2018高考数学解题技巧极坐标与参数方程
高考数学:极坐标与参数方程知识点总结

高考数学:极坐标与参数方程知识点总结极坐标与参数方程这部分题目比较简单,考法固定,同学们一定要掌握住,高考不失分啊!第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O 引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M 的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:3.直线的极坐标方程(1)特殊情形如下表:第二讲一曲线的参数方程1.参数方程的概念2.圆的参数方程二圆锥曲线的参数方程三直线的参数方程一参数方程的基本概念定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t的每一个允许值,由于方程组①所确定的点M(x,y)都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。
用极坐标与参数方程解高考题型及解题策略

用极坐标与参数方程解高考题型及解题策略高考题中极坐标与参数方程主要考察简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。
高考热门是极坐标与直角坐标的互化、参数方程化为直角坐标方程,推导简单图形的极坐标方程、直角坐标方程化为参数方程。
此中以考察基本观点,基本知识,基本运算为主,一般属于中档难度题。
常以选考题的形式出现,别的在高考数学的选择题和填空题中,用参数方程与极坐标解决问题常能收到事半功倍的成效,一定惹起教与学的足够。
所以,对常有题型及解题策略进行商讨。
一、极坐标与直角坐标的互化1.曲线的极坐标方程化成直角坐标方程:关于简单的我们能够直接代入公式ρcosθ=x,ρsin θ=y,ρ2=x2+y2,但有时需要作适合的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.直角坐标 ( x,y) 化为极坐标 ( ρ,θ) 的步骤:(1)运用ρ=, tan θ=( x≠0) ;(2)在[0 ,2π) 内由 tan θ=( x≠0) 求θ时,由直角坐标的符号特点判断点所在的象限 ( 即θ的终边地点 ).解题时一定注意:① 确立极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不行 .② 平面上点的直角坐标的表示形式是独一的,但点的极坐标的表示形式不独一 . 当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍旧不包含极点 .③进行极坐标方程与直角坐标方程互化时,应注意两点:Ⅰ. 注意ρ,θ的取值范围及其影响 .Ⅱ. 重视方程的变形及公式的正用、逆用、变形使用.比如、(2015 年全国卷)在直角坐标系xOy中。
直线C1 : x2,圆C2:22, 以坐标原点为极点,x轴的正半轴为极轴成立极坐标系。
x 1y 21(I )求C1,C2的极坐标方程;(II )若直线C3的极坐标方程为R ,设 C2与 C3的交点为 M ,N,4求 VC2MN 的面积解:(Ⅰ)因为 x cos , y sin,所以 C1的极坐标方程为 cos 2 ,C2的极坐标方程为2 2 cos 4 sin 4 0(Ⅱ)将代入2 2 cos4sin 4 0,得42324 0,解得122, 2 2 ,故2,即|MN | 2121因为 C2的半径为 1,所以VC2MN的面积为2二、简单曲线的极坐标方程及应用1. 求曲线的极坐标方程 , 就是找出动点 M 的坐标ρ与θ之间的关系 , 而后列出方程 f( ρ, θ)=0, 再化简并查验特别点 .2. 极坐标方程波及的是长度与角度 , 所以列方程的本质是解三角形 .3. 极坐标方程应用时多化为直角坐标方程求解 , 而后再转变为极坐标方程 , 注意方程的等价性 .比如、( 2015 全国卷)在直角坐标系xOy 中,曲线 C : xt cos( t1y t sin为参数, t ≠0),此中 0≤α<π,在以 O 为极点, x 轴正半轴为极轴的极坐标系中,曲线 C 2:2sin,C 3:2 3 cos。
2018年北京市高考数学理 13专题十三 极坐标与参数方程

第十三篇:极坐标与参数方程一、填空题1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.2.【2018天津卷12】)已知圆2220x y x +-=的圆心为C,直线1,23⎧=-+⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 .二、解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩,(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.3.【2018全国三卷22】在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长. 参考答案 一、填空题 1.21+ 2.21二、解答题1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故2cos sin 0αα+=, 于是直线l 的斜率tan 2k α==-.3.解:(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点. 当2απ≠时,记tan k α=,则l的方程为y kx =.l 与O交于两点当且仅当|1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,)44π3π. (2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩为参数,44απ3π<<). 设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=. 于是s i nA B t t α+=,P t α.又点P 的坐标(,)x y 满足cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩ 所以点P的轨迹的参数方程是2,2x y αα⎧=⎪⎪⎨⎪=⎪⎩(α为参数,44απ3π<<). 4.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos6AB == 因此,直线l 被曲线C截得的弦长为.。
