坐标系与参数方程(知识总结)
坐标系和与参数方程

坐标系和与参数方程
知识点一(参数方程化普通方程)
【知识梳理】
参数方程:
(1)一般地,在平面直角坐标系中,如果曲线C 上任何一点P 的坐标x 和y 都可以表示为
某个变量t 特色函数: ⎩⎨⎧==)()(t g y t f x ;反过来,对于t 的每个允许值,由函数式⎩⎨⎧==)
()
(t g y t f x ,所确定
的点P (x ,y ) 都在曲线C 上 ,那么方程⎩
⎨⎧==)()
(t g y t f x 叫作曲线C 的 参数方程 ,变量t 是参变
数,简称参数。
相对于参数方程而言,直接给出 点的坐标间关系 的方程叫做普通方程,参数方程可以转化为普通方程。
(2)参数方程中参数可以有物理意义、几何意义、也可以没有明显意义。
参数方程与xy 方程的互相转换:
曲线的参数方程可以通过消去参数而得到普通方程;若知道变数x 、y 中的一个与参数t 的
3cos θ.
2C 与3C 交点的直角坐标;1C 与2C 相交于点
【课堂练习】
1.已知曲线C 的极坐标方程2cos ρθ=,以极点为原点,极轴为轴的正半轴建立直角坐标
系,则曲线C 的参数方程为 .
在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐
标方程为2cos ρθ=,0,2θπ⎡⎤∈⎢⎥⎣⎦
. (1)求C 的参数方程;
(2)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.
一、参数方程化普通方程
二、普通方程化参数方程
三、极坐标方程化直角坐标方程
四、直角坐标方程化极坐标方程
五、参数方程与极坐标方程的互化。
极坐标与参数方程

坐标系与参数方程【知识要点】1、平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′= ,y ′= .的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2、极坐标系的概念(1)极坐标系的定义①取极点:平面内取一个定点O ; ②作极轴:自极点O 引一条射线Ox ;③定单位:选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向). (2)点的极坐标①定义:有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ);②意义:ρ=|OM |,即极点O 与点M 的距离(ρ≥0).θ=∠xOM ,即以极轴Ox 为始边,射线OM 为终边的角. 一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数.(3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z )表示同一个点,特别地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.(4)极坐标与直角坐标的互化点P 的直角坐标为(x ,y ),极坐标为(ρ,θ),则互相转化公式为⎩⎪⎨⎪⎧x = ,y = .⎩⎪⎨⎪⎧ρ2= ,tan θ= . 3、圆的极坐标方程4、直线的极坐标方程(ρ∈R)一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6、圆锥曲线的参数方程(1)圆心为(a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x = ,y = .(θ为参数).(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x = ,y = . (θ为参数).(3)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x = ,y = . (θ为参数).(4)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x = ,y = .(t 为参数).7、直线的参数方程①过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),其中t 表示直线上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的数量。
选修4-4坐标系与参数方程_知识点总结

