选修4-4坐标系与参数方程练习题及解析答案

合集下载

高中数学选修4-4习题(含问题详解)

高中数学选修4-4习题(含问题详解)

统考作业题目——4-41.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数〕,以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取一样的长度单位.曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. 〔1〕求l 的普通方程和C 的直角坐标方程;〔2〕点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位一样.直线的极坐标方程为:,点,参数.〔I 〕求点轨迹的直角坐标方程; 〔Ⅱ〕求点到直线距离的最大值. 1、[详解]〔1〕12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++=〔2〕因为圆心(1,2)--到直线10x y +-=距离为|121|222---=, 所以点M 到直线l 距离的最大值为2222 1.r +=+2、解:〔Ⅰ〕设,如此,且参数,消参得:所以点的轨迹方程为〔Ⅱ〕因为所以 所以,所以直线的直角坐标方程为法一:由〔Ⅰ〕点的轨迹方程为圆心为〔0,2〕,半径为2.,点到直线距离的最大值等于圆心到直线距离与圆的半径之和, 所以点到直线距离的最大值.法二:当时,,即点到直线距离的最大值为.3.在平面直角坐标系xOy 中,曲线的参数方程为〔为参数〕,曲线的参数方程为〔,t 为参数〕.<1>求曲线的普通方程和曲线的极坐标方程;<2>设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩ 〔α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭〔1〕写出1C 的普通方程和2C 的直角坐标方程;〔2〕设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值与此时P 的直角坐标. 3、[详解]〔1〕对曲线:,,∴曲线的普通方程为.对曲线消去参数可得且∴曲线的直角坐标方程为.又,从而曲线的极坐标方程为.〔2〕设曲线上的任意一点为,如此点到曲线:的距离,当,即时,,此时点的坐标为.4、[详解]〔1〕曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩〔α为参数〕,移项后两边平方可得,2222cos sin 13y x αα+=+= 即有椭圆221:13y C x +=;曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭,即有2222ρθθ⎫+=⎪⎪⎝⎭由cos x ρθ=,sin y ρθ=,可得40x y +-=,即有2C 的直角坐标方程为直线40x y +-=;〔2〕设(cos ,3sin )P αα,由P 到直线的距离为|cos 3sin 4|2d αα+-=当sin 16x π⎛⎫+= ⎪⎝⎭时,||PQ 的最小值为2, 此时可取3πα=,即有13,22P ⎛⎫⎪⎝⎭. 5.在平面直角坐标系中,曲线的参数方程是〔θ为参数〕,以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.假如直线与曲线相交于不同的两点A ,B ,且,求的值.6.直线l 的参数方程为315(45x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.〔Ⅰ〕求直线l 的普通方程与曲线C 的直角坐标方程; 〔Ⅱ〕假如直线l 与曲线C 交于A ,B 两点,求线段AB 的长. 5、 因为,所以直线的直角坐标方程为,其倾斜角为,过点,所以直线的参数方程为〔为参数〕,即〔为参数〕.曲线的参数方程〔θ为参数〕化为普通方程为,将代入曲线的方程,整理得,,设点,对应的参数分别为,如此,所以.6、[详解]〔Ⅰ〕将315(45x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数)消去参数t 可得4(1)3x y -=,即4340x y --=, 故直线l 的普通方程为4340x y --=.由2sin4cos 0ρθθ-=可得0cos 4sin 22=-θρθρ,把cos x ρθ=,sin y ρθ=代入上式,可得042=-x y ,即24y x =,故曲线C 的直角坐标方程为24y x =.〔Ⅱ〕将31545x t y t ⎧=+⎪⎪⎨⎪=⎪⎩代入24y x =,可得2415250t t --=,设点A ,B 对应的参数分别为1t ,2t ,如此12154t t +=,12254t t =-,所以22121212152525||||()4()4()444AB t t t t t t =-=+-=-⨯-=, 故线段AB 的长为254. 7.平面直角坐标系x0y,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 过点P<-1,2>,且倾斜角为23π,圆C 的极坐标方程为)3cos(2πθρ+=. <1>求圆C 的普通方程和直线l 的参数方程;<2>设直线l 与圆C 交于M 、N 两点.求PM PN +的值.8.在以极点O 为原点,极轴为x 轴正半轴的直角坐标系中,曲线1C的参数方程为2x y t⎧=⎪⎨=⎪⎩〔t 为参数〕,曲线1C 在点),(00y x P 处的切线l的极坐标方程为ρ=.