2018年高考数学分类汇编专题十三极坐标与参数方程

《2018年高考数学分类汇编》第十三篇:极坐标与参数方程一、填空题1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.2.【2018天津卷12】)已知圆2220x y x +-=的圆心为C ,直线21,232⎧=-⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 二、解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ过点且倾斜角为的直线与交于两点. (1)求的取值范围;(2)求中点的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长. 参考答案 一、填空题1.21+2.21 二、解答题1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2221k =+,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. (02,αl O ⊙A B ,αAB P当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,221k =+,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.3.解:(1)的直角坐标方程为.当时,与交于两点. cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=2cos sin 0αα+=l tan 2k α==-O 221x y +=2απ=l O当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 2απ≠tan k α=l 2y kx =-l O 22||11k <+1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 222sin 10t t α-+=22sin A B t t α+=2sin P t α=P (,)x y cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩P 2sin 2,22cos 2x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==因此,直线l被曲线C截得的弦长为23。
2018年极坐标和参数方程知识点+典型例题讲解+

极坐标和参数方程知识点+典型例题讲解+同步训练知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数)(或θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
2018年高考理科数学分类汇编---参数方程极坐标

2018年全国高考理科数学分类汇编——参数方程极坐标1.(江苏)在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.2.(全国1卷)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.3. (全国2卷)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l 的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.【解答】解:直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.4.(全国3卷)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).5.(天津)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.。
2018年高考文科数学分类汇编:专题十三极坐标与参数方程

《2018年高考文科数学分类汇编》第十三篇: 极坐标与参数方程解答题1.【2018全国一卷22】在直角坐标系中, 曲线的方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系, 曲线的极坐标方程为.(1)求2C 的直角坐标方程;(2)若与有且仅有三个公共点, 求的方程.2.【2018全国二卷22】在直角坐标系/中, 曲线/的参数方程为/(/为参数), 直线/的参数方程为/(/为参数).(1)求和的直角坐标方程;(2)若曲线/截直线/所得线段的中点坐标为/, 求/的斜率.3.【2018全国三卷22】在平面直角坐标系/中, /的参数方程为/(/为参数), 过点/且倾斜角为/的直线/与/交于/两点.(1)求的取值范围;(2)求/中点/的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中, 直线l 的方程为, 曲线C 的方程为, 求直线l 被曲线C 截得的弦长.参考答案解答题1.解: (1)由, 得的直角坐标方程为.(2)由(1)知是圆心为, 半径为的圆.由题设知, 是过点且关于轴对称的两条射线. 记轴右边的射线为, 轴左边的射线为. 由于在圆的外面, 故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点, 或与只有一个公共点且与有两个公共点.C l当与只有一个公共点时, 到所在直线的距离为, 所以, 故或.