坐标系与参数方程 知识点(一)坐标系1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩ 的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 5.圆与直线一般极坐标方程(1)圆的极坐标方程若圆的圆心为 00(,)M ρθ,半径为r ,求圆的极坐标方程。
极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全一、极坐标系统极坐标系统是一种用来表示平面上点的坐标系统,它与直角坐标系统相互转化。
在极坐标系统中,一个点的位置由径向和角度两个量来确定。
常用的表示方式为(r, θ),其中r表示点到原点的距离,称为极径,而θ表示与参考轴(通常为正X 轴)的夹角,称为极角。
极坐标系统与直角坐标系统之间可以通过如下的转换关系相互转化:•直角坐标→ 极坐标:x = r * cos(θ),y = r * sin(θ)•极坐标→ 直角坐标:r = sqrt(x^2 + y^2),θ = arctan(y/x)极坐标系统适用于描述旋转对称性的图形,例如圆、花朵等。
二、参数方程参数方程是一种用参数表示函数的方式。
在参数方程中,自变量和因变量都可以是参数。
一般来说,参数方程是将自变量和因变量都用参数表示的方程组。
以平面上的曲线为例,如果将曲线上的点的坐标分别用参数t表示,则曲线上的点的坐标可以表示为(x(t), y(t))。
这种表示方式称为参数方程。
参数方程在描述含有符号导数的曲线段以及曲线段的方向时非常有用。
参数方程可以将复杂的图形分解成多个简单的函数,从而方便进行图形的分析和计算。
它在计算机图形学、物理学、工程学等领域有广泛的应用。
三、极坐标与参数方程的关系极坐标与参数方程之间存在着密切的关系。
可以通过参数方程来描述极坐标系中的曲线。
一个常见的例子是圆的极坐标方程和参数方程的表示。
以圆的极坐标方程为例,极坐标方程为r = a,其中a为圆的半径。
使用参数方程表示时,可以将极坐标方程转化为参数方程x = a * cos(θ),y = a * sin(θ)。
同样地,通过参数方程也可以得到一些特殊的极坐标曲线,例如r = a *cos(θ)可以表示一条心形曲线。
四、极坐标曲线的绘制在计算机图形学中,可以通过极坐标方程或参数方程来绘制各种各样的曲线。
对于一个极坐标曲线,可以选择一系列的角度值,然后根据极坐标方程或参数方程计算出相应的极径或坐标点,再将这些点连接起来就可以绘制出曲线。
(完整版)极坐标与参数方程知识点总结大全

极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
坐标系与参数方程_知识点总结

坐标系与参数方程_知识点总结一、坐标系1.直角坐标系直角坐标系是最常见的坐标系,在平面上由两个垂直的坐标轴组成,分别为x轴和y轴。
一个点在直角坐标系中的位置可以用坐标(x,y)来表示,其中x为横坐标,y为纵坐标。
2.极坐标系3.球坐标系球坐标系是一种用于描述空间点位置的坐标系统,它由径向距离、极角和方位角组成。
一个点的位置可以用有序数组(r,θ,φ)来表示,其中r为点到原点的距离,θ为点与一些固定轴的夹角,φ为点的方位角。
二、参数方程1.一维参数方程一维参数方程是指由一个参数确定的直线或曲线的方程。
例如,一个点在直线上的一维参数方程可以表示为x=f(t),其中x为点在直线上的位置,t为参数,f(t)为关于参数t的函数。
2.二维参数方程二维参数方程是指由两个参数确定的平面曲线的方程。
一个点在平面上的位置可以表示为(x(t),y(t)),其中x(t)和y(t)分别为关于参数t的函数。
二维参数方程常用于描述曲线、圆、椭圆等几何图形。
3.三维参数方程三维参数方程是指由三个参数确定的空间曲线的方程。
一个点在空间中的位置可以表示为(x(t),y(t),z(t)),其中x(t)、y(t)和z(t)分别为关于参数t的函数。
三维参数方程常用于描述空间曲线、曲面等几何图形。
三、坐标系与参数方程的关系坐标系和参数方程之间存在着密切的关系。
在直角坐标系中,一个函数的参数方程可以通过将x和y用参数表示来得到,即将x=f(t)和y=g(t)的参数方程转化为直角坐标系中的函数y=f(x)的形式。
反之,一个函数的直角坐标系方程也可以通过将x和y用参数表示来得到参数方程。
参数方程在极坐标系和球坐标系中也可以通过类似的方式转化。
总结:坐标系是描述点的位置的系统,常见的坐标系有直角坐标系、极坐标系和球坐标系。
参数方程是用参数表示的函数方程,常用于描述直线、曲线、曲面等几何图形。
坐标系和参数方程之间存在密切的关系,可以通过转化将一个方程从坐标系表示转化为参数方程,反之亦然。
完整版坐标系与参数方程知识点

