与圆仅有一个交点的直线。
切线与半径垂直,形成直角。
二、圆的相关定理1. 圆的面积:圆的面积公式为S = πr^2,其中S是圆的面积,r 是半径。
2. 弧长与半径关系:给定圆心角θ,则圆弧所对应的弧长L与半径r的关系是L = 2πr*(θ/360°)。
3. 圆的切线定理:切线与半径的垂直关系可以推导出切线与切点之间的夹角等于所对的弧和半径的夹角。
4. 切线长度定理:切线段的平方等于切点到圆心的距离与切点到圆心所对应的弧之积。
5. 弦的性质:等长的弦对应的弧长相等;相等的弧对应的弦长相等;垂直于弦的直径平分弦。
三、圆的解题技巧1. 圆心角的计算:根据已知的圆心角度数,可以计算出相应的弧长,应用圆的性质;或者根据圆心角所成的弦长,可以计算出圆的半径。
2. 弧长的计算:根据已知的圆弧对应的圆心角及圆的半径,可以计算出弧长。
3. 切线的计算:利用圆的性质和切线的定理,可以计算出切线与切点之间的夹角、切线长度等。
4. 配准问题:对于两个圆的配准问题,可以利用两圆的半径和圆心之间的关系,求解出未知量。
通过对九年级圆知识点的学习,我们能够了解到圆的概念与性质,掌握圆的相关定理,学会运用解题技巧,提高数学问题的解决能力。
华师大九年级圆知识点

华师大九年级圆知识点圆是几何中的基本概念之一,是平面上所有到一个固定点的距离都相等的点的集合。
在华师大九年级数学课程中,学生需要掌握关于圆的一些基本知识和性质。
本文将围绕着华师大九年级圆的知识点展开讲述。
一、圆的定义和基本术语圆的定义:圆是平面上距离一个固定点相等于一个固定长度的点的集合。
圆的基本术语:圆心、半径、直径、弧、弦、切线、正切、圆心角、弦长等。
二、圆的性质与定理1. 圆的半径相等性质:圆上任意两点到圆心的距离相等。
2. 圆的直径性质:直径是连接圆上两点的最长线段,并且直径的长度是半径长度的两倍。
3. 圆的弧性质:圆上的弧可以通过其中一点作为圆心来构造一个圆。
4. 圆的弦性质:连接圆上两点的线段称为弦。
弦的长度不超过直径的长度。
5. 圆的切线性质:切线是与圆只有一个交点的直线。
6. 圆的正切性质:正切是切线和半径之间的关系,正切的值等于圆心角的正切值。
7. 圆心角性质:圆心角是以圆心为顶点的角,圆心角的度数等于所对弧的度数。
三、圆的常见公式1. 圆的周长:圆的周长等于直径或半径乘以2π,即C = πd 或C = 2πr。
2. 圆的面积:圆的面积等于半径的平方乘以π,即A = πr²。
四、圆与三角形、矩形等几何图形的关系1. 圆与三角形:圆内接于三角形的圆称为三角形的内切圆,圆外接于三角形的圆称为三角形的外接圆。
2. 圆与矩形:圆外接于矩形的圆称为矩形的外接圆,矩形内切于圆的圆称为矩形的内切圆。
五、圆的应用1. GPS导航系统中通过圆的定位来确定车辆所在的位置。
2. 圆的应用于建筑设计中,如圆形的屋顶、圆形窗户等。
3. 圆的应用于机械制造中,如轮子的制造等。
4. 圆的应用于日常生活中,如饼干、披萨等的形状。
华师大九年级的圆知识点就是以上所介绍的内容。
通过学习和理解这些知识,学生可以更好地掌握圆的基本概念、性质和应用。
同时,学生还需在实际解题中灵活运用这些知识来解决各种与圆有关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版初中数学
重点知识精选掌握知识点,多做练习题,基础知识很重要!
华师大初中数学和你一起共同进步学业有成!
第六单元圆
第21讲圆的基本性质
一、知识清单梳理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
的直径垂直于弦,并且平分弦所对的两条弧;
弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
只要满足其中两个,另外三个结论一定成立,即推二知三.
图a 图b 图c
ADC=180°. ⊙O上两点,
∠BAC=40°,则∠D的度
数为130°.
相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。
数学思维可以让他们更理性
地看待人生。