〔1〕求切线l 的直角坐标方程与切点P 的直角坐标;〔2〕假如切线l 和曲线2:C 2cos 6sin 160ρθρθ--+=相交于不同的两点,A B ,求1||PA +1||PB 的值. 7、[详解]〔1〕2cos ,3πρθ⎛⎫=+⎪⎝⎭2cos sin ρρθθ∴=⋅⋅∴圆C的方程:220x y x +-+=,直线l的参数方程为1122x t y ⎧=--⎪⎪⎨⎪=+⎪⎩〔t 为参数〕〔2〕将直线l 的参数方程代入圆C 的方程,得: 8、[详解]〔1〕切线l的极坐标方程为ρ=∴cos 2sin 3θρθ-=,如此切线l的直角坐标方程为230y --=,∵曲线1C 的参数方程为22x ty t⎧=⎪⎨=⎪⎩〔t 为参数〕, ∴曲线1C 的普通方程为y x 22=,即212y x =,如此y x '=, 又切线l 的斜率为3,∴03x =,此时032y =, 故切点P 的直角坐标为3(3,)2.〔2〕切线l 的倾斜角为π3, ∴切线l 的参数方程为1323322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩〔t 为参数〕,曲线2C 的极坐标方程为243cos 6sin 160ρρθρθ--+=,∴曲线2C 的直角坐标方程为22436160x y x y +--+=,将1323322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入22436160x y x y +--+=, 得2410310t t -+=,设交点,A B 对应的参数分别是12,t t ,如此121253214t t t t ⎧+=⎪⎪⎨⎪⋅=⎪⎩,∴1212125311210314t t t t t t ++===, 故||1||1PB PA +310=. 9.曲线的参数方程为为参数>,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.〔1〕把的参数方程化为极坐标方程;〔2〕求与交点的极坐标.10.在直角坐标系中,以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,曲线E的极坐标方程为.〔1〕分别求曲线C和E的直角坐标方程;〔2〕求经过曲线C与E交点的直线的直角坐标方程.9、[详解]〔1〕将消去参数t,化为普通方程即将代入得所以的极坐标方程为〔2〕的普通方程为,由解得或所以C1与C2交点的极坐标分别为,.10、[详解]〔1〕由题意,曲线C的直角坐标方程为:;曲线E的直角坐标方程为:.〔2〕由题意得:得.即所求直线的直角坐标方程为11.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos (sin x y ϕϕϕ=⎧⎨=⎩参数〕,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 7,2π〕且经过极点的圆〔1〕求曲线C 1的极坐标方程和C 2的普通方程; 〔2〕射线(0)6πθρ=≥分別与曲线C 1,C 2交于点A,B 〔点B 异于坐标原点O 〕,求线段AB 的长12.选修4-4:坐标系与参数方程.在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩,〔t 为参数〕,在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线1:2cos C ρθ=,2:2cos 3C πρθ⎛⎫=-⎪⎝⎭. 〔Ⅰ〕求1C 与2C 交点的直角坐标;〔Ⅱ〕假如直线l 与曲线1C ,2C 分别相交于异于原点的点M ,N ,求MN 的最大值. 11、[详解]〔1〕由曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩〔ϕ为参数〕,消去参数ϕ得2214xy +=,又cos sin x y ρθρθ=⎧⎨=⎩代入2214x y +=得1C 的极坐标方程为222244cos 4sin 13sin ρθθθ==++, 由曲线2C 是圆心的极坐标为7,2π⎛⎫⎪⎝⎭且经过极点的圆. 可得其极坐标方程为7ρθ=,从而得2C 的普通方程为22270x y y +-=.〔2〕将(0)6πθρ=≥代入27sin ρθ=得27sin76B πρ==,又将(0)6πθρ=≥代入2224cos 4sin ρθθ=+得224477cos 4sin 66A ρππ==+, 12、[详解]解:〔Ⅰ〕曲线1C 的直角坐标方程为222x y x +=,曲线2C 的直角坐标方程为2230x y x y +--=.由2222230x y x x y x y ⎧+=⎪⎨+--=⎪⎩解得00x y =⎧⎨=⎩或3232x y ⎧=⎪⎪⎨⎪=⎪⎩, 故1C 与2C 交点的直角坐标为()0,0,33,22⎛⎫⎪ ⎪⎝⎭.〔Ⅱ〕不妨设0απ≤<,点M ,N 的极坐标分别为()1,ρα,()2,ρα所以122cos 2cos 3MN πρραα⎛⎫=-=-- ⎪⎝⎭所以当32πα=时,MN 取得最大值2. 13. 在直角坐标系中,曲线的参数方程为〔为参数〕,直线的方程为.〔1〕以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程和直线的极坐标方程;〔2〕在〔1〕的条件下,直线的极坐标方程为,设曲线与直线的交于点和点,曲线与直线的交于点和点,求的面积.13、[详解]〔1〕由,得曲线C 的普通方程为,把,代入该式化简得曲线C 的极坐标方程为:.因为直线:是过原点且倾斜角为的直线,所以直线的极坐标方程为:.〔2〕把代入得,故, 把代入得,故,因为,所以的面积为..。