完整版坐标系与参数方程知识点一、坐标系的概念坐标系是为了方便描述平面或空间中点的位置而引入的一种系统。
常见的坐标系包括直角坐标系、极坐标系和参数方程坐标系。
二、直角坐标系直角坐标系是最常见的一种坐标系。
在二维空间中,直角坐标系由两个相互垂直的坐标轴构成,分别是x轴和y轴。
点在直角坐标系中的位置可以用有序数对(x,y)表示,分别代表点在x轴和y轴上的距离。
三、极坐标系极坐标系是一种以原点为中心,以角度和半径表示点的位置的坐标系。
在极坐标系中,点的位置由有序数对(r,θ)表示,其中r代表点到原点的距离,θ代表与正x轴的夹角。
四、参数方程与轨迹参数方程是一种用参数来表示曲线上的点的坐标的方法。
一般形式的参数方程为x=f(t),y=g(t),其中t是参数,f(t)和g(t)是定义在参数域上的函数。
通过改变参数t的取值范围,可以获得曲线上的一系列点,从而绘制出整条曲线。
五、参数方程与直角坐标系的转换将直角坐标系的点(x,y)转换为参数方程的形式,可以使用以下步骤:1.将x和y分别表示为t的函数:x=f(t),y=g(t)。
2.给定t的取值范围,求出对应的x和y的取值。
将参数方程的点(x,y)转换为直角坐标系的形式,可以使用以下步骤:1.通过解参数方程的两个方程,消去t,得到一个方程只包含x和y。
2.求解得到与x和y的关系式。
六、参数方程的性质参数方程可以表示各种各样的曲线,具有以下性质:1.参数方程可以用来表示直线、圆、椭圆、双曲线等曲线。
2.参数方程可以描述曲线的形状、方向、起点和终点等信息。
3.参数方程可以通过调整参数的取值范围来绘制出曲线的其中一部分或整条曲线。
七、应用场景参数方程在数学和物理学中有广泛的应用,例如:1.研究物体的运动轨迹,包括抛体运动、行星运动等。
2.描述动态系统的变化过程,如混沌系统、非线性振动等。
3.研究曲线的特殊性质,如曲率、曲线的长度等。
八、参数方程的解析与图像通过解析参数方程,可以得到曲线的方程,从而进一步研究曲线的性质。
高中数学坐标系与参数方程知识点总结,快来收藏啦!

