极坐标与参数方程高考真题学习资料

合集下载

极坐标与参数方程专题复习

极坐标与参数方程专题复习
平面内任一点M的位置可以由线段OM的长度ρ和从射线Ox到射线
OM的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为
点M的极坐标.ρ称为点M的 极径 ,θ称为点M的极角
.
一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极
点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的
例、将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原
来的2倍,得到曲线C.求曲线C的标准方程;
2.极坐标系
(1)极坐标与极坐标系的概念
在平面内取一个定点O,自点O引一条射线Ox,同时确定一个长
度单位和计算角度的正方向(通常取逆时针方向),这样就建立了
一个极坐标系.点O称为极点,射线Ox称为极轴.
0,直线 l 的参数方程为
(t 为参数),射线 OM 的极坐标方程
y=t

为 θ= 4 .求圆 C 和直线 l 的极坐标方程;
题型三、距离的最值: 用“参数法”
1.曲线上的点到直线距离的最值问题
2.点与点的最值问题
“参数法”:设点---套公式--三角辅助角
①设点: 设点的坐标,用该点在所在曲线的的参数 方程来设
直线

普通方程
参数方程
y-y0=tan α(x-x0)
x=x0+tcos α,

(t 为参数)
y=y0+tsin α
(x-a)2+(y-b)2=r2
2
椭圆
抛物线
2
x y
2+ 2=1(a>b>0)
a b
y2=2px(p>0)

= +
(为参数)
= +

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。

例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。

解析:将x和y用极坐标表示,得到ρ=2cosθ。

例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。

解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。

求曲线C的极坐标方程和直线l被曲线C截得的弦长。

解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。

2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。

为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。

极坐标与参数方程历年高考题

极坐标与参数方程历年高考题

4-4极坐标与参数方程历年高考题(一)一、选择题、1、(北京理3)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是( )A 、(1,)2πB 、(1,)2π- C 、(1,0) D 、(1,π)2、(2003全国)圆锥曲线θθρ2cos sin 8=的准线方程是( ) (A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ3、(2011年高考安徽卷理科5)在极坐标系中,点 (,)π23 到圆2cos ρθ= 的圆心的距离为( )(A ) (4、(2001年广东、河南)极坐标方程ρ2cos2θ=1所表示的曲线是( ) (A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线 5、(2003北京)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是( )(A)圆(B)椭圆(C)抛物线 (D)双曲线6、(2011年高考北京卷理科3)在极坐标系中,圆2sin ρθ=-的圆心的极坐标是( )A 、(1,)2π B 、(1,)2π- C 、(1,0) D 、(1,)π7、(2000年京皖春)直线θ=α和直线ρsin(θ-α)=1的位置关系( ) (A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合8、(2010年高考北京卷理科5)极坐标方程(p-1)(θπ-)=(p ≥0)表示的图形是( ) (A )两个圆 (B )两条直线 (C )一个圆和一条射线 (D )一条直线和一条射线9、(安徽理5)在极坐标系中,点θρπcos 2)3,2(=到圆的圆心的距离为( )(A )2 (B )942π+(C )912π+(D )310、(2004北京春)在极坐标系中,圆心在(),2π且过极点的圆的方程为( ) (A) θρcos 22= (B)θρcos 22-= (C)θρsin 22=(D)θρsin 22-=二、填空(每题5分,共20分)11、(2008广东文理数)(坐标系与参数方程选做题)已知曲线12,C C 的极坐标方程分别为cos 3,4cos (0,0)2πρθρθρθ==≥≤<,则曲线1C 2C 交点的极坐标为 ________12、(2010·广东高考理科15)在极坐标系(ρ,θ)(02θπ≤≤)中,曲线ρ=2sin θ与cos 1ρθ=- 的交点的极坐标为 。