经检验, 当时, 与没有公共点;当时, 与只有一个公共点, 与有两个公共点. 当与只有一个公共点时, 到所在直线的距离为, 所以, 故或.经检验, 当时, 与没有公共点;当时, 与没有公共点.综上, 所求的方程为.2.解: (1)曲线的直角坐标方程为.当/时, /的直角坐标方程为/,当/时, /的直角坐标方程为/.(2)将/的参数方程代入/的直角坐标方程, 整理得关于/的方程.①因为曲线/截直线/所得线段的中点/在/内, 所以①有两个解, 设为/, /, 则/. 又由①得, 故/,于是直线/的斜率/.3.解: (1)/的直角坐标方程为/.当/时, /与/交于两点.当/时, 记/, 则/的方程为/. /与/交于两点当且仅当/, 解得/或/, 即/或/.综上, /的取值范围是/.(2)/的参数方程为/为参数, //.设/, /, /对应的参数分别为/, /, /, 则/, 且/, /满足/.于是/, /. 又点/的坐标/满足/所以点/的轨迹的参数方程是//为参数, //.4.解: 因为曲线C 的极坐标方程为,所以曲线C 的圆心为(2, 0), 直径为4的圆.因为直线l 的极坐标方程为,则直线l 过A (4, 0), 倾斜角为,所以A 为直线l 与圆C 的一个交点.设另一个交点为B, 则∠OAB=.连结OB, 因为OA 为直径, 从而∠OBA=,22(13cos )4(2cos sin )80t t ααα+++-=所以π4cos 6AB == 因此, 直线l 被曲线C 截得的弦长为.。
2018届高三数学(文理通用)坐标系与参数方程解题方法规律技巧详细总结版

2018届高三理科数学坐标系与参数方程解题方法规律技巧详细总结版【简介】坐标系与参数方程作为选做题,和不等式以二选一的形式出现,主要考查极坐标方程及应用,直线,圆和椭圆的参数方程的应用,难度一般不大,但是在做题过程有许多细节需要注意,例如审题时注意问的是参数方程还是极坐标方程,在应用上要从极坐标和参数方程中做出适合的选取,应用直线的参数方程解题时要理解参数t 的意义,如果理解不准极易出错,总之,对于本章的复习,要对概念要有准确的理解.【3年高考试题比较】坐标系与参数方程每年都以解答题的形式,和不等式以二选一的形式出现,在试卷中是最后一道题,但不是压轴题,属于解答题中的容易或比较容易的试题.内容主要涉及曲线与极坐标方程、参数方程、普通方程的关系,求曲线的轨迹、求曲线的交点,极坐标与直角坐标的转化等知识与方程,综合三年的高考题,对于极坐标的考察较多,不仅会极坐标与直角坐标转化,也要掌握极坐标的应用,同时椭圆、圆和直线的参数方程也要应用熟练,尤其是直线的参数方程易错点较多,复习时要引起重视. 【必备基础知识融合】1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换ϕ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换. 2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点);自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 3.极坐标与直角坐标的互化4.5.(1)直线l 过极点,且极轴到此直线的角为α,则直线l 的极坐标方程是θ=α(ρ∈R ). (2)直线l 过点M (a ,0)且垂直于极轴,则直线l 的极坐标方程为ρcos__θ=a .(3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴,则直线l 的极坐标方程为ρsin__θ=b . 6.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 7.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使用x ,y 的取值范围保持一致. 8.常见曲线的参数方程和普通方程(t 为参数)(θ为参数)(φ为参数)提醒一点M (x ,y )到M 0(x 0,y 0)的距离. 【解题方法规律技巧】典例1:将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.典例2:在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ. (1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状; (2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离. 解 (1)由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1. 所以C 2是圆心为(1,0),半径r =1的圆. (2)由(1)知,点(1,0)在直线x -3y -1=0上, 所以直线C 1过圆C 2的圆心.因此两交点A ,B 的连线段是圆C 2的直径. 所以两交点A ,B 间的距离|AB |=2r =2.典例3:在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解 (1)消去t ,得C 1的普通方程x 2+(y -1)2=a 2, ∴曲线C 1表示以点(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.典例4:以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.典例5:在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎪⎫3,π3,半径r =3.(1)求圆C 的极坐标方程;(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且OQ →=2QP →,求动点P 的轨迹方程.解 (1)设M (ρ,θ)是圆C 上任意一点. 