第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系。
(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O 的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M 的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:3.直线的极坐标方程(1)特殊情形如下表:四柱坐标系与球坐标系简介(了解)第二讲一曲线的参数方程1.参数方程的概念2.圆的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线(了解)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标系与参数方程
【要点知识】
一、坐标系
1.平面直角坐标系中的伸缩变换
设点(,)P x y 是平面直角坐标系xOy 中的任意一点,在变换(0):(0)x x y y λλϕμμ'=>⎧⎨'=>⎩
的作用下,点(,)P x y 对应到点(,)P x y ''',我们把ϕ称为平面直角坐标系xOy 中的坐标伸缩变换,简称伸缩变换.
2.极坐标系
(1)极坐标系的概念
如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样我们就建立了一个极坐标系.
(2)极坐标
设点M 是平面内一点,极点O 与点M 的距离叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ. 我们把有序数对(,)ρθ叫做点M 的极坐标,记为(,)M ρθ.
(3)极径、极角的取值范围
一般地,极径0ρ≥,极角R θ∈.
3.极坐标与直角坐标之间的互化
如图所示,设点M 是平面内任意一点,记点M 的直角坐标为(,)x y ,极坐标为(,)ρθ. 我们可以得到极坐标与直角坐标之间如下关系:
(ⅰ)直角坐标化极坐标:cos x ρθ=,sin y ρθ=;
(ⅱ)极坐标化直角坐标:222x y ρ=+,tan y x
θ=(0x ≠).
【注】上面两类关系式是我们进行极坐标与直角坐标互化的重要关系式. 解题时,大家要根据题意灵活选用.
4.几个简单曲线的极坐标方程
(1)圆的极坐标方程:圆心在(,0)C a (0a >),半径为a 的圆的极坐标方程为2cos a ρθ=;
(2)直线的极坐标方程:经过极点,从极轴到直线的角是4
π的直线l 的极坐标方程为4πθ=
和54
πθ=. 5.柱坐标系与球坐标系
(1)柱坐标系
如图所示,建立空间直角坐标系Oxyz ,设点P 是空间中任意一点,它在Oxy 平面上的射影为点Q ,用(,)ρθ(0ρ≥,02θπ≤<)表示点Q 在Oxy 平面上的极坐标,这时点
P 的位置可用有序数组(,,)z ρθ(z R ∈)表示. 我们把建立上述对应关系的坐标系叫做柱坐标系;相应地,把有序数组(,,)z ρθ叫做点P 的柱坐标,记作(,,)P z ρθ,其中0ρ≥,02θπ≤<,z R ∈.
【注】直角坐标与柱坐标互化的变换公式:
(2)球坐标系
如图所示,建立空间直角坐标系Oxyz ,设点P 是空间中任意一点,连结OP ,记OP r =,OP 与Oz 轴正向所夹的角为ϕ,设点P 在Oxy 平面上的射影为点Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的正角为θ,这样点P 的位置就可以用有序数组(,,)r ϕθ表示. 我们把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系);相应地,把有序数组(,,)r ϕθ叫做点P 的球坐标,记作(,,)P r ϕθ,其中0r ≥,0ϕπ≤≤,02θπ≤<.
【注】直角坐标与球坐标互化的变换公式:
cos cos
cos sin
sin
x r
y r
z r
θϕ
θϕ
θ
=
⎧
⎪
=
⎨
⎪=
⎩
二、参数方程
1.参数方程的概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函
数
()
()
x f t
y g t
=
⎧
⎨
=
⎩
①,并且对于t的每一个允许值,由方程组①所确定的点(,)
P x y都在这条曲线
上,那么我们就把方程组①叫做这条曲线的参数方程,而把联系变数x,y的变数t叫做参变数,简称参数.
2.参数方程与普通方程之间的互化
曲线的参数方程与普通方程是曲线方程的两种不同形式. 一般地,可以通过消去参数,由参数方程得到普通方程;反之,如果已知变数x,y中的一个与参数t的关系,例如()
x f t
=,则我们可以通过把它代入普通方程,求出另一个变数与参数的关系()
y g t
=,
由此得到的方程组
()
()
x f t
y g t
=
⎧
⎨
=
⎩
就是该曲线的参数方程.
【注】在解决参数方程与普通方程互化的问题时,必须要使x,y的取值范围保持一致.
3.几个简单曲线的参数方程
(1)圆的参数方程:圆心在原点O,半径为r的圆的参数方程为
cos
sin x r
y r
θ
θ
=
⎧
⎨
=
⎩
(θ为参数);
(2)椭圆的参数方程:中心在原点O,焦点在x轴上的椭圆的参数方程为
cos
sin x a
y b
ϕ
ϕ
=
⎧
⎨
=
⎩
(ϕ为参数);
(3)双曲线的参数方程:中心在原点O,焦点在x轴上的双曲线的参数方程为
sec tan x a y b ϕϕ
=⎧⎨=⎩(ϕ为参数),这里,sec ϕ是ϕ的正割函数,并且1sec cos ϕϕ=; (4)抛物线的参数方程:以原点O 为顶点,以x 轴为对称轴,开口向右的抛物线
22y px =(0p >)(不包括原点)的参数方程为22tan 2tan p x p y αα⎧=⎪⎪⎨⎪=⎪⎩
(α为参数); (5)直线的参数方程:过点000(,)M x y ,倾斜角为α(2π
α≠)的直线l 的参数方程
为00cos sin x x t y y t αα=+⎧⎨=+⎩
(t 为参数); (6)渐开线的参数方程:(cos sin )(sin cos )
x r y r ϕϕϕϕϕϕ=+⎧⎨=-⎩(ϕ为参数); (7)摆线的参数方程:(sin )(1cos )x r y r ϕϕϕ=-⎧⎨
=-⎩
(ϕ为参数). 如有侵权请联系告知删除,感谢你们的配合!。