人教版数学选修4-4《坐标系与参数方程》基础训练及答案

人教版数学选修4-4《坐标系与参数方程》基础训练及答案

数学选修4-4 坐标系与参数方程.[提高训练C 组]一、选择题1.把方程1xy =化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 2.曲线25()12x t t y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( ) A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 3.直线12()2x t t y t =+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( ) A .125 BC4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上, 则PF 等于( )A .2B .3C .4D .55.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-二、填空题1.已知曲线22()2x pt t p y pt⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN =_______________。

2.直线2()3x t y ⎧=-⎪⎨=⎪⎩为参数上与点(2,3)A -_______。

3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ=+⎧⎨=-⎩为参数,则此圆的半径为_______________。

4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。

5.直线cos sin x t y t θθ=⎧⎨=⎩与圆42cos 2sin x y αα=+⎧⎨=⎩相切,则θ=_______________。

(完整版)选修4-4坐标系与参数方程-高考题及答案

(完整版)选修4-4坐标系与参数方程-高考题及答案

x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

一、选择题1.在直角坐标系xOy 中,曲线C :22x ty t⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l :230x y -+=的距离的最小值为( )A .23B .223C .233D .22.已知22451x y +=,则25x y +的最大值是( ) A .2 B .1C .3D .93.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 4.曲线的离心率是( )A .B .C .2D .5.已知点()1,2A -,()2,0B ,P 为曲线2334y x =-上任意一点,则AP AB ⋅的取值范围为( ) A .[]1,7B .[]1,7-C .1,33⎡+⎣D .1,323⎡-+⎣6.在直角坐标系xOy 中,直线l 的参数方程为()y 4t?x t t 为参数=⎧⎨=+⎩,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为=424πρθ⎛⎫+ ⎪⎝⎭,则直线l 和曲线C 的公共点有 A .0个B .1个C .2个D .无数个7.已知抛物线的参数方程为2x 4t y 4t ⎧=⎨=⎩,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( )A .22B .42C .8D .48.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t 为参数)与曲线22ρ=相交于B ,C 两点,则BC 的值为( )A .27B .60C .72D .309.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x t y t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A .3232,22⎡⎤-⎢⎥⎣⎦ B .0tan 60x = C .(2,22⎤⎦D .:::2x r r q q q e αα==10.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r 11.在极坐标系下,已知圆的方程为,则下列各点在圆上的是 ( )A .B .C .D .12.极坐标cos ρθ=和参数方程12x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线二、填空题13.在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(02)且倾斜角为α的直线l 与O 交于A ,B 两点.则α的取值范围为_________14.已知点B 在圆O :2216x y +=上,()2,2,A OM OA OB =+,若存在点N 使得MN 为定长,则点N 的坐标是______. 15.直线1413x ty t=+⎧⎨=--⎩(t 为参数)的斜率为______.16.点(),M x y 是椭圆222312x y +=上的一个动点,则2m x y =+的最大值为______17.设直线315:{45x tl y t=+=(t 为参数),曲线1cos :{sin x C y θθ==(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.18.已知椭圆C 的方程为2212x y +=,若F 为C 的右焦点,B 为C 的上顶点,P 为C 上位于第一象限内的动点,则四边形OBPF 的面积的最大值为__________. 19.曲线1C 的极坐标方程2cos sin ρθθ=,曲线2C 的参数方程为31x ty t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线1C 上的点与曲线2C 上的点最近的距离为__________.20.设(,0)M p 是一定点,01p <<,点(,)A a b 是椭圆2214xy +=上距离M 最近的点,则()==a f p ________.三、解答题21.已知直线5:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(,直线l 与曲线C 的交点为A 、B ,求AB 的值.22.已知直线l的参数方程为12{2x ty ==(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长.23.在平面直角坐标系xOy 中,已知直线l的参数方程:1221x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴非负半轴为极轴(取相同单位长度)建立极坐标系,圆C 的极坐标方程为:2cos 0ρθ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)求圆C 上的点到直线l 的距离的最小值,并求出此时点的坐标. 24.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.A解析:A 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值.【详解】22451x y +=,则设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩ ,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭当4πα=,即4x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 25x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键. 3.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。