在△OCM 中,∠COM =⎪⎪⎪⎪⎪⎪θ-π3,由余弦定理得 |CM |2=|OM |2+|OC |2-2|OM |·|OC |cos ⎝ ⎛⎭⎪⎫θ-π3,化简得ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3.(2)设点Q (ρ1,θ1),P (ρ,θ), 由OQ →=2QP →,得OQ →=23OP →,∴ρ1=23ρ,θ1=θ,代入圆C 的方程,得23ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3,即ρ=9cos ⎝⎛⎭⎪⎫θ-π3. 典例6:已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.典例7:已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值. 解 (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|, 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.典例8:平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为π6.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.典例9:以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数,0<α<π),曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值. 解 (1)由ρsin 2θ=4cos θ得(ρsin θ)2=4ρcos θ, ∴曲线C 的直角坐标方程为y 2=4x .(2)将直线l 的参数方程代入y 2=4x 得到t 2sin 2α-4t cos α-4=0. 设A ,B 两点对应的参数分别是t 1,t 2, 则t 1+t 2=4cos αsin 2 α,t 1t 2=-4sin 2α. ∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α≥4,当α=π2时取到等号. ∴|AB |min =4,即|AB |的最小值为4.典例9:在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4= 2.(1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|PA |+|PB |的值.(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos π4,y =2+t sin π4(t 为参数),即⎩⎪⎨⎪⎧x =22t ,y =2+22t(t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0, Δ=(182)2-4×5×27=108>0, 设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|PA |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.典例10:在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标系方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,,点,求的值.【答案】(1),曲线;(2) .【易错易混温馨提醒】一、直线参数方程的应用参数t解题时注意正负易错1:已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;(Ⅱ)若曲线与曲线相交于,两点,且与轴相交于点,求的值.【答案】(1),(2)二、注意直线与圆锥曲线联立时的判别式大于0易错2:在平面直角坐标系xOy 中,以坐标原点为极点, x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求曲线C 的直角坐标方程;(2)在平面直角坐标系中,将曲线C 的纵坐标不变,横坐标变为原来的2倍,得到曲线D ,过点()2,0M 作直线l ,交曲线D 于A B 、两点,若2MA MB ⋅=,求直线l 的斜率.【答案】(1)2220x y y +-=;(2)线l 的斜率为【解析】试题分析:(1)利用222,sin x y y ρρθ=+=把极坐标方程化为直角坐标方程;(2)设直线l 的参试题解析:(1)由2sin ρθ=,得22sin ρρθ=,将222,sin x y y ρρθ=+=,代入整理得2220x y y +-=. (2)把2220x y y +-=中的x 换成2x ,即得曲线D 的直角坐标方程2204x y y +-=. 设直线l 的参数方程为2,{x tcos y tsin φφ=+=(t 为参数, [)0,φπ∈), 代入曲线D 的方程,整理得()()222cos 4sin 4cos 8sin 40t t φφφφ++-+=,()()2224cos 8sin 16cos 4sin 0φφφφ∆=--+>,cos sin 0φφ⇒<.设,A B 两点所对应的参数分别为12,t t , 则12,t t 为上述方程的两个根. 由122240cos 4sin t t φφ=>+,得,MA MB 同向共线. 故由122242cos 4sin MA MB t t φφ⋅===21sin tan 3φφ⇒=⇒=.由cos sin 0φφ<,得tan 2φ=-即直线l 的斜率为2-..三、非标准形式的直线参数方程应用参数t 时要注意换为标准的参数. 易错3:在平面直角坐标系xOy 中,直线l的参数方程是1{x y ==(t 为参数),以O 为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22223cos 4sin 12ρθρθ+=,且直线l 与曲线C 交于,P Q 两点.