2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)

2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)

2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。

新课标高考《坐标系与参数方程》(选修4-4)含答案

 新课标高考《坐标系与参数方程》(选修4-4)含答案

第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.热点一极坐标方程及其应用[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π) (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标.热点二 参数方程及其应用[例2] (2014·福建高考)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.2.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.[例3] (2014·辽宁高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数).曲线C 的极坐标方程为ρsin 2 θ=8cos θ.热点三 极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0. 由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,即为所求.热点二 参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32,整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64.热点三 极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x . (2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。

坐标系与参数方程练习题及参考答案

坐标系与参数方程练习题及参考答案

高二年数学选修4-4坐标系与参数方程测试班级:__________________ 座号:______ :___________________成绩:___________ 一、选择题〔共12题,每题5分〕1、点M的直角坐标是(-,那么点M 的极坐标为〔 〕 A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 2、极坐标系中,以下各点与点P 〔ρ,θ〕〔θ≠k π,k ∈Z 〕关于极轴所在直线对称的是 〔 〕A .〔-ρ,θ〕B .〔-ρ,-θ〕C .〔ρ,2π-θ〕D .〔ρ,2π+θ〕 3.点P 的极坐标为〔1,π〕,那么过点P 且垂直于极轴的直线的极坐标方程是 〔 〕A .ρ=1B .ρ=cosθC .ρ=-θcos 1D .ρ=θcos 14.以极坐标系中的点〔1,1〕为圆心,1为半径的圆的方程是 〔 〕A .ρ=2cos(θ-4π)B .ρ=2sin(θ-4π)C .ρ=2cos(θ-1) D .ρ=2sin(θ-1)5.极坐标方程cos 2sin 2ρθθ=表示的曲线为〔 〕A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 6.假设直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,那么直线的斜率为〔 〕A .23 B .23- C .32 D .32- 7.在极坐标系中,以〔2,2πa 〕为圆心,2a为半径的圆的方程为〔 〕A .θρcos a =B .θρsin a =C .a =θρcosD .a =θρsin8.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),那么曲线是〔 〕A .线段B .双曲线的一支 C.圆 D.射线 9、在同一坐标系中,将曲线y=2sin3x 变为曲线y=sinx 的伸缩变换是〔 〕A .⎪⎩⎪⎨⎧==//213y y x xB .⎪⎩⎪⎨⎧==y y xx 213//C .⎩⎨⎧==//23y y x xD .⎩⎨⎧==y y x x 23// 10.以下在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是〔 〕A.1(,2 B .31(,)42- C. D.11、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心12、设P(x ,y)是曲线C :⎩⎨⎧θ=θ+-=sin y ,cos 2x 〔θ为参数,0≤θ<2π〕上任意一点,那么yx的取值 围是 〔 〕A .[-3,3]B .〔-∞,3〕∪[3,+∞]C .[-33,33]D .〔-∞,33〕∪[33,+∞]二、填空题〔共8题,各5分〕1、点A 的直角坐标为〔1,1,1〕,那么它的球坐标为,柱坐标为2、曲线的1cos 3sin --=θθρ直角坐标方程为____________________3、直线3()14x att y t =+⎧⎨=-+⎩为参数过定点_____________4、设()y tx t =为参数那么圆2240x y y +-=的参数方程为__________________________。