(Ⅰ)求直线l 的普通方程及曲线C 的直角坐标方程; (Ⅱ)把直线l 与x 轴的交点记为A ,求AP AQ ⋅的值. 【答案】(1)见解析;(2)18.7(II )解法1:在10x y --=中,令0y =,得1x =,则()1,0A . 由223412{10x y x y +=--=消去y 得27880x x --=.设()11,P x y , ()22,Q x y ,其中12x x < , 则有1287x x +=, 1287x x =-.故)1111AP x =-=-,)2211AQ x =-=-,所以AP AQ ⋅ ()()12211x x =--- ()121218217x x x x ⎡⎤=--++=⎣⎦.解法2:把()()112,{2,2x t y t =+=+==代入223412x y +=,整理得21490t +-=, 则12914t t =-, 所以AP AQ ⋅ ()()1212182247t t t t =-⋅=-=. 四、注意参数范围对于方程的影响易错4:在平面直角坐标系xOy 中,曲线1C 的参数方程为22,{32x cos y sin αα=+=+(α为参数, 2παπ≤≤),以原点O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求曲线1C 与2C 的直角坐标方程;(2)当1C 与2C 有两个公共点时,求实数t 的取值范围.【答案】(1)曲线2C 的直角坐标方程为0x y t -+=;(2)11t -<≤-.1C 有两个公共点,则当2C 与1C2=,整理得1t -=∴1t =-或1t =(舍去), 当2C 过点()4,3时, 430t -+=,所以t=-1. ∴当1C 与2C 有两个公共点时,11t -<≤-.点睛:本题的易错点在把曲线1C 的参数方程化为直角坐标方程时,忽略了2παπ≤≤,得到曲线1C 是整个圆,那后面就会出错,所以在解题时,一定要注意认真审题,实行等价转化. 五、求轨迹方程时注意一些特殊点的取舍.易错5:在直角坐标系xOy 中,曲线1C 的参数方程为{x tcos y tsin αα== (t 为参数),其中0απ<<,以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是sin 5ρθ=, P 为曲线1C 与2C 的交点. (1)当3πα=时,求点P 的极径;(2)点Q 在线段OP 上,且满足20OP OQ ⋅=,求点Q 的轨迹的直角坐标方程.【答案】(2) ()()22240x y y +-=≠(2)在极坐标系中,设点(),Q ρθ, ()1,P ρθ,由题意可得, 1120[ 5sin ρρρθ==,进而可得4sin ρθ=,从而点Q 的轨迹的直角坐标方程为()()22240x y y +-=≠.六、参数方程化为普通方程时注意范围的变化在平面直角坐标系xOy 中,直线1l的参数方程为{x t y kt ==(t 为参数),直线2l的参数程为{3x mm y k==(m 为参数),设直线1l 与2l 的交点为P ,当k 变化时点P 的轨迹为曲线1C . (1)求出曲线1C 的普通方程; (2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭,点Q 为曲线1C 的动点,求点Q 到直线2C 的距离的最小值. 【答案】(1)1C 的普通方程为()22103x y y +=≠;(2) d的最小值为由于1C的参数方程为{x y sina==(a 为参数, a k π≠, k Z ∈),所以曲线1C上的点)sin Qa a ,到直线80x y +-=的距离为d ==所以当sin 13a π⎛⎫+= ⎪⎝⎭时, d的最小值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考数学解题技巧
解答题模板3:极坐标与参数方程
1、 题型与考点(1){极坐标与普通方程的互相转化
极坐标与直角坐标的互相转化
(2)
{参数方程与普通方程互化参数方程与直角坐标方程互化 (3)
{利用参数方程求值域参数方程的几何意义
2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+⎧⎨=+⎩为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定
点00(,)x y 的数量;
圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+⎧⎨
=+⎩为参数(a,b)为圆心,r 为半径; 椭圆22
221x
y a b +=的参数方程是cos ()sin x a y b θθθ
=⎧⎨=⎩为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ
=⎧⎨=⎩为参数; 抛物线22y px =的参数方程是2
2()2x pt t y pt ⎧=⎨=⎩为参数 极坐标与直角坐标互化公式:
若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,
则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。
解题方法及步骤
(1)、参数方程与普通方程的互化
化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)
例1、方程⎪⎩⎪⎨⎧+=-=--t t t t y x 2
222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆
解析:注意到2t t 与2t
-互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=⋅≥+--t t t t ,即2≥y ,可见与以上参数方程等价的普通方程为)2(422≥=-y y ,显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B.
(2)、极坐标与直角坐标的互化
利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(2)极轴与x 轴正方向重合;(3)取相同的单位长度.设点P 的直角坐标为),(y x ,它的极坐标为),(θρ,则⎩⎨⎧==θ
ρθρsin cos y x 或
⎪⎩
⎪⎨⎧=+=x y y x θρtan 2
22;若把直角坐标化为极坐标,求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.
例2、极坐标方程52sin 42=⋅θ
ρ表示的曲线是( )
A. 圆
B. 椭圆
C. 双曲线的一支
D. 抛物线
分析:这类问题需要将极坐标方程转化为普通方程进行判断. 解析:由21cos 4sin 422cos 522
θ
θρρρρθ-⋅=⋅=-=
,化为直角坐标系方程为25x =,化简得22554
y x =+.显然该方程表示抛物线,故选D. (3)、参数方程与直角坐标方程互化
例3:已知曲线1C 的参数方程为⎪⎩⎪⎨⎧=+-=θ
θsin 10cos 102y x (θ为参数),曲线2C 的极坐标方程为θθρsin 6cos 2+=. (1)将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程;
(2)曲线1C ,2C 是否相交,若相交请求出公共弦的长,若不相交,请说明理由.
解:(1)由⎪⎩⎪⎨⎧=+-=θ
θsin 10cos 102y x 得10)2(22=++y x ,
∴曲线1C 的普通方程为10)2(2
2=++y x ,
∵θθρsin 6cos 2+=,θρθρρsin 6cos 22+=∴,
∵222y x +=ρ,θρcos =x ,θρsin =y ,
∴y x y x 6222+=+,即10)2(22=++y x ,
∴曲线2C 的直角坐标方程为10)2(22=++y x ; (2)∵圆1C 的圆心为)0,2(-,圆2C 的圆心为)3,1(, ∴10223)30()12(C 2221<=-+--=
C ∴两圆相交,设相交弦长为d ,因为两圆半径相等,所以公共弦平分线段21C C
∴222)10()223()2(=+d
, ∴22=d ,∴公共弦长为22 (4)利用参数方程求值域
D A F
E O B C 例题4、在曲线1C :⎩⎨⎧=+=)y x 为参数θθθ(sin cos 1上求一点,使它到直线2C
:12(112
x t t y t ⎧=-⎪⎪⎨⎪=-⎪⎩为参数)的距离最小,并求出该点坐标和最小距离.
解:直线2C 化成普通方程是122--+y x ,设所求的点为()θθsin ,cos 1+P , 则C 到直线2C 的距离2|
122sin cos 1|-+++=θθd |2)4sin(|++=π
θ, 当2
34ππ
θ=+时,即45πθ=时,d 取最小值1 ,此时,点P 的坐标是)22,221(--. 5)直线参数方程中的参数的几何意义
例5、已知直线l 经过点)1,1(P ,倾斜角6πα=
,
①写出直线l 的参数方程;
②设l 与圆42
2=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积. 解 (1)直线的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩
,即12112
x y t ⎧=+⎪⎪⎨⎪=+⎪⎩. (2
)把直线12112
x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入422=+y x ,
得2221(1)(1)4,1)202
t t t ++=+-=,122t t =-, 则点P 到,A B 两点的距离之积为2.。