2020高考文数选修4-4坐标系与参数方程

2020高考文数选修4-4坐标系与参数方程

第1讲 选修4-4坐标系与参数方程解答题1.(2019河北石家庄模拟)在平面直角坐标系中,直线l 的参数方程是{x =t,y =2t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A,B 两点,求|AB|.解析 (1)由{x =t,y =2t 消去t 得y=2x,把{x =ρcosθ,y =ρsinθ代入y=2x,得ρsin θ=2ρcos θ, ∴直线l 的极坐标方程为sin θ=2cos θ.(2)∵ρ2=x 2+y 2,y=ρsin θ,∴曲线C 的方程可化为x 2+y 2+2y-3=0,即x 2+(y+1)2=4,则曲线C 是以(0,-1)为圆心,2为半径的圆.又圆C 的圆心C(0,-1)到直线l 的距离d=√55,∴|AB|=22=2√955. 2.(2019江西南昌一模)在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2cosφ,y =√3sinφ(φ为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ-kρcos θ+k=0(k ∈R).(1)请写出曲线C 的普通方程与直线l 的一个参数方程;(2)若直线l 与曲线C 交于A,B 两点,且点M(1,0)为线段AB 上的一个三等分点,求|AB|. 解析 (1)由已知得,曲线C 的普通方程为x 24+y 23=1.易知直线l 的直角坐标方程为y=k(x-1),则其一个参数方程为{x =1+tcosα,y =tsinα(t 为参数). (2)联立(1)中直线l 的参数方程与曲线C 的普通方程,并化简得(3+sin 2α)t 2+6tcos α-9=0, 设点A,B 对应的参数分别为t 1,t 2,∴{t 1+t 2=-6cosα3+sin 2α,t 1·t 2=-93+sin 2α<0.① 不妨设t 1>0,t 2<0,t 1=-2t 2,代入①中得cos 2α=49, sin 2α=59,所以|AB|=|t 1-t 2|=√(t 1+t 2)2-4t 1t 2=123+sin 2α=278.3.(2019广西桂林联考)在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的参数方程为{x =tcosα,y =y 0+tsinα(t 为参数,α为l 的倾斜角),曲线E 的极坐标方程为ρ=4sin θ,射线θ=β,θ=β+π6,θ=β-π6与曲线E 分别交于不同于极点的A,B,C 三点.(1)求证:|OB|+|OC|=√3|OA|;(2)当β=π3时,直线l 过B,C 两点,求y 0与α的值.解析 (1)证明:依题意知,|OA|=4sin β,|OB|=4sin (β+π6),|OC|=4sin (β-π6),则|OB|+|OC|=4sin (β+π6)+4sin (β-π6)=4√3sin β=√3|OA|.(2)当β=π3时,点B 的极坐标为(4sin π2,π2)=(4,π2),点C 的极坐标为(4sin π6,π6)=(2,π6),故B,C 化为直角坐标为B(0,4),C(√3,1),因为直线l 过B,C 两点,所以直线l 的普通方程为y=-√3x+4,所以y 0=4,α=2π3.4.(2019广西南宁模拟)已知曲线C 1的参数方程为{x =cosθ,y =1+sinθ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin (θ+π3),直线l 的直角坐标方程为y=√33x.(1)求曲线C 1和直线l 的极坐标方程;(2)已知直线l 分别与曲线C 1、曲线C 2的图象相交于异于极点的A,B 两点,若A,B 的极径分别为ρ1,ρ2,求|ρ1-ρ2|的值.解析 (1)由曲线C 1的参数方程{x =cosθ,y =1+sinθ(θ为参数),得C 1的普通方程为x 2+(y-1)2=1,则曲线C 1的极坐标方程为ρ=2sin θ.易知直线l 过原点,且倾斜角为π6,所以直线l 的极坐标方程为θ=π6(ρ∈R).(2)将θ=π6代入C 1的极坐标方程得ρ1=1,将θ=π6代入C 2的极坐标方程得ρ2=4,所以|ρ1-ρ2|=3.5.(2019广东广州联考)已知曲线C 的参数方程为{x =2+√5cosα,y =1+√5sinα(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的A,B 两点,求△AOB 的面积. 解析 (1)∵曲线C 的参数方程为{x =2+√5cosα,y =1+√5sinα(α为参数),∴曲线C 的普通方程为(x-2)2+(y-1)2=5.将{x =ρcosθ,y =ρsinθ代入并化简得ρ=4cos θ+2sin θ, ∴曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)由{θ=π6,ρ=4cosθ+2sinθ,得|OA|=2√3+1. 同理|OB|=2+√3,又∠AOB=π6,∴S △AOB =12|OA|·|OB|sin ∠AOB=8+5√34, ∴△AOB 的面积为8+5√34. 6.(2019江西南昌模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =-3+t,y =-1-t(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=4√2sin (3π4-θ).(1)求C 1的普通方程和C 2的直角坐标方程;(2)过曲线C 2上任意一点P 作与C 1夹角为π4的直线,交C 1于点A,求|PA|的最大值与最小值.解析 (1)由{x =-3+t,y =-1-t得C 1的普通方程为x+y+4=0, 由ρ=4√2sin (3π4-θ),得ρ=4cos θ+4sin θ,∴ρ2=4ρcos θ+4ρsin θ,x 2+y 2=4x+4y,即(x-2)2+(y-2)2=8,∴C 2的直角坐标方程为(x-2)2+(y-2)2=8.(2)在曲线C 2上任意取一点P(2+2√2cos θ,2+2√2sin θ),则P 到C 1的距离d=√2(cosθ+sinθ)|√2=|8+4sin(θ+π4)|√2, |PA|=√22=|8+4sin (θ+π4)|,∴当sin (θ+π4)=1时,|PA|取最大值,为12;当sin (θ+π4)=-1时,|PA|取最小值,为4.7.(2019山东淄博模拟)在平面直角坐标系xOy 中,直线l 的方程是x=4.曲线C 的参数方程是{x =1+√2cosφ,y =1+√2sinφ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求直线l 和曲线C 的极坐标方程;(2)若射线θ=α(ρ≥0,0<α<π4)与曲线C 交于O,A 两点,与直线l 交于点B,求|OA||OB|的取值范围. 解析 (1)由ρcos θ=x 及直线l 的方程为x=4,得直线l 的极坐标方程为ρcos θ=4. 又曲线C 的参数方程是{x =1+√2cosφ,y =1+√2sinφ(φ为参数), 消去参数φ得曲线C 的普通方程为(x-1)2+(y-1)2=2,即x 2+y 2-2x-2y=0,将x 2+y 2=ρ2,x=ρcos θ,y=ρsin θ代入上式得ρ2=2ρcos θ+2ρsin θ,所以曲线C 的极坐标方程为ρ=2cos θ+2sin θ.(2)设A(ρ1,α),B(ρ2,α),则ρ1=2cos α+2sin α,ρ2=4cosα, 所以|OA||OB|=ρ1ρ2=(2cosα+2sinα)cosα4= cos 2α+sinαcosα2 =14(sin 2α+cos 2α)+14=√24sin (2α+π4)+14,因为0<α<π4,所以π4<2α+π4<3π4,所以√22<sin (2α+π4)≤1,故12<√24sin (2α+π4)+14≤1+√24, 所以|OA||OB|的取值范围是(12,1+√24]. 8.(2019河南郑州测试)在平角直角坐标系xOy 中,直线l 的参数方程为{x =tcosα,y =1+tsinα(t 为参数,α∈[0,π)).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设曲线C 的极坐标方程为ρcos 2θ=4sin θ.(1)设M(x,y)为曲线C 上任意一点,求x+y 的取值范围;(2)若直线l 与曲线C 交于不同的两点A,B,求|AB|的最小值.解析 (1)将曲线C 的极坐标方程ρcos 2θ=4sin θ化为直角坐标方程,得x 2=4y.∵M(x,y)为曲线C 上任意一点,∴x+y=x+14x 2=14(x+2)2-1≥-1,∴x+y 的取值范围是[-1,+∞).(2)将{x =tcosα,y =1+tsinα代入x 2=4y,得t 2cos 2α-4tsin α-4=0.∴Δ=16sin 2α+16cos 2α=16>0,设方程t 2cos 2α-4tsin α-4=0的两个根分别为t 1,t 2,则t 1+t 2=4sinαcos 2α,t 1t 2=-4cos 2α,∴|AB|=|t 1-t 2|=√(t 1+t 2)2-4t 1t 2=4cos 2α≥4,当且仅当α=0时,取等号.故当α=0时,|AB|取得最小值4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修4-4经典综合试题(含详细答案)
一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,
只有一项是符合题目要求的.
1.曲线与坐标轴的交点是().
A. B. C. D.
2.把方程化为以参数的参数方程是().
A. B. C. D.
3.若直线的参数方程为,则直线的斜率为().A. B. C. D.
4.点在圆的().
A.内部B.外部C.圆上D.与θ的值有关
5.参数方程为表示的曲线是().
A.一条直线B.两条直线C.一条射线D.两条射线
6.两圆与的位置关系是().
A.内切 B.外切 C.相离 D.内含
7.与参数方程为等价的普通方程为().
A. B.
C. D.
8.曲线的长度是().
A. B. C. D.
9.点是椭圆上的一个动点,则的最大值为().A. B. C. D.
10.直线和圆交于两点,
则的中点坐标为().
A. B. C. D.
11.若点在以点为焦点的抛物线上,则等于().A. B. C. D.
12.直线被圆所截得的弦长为().
A. B. C. D.
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.
13.参数方程的普通方程为__________________.
14.直线上与点的距离等于的点的坐标是_______.15.直线与圆相切,则_______________.
16.设,则圆的参数方程为____________________.
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)
求直线和直线的交点的坐标,及点与的距离.
18.(本小题满分12分)
过点作倾斜角为的直线与曲线交于点,
求的值及相应的的值.
19.(本小题满分12分)
已知中,(为变数),
求面积的最大值.
20.(本小题满分12分)已知直线经过点,倾斜角,
(1)写出直线的参数方程.
(2)设与圆相交与两点,求点到两点的距离之积.21.(本小题满分12分)
分别在下列两种情况下,把参数方程化为普通方程:
(1)为参数,为常数;(2)为参数,为常数.
22.(本小题满分12分)
已知直线过定点与圆:相交于、两点.求:(1)若,求直线的方程;
(2)若点为弦的中点,求弦的方程.
答案与解析:
1.B 当时,,而,即,得与轴的交点为;
当时,,而,即,得与轴的交点为.
2.D ,取非零实数,而A,B,C中的的范围有各自的限制.
3.D .
4.A ∵点到圆心的距离为(圆半径)
∴点在圆的内部.
5.D 表示一条平行于轴的直线,而,所以表示两条射线.6.B 两圆的圆心距为,两圆半径的和也是,因此两圆外切.7.D .
8.D 曲线是圆的一段圆弧,它所对圆心角为.
所以曲线的长度为.
9.D 椭圆为,设,

10.D ,得,,
中点为.
11.C 抛物线为,准线为,为到准线的距离,即为.
12.C ,把直线
代入,得,
,弦长为.
13..14.,或.
15.,或直线为,圆为,作出图形,相切时,易知倾斜角为,或.
16.,当时,,或;
而,即,得.
17.解:将,代入,得,
得,而,
得.
18.解:设直线为,代入曲线
并整理得,
则,
所以当时,即,的最小值为,此时.19.解:设点的坐标为,则,
即为以为圆心,以为半径的圆.
∵,
∴,
且的方程为,
即,
则圆心到直线的距离为.
∴点到直线的最大距离为,
∴的最大值是.
20.解:(1)直线的参数方程为,即,
(2)把直线,代入,
得,
,则点到两点的距离之积为.
21.解:(1)当时,,即;
当时,,
而,
即;
(2)当时,,,即;
当时,,,即;
当时,得,
即,得,
即.
22.解:(1)由圆的参数方程,
设直线的参数方程为①,
将参数方程①代入圆的方程
得,
∴△,
所以方程有两相异实数根、,
∴,
化简有,
解之或,
从而求出直线的方程为或.(2)若为的中点,所以,
由(1)知,得,
故所求弦的方程为.
备用题:
1.已知点在圆上,则、的取值范围是().A.
B.
C.
D.以上都不对
1.C 由正弦函数、余弦函数的值域知选C.
2.直线被圆截得的弦长为().A. B. C. D.
2.B ,把直线代入
得,
,弦长为.
3.已知曲线上的两点对应的参数分别为,,那么_______________.
3.显然线段垂直于抛物线的对称轴,即轴,

4.参数方程表示什么曲线?
4.解:显然,则,
,即,,
得,
即.
5.已知点是圆上的动点,
(1)求的取值范围;
(2)若恒成立,求实数的取值范围.
5.解:(1)设圆的参数方程为,

∴.
(2),
∴恒成立,
即.。

相关文档
最新文档