高考数学专题复习第22题 极坐标与参数方程

高考数学专题复习第22题  极坐标与参数方程

第22题 极坐标与参数方程基础知识 1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ,y ′=μ的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念(1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离叫做点M 的极径,记为|OM |;以极轴Ox 为始边,射线OM 为终边的角ρ叫做点M 的极角,记为xOM .有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.(3)点与极坐标的关系:一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z )表示同一个点.特别地,极点O 的坐标为(0,θ)(θ∈R ).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的. 3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.(2)互化公式:如图所示,设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:5.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f t ,y =g t ,并且对于t 的每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.几种常见曲线的参数方程(1)直线:经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆:以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程⎩⎪⎨⎪⎧x =r cos α,y =r sin α.(3)椭圆:中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情况: 椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ,其中φ是参数.(4)抛物线:抛物线y 2=2px (p >0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt .(t 为参数).考点题型精讲及方法引导 考点题型一 利用参数方程求距离问题例1.在直角坐标系xOy 中,以原点为极点,以x 轴正半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2. (1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 的最大距离,并求出这个点的坐标.解:(1)曲线C 的方程可化为⎩⎪⎨⎪⎧x 3=cos θ,y =sin θ(θ为参数),通过先平方再求和得,x 23+y 2=1.直线l 的极坐标方程展开得,ρcos θ+ρsin θ=4,∴直线l 的直角坐标方程为x +y -4=0. (2)设与直线l 平行的直线l ′的方程为x +y +m =0,联立方程⎩⎪⎨⎪⎧x 2+3y 2-3=0,x +y +m =0,消元得4y 2+2my +m 2-3=0,令4m 2-4×4(m 2-3)=0,得m =2或m =-2, 当m =2时曲线C 上的点到直线l 的距离最大,此时,直线l ′与曲线C 的切点为⎝ ⎛⎭⎪⎫-32,-12.而直线l 与直线l ′的距离为|2--4|2=3 2.∴曲线C 上的点到直线l 的最大距离为32,这个点的坐标为⎝ ⎛⎭⎪⎫-32,-12.例2.(2015·陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sinθ. (1)写出⊙C 的直角坐标方程; (2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.解:(1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12,故当t =0时,|PC |取得最小值.此时,点P 的直角坐标为(3,0). 针对训练1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值. 解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=dsin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.2.(2016·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1. (2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.3.(2017·德州模拟)在直线坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin(θ+π4)=2 2.(Ⅰ)写出C 1的普通方程和C 2的直角坐标方程;(Ⅱ)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.解析: (Ⅰ)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(Ⅱ)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2|sin(α+π3)-2|.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为(32,12).考点题型二 利用直线参数方程求与线段有关问题例1.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l :⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t (t 为参数)与曲线C 相交于M ,N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入ρsin 2θ=2a cos θ,得y 2=2ax (a >0).⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t(t 为参数),消去t 得x -y -2=0,∴曲线C 的直角坐标方程和直线l 的普通方程分别为y 2=2ax (a >0),x -y -2=0.(2)将⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t (t 为参数)代入y 2=2ax ,整理得t 2-22(4+a )t +8(4+a )=0.设t 1,t 2是该方程的两根,则t 1+t 2=22(4+a ),t 1·t 2=8(4+a ),∵|MN |2=|PM |·|PN |,∴(t 1-t 2)2=(t 1+t 2)2-4t 1·t 2=t 1·t 2, ∴8(4+a )2-4×8(4+a )=8(4+a ),∴a =1(负值舍去).例2.(2015·湖南卷)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值.解:(1)ρ=2cos θ等价于 ρ2=2ρcos θ.① 将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t代入②,得t 2+53t +18=0. 设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.针对训练1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θy =2sin θ(θ为参数),设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解析:椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y 24=1,得(1+12t )2+32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167.2.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.解析:(1)消去参数θ得曲线C 的普通方程:(x -1)2+(y -2)2=16,直线l 的参数方程为⎩⎨⎧x =3+t cos π3,y =5+t sin π3,t 为参数,即⎩⎪⎨⎪⎧x =3+12t ,y =5+32t .t 为参数.(2)将直线的参数方程代入圆的方程可得t 2+(2+33)t -3=0,设t 1、t 2是方程的两个根,则t 1t 2=3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3. 3.在平面直角坐示系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a cos θy =3sin θ(θ为参数,a >0).(1)若曲线C 1与曲线C 2有一个公共点在x 轴上,求a 的值; (2)当a =3时,曲线C 1与曲线C 2交于A ,B 两点,求A ,B 两点的距离. 解析:(1)曲线C 1:⎩⎪⎨⎪⎧x =t +1y =1-2t 的普通方程为y =3-2x .曲线C 1与x 轴的交点为(32,0).曲线C 2:⎩⎪⎨⎪⎧x =a cos θy =3sin θ的普通方程为x 2a 2+y 29=1.曲线C 2与x 轴的交点为(-a,0),(a,0).由a >0,曲线C 1与曲线C 2有一个公共点在x 轴上,知a =32.(2)当a =3时,曲线C 2:⎩⎪⎨⎪⎧x =3cos θy =3sin θ为圆x 2+y 2=9.圆心到直线y =3-2x 的距离d =|3|22+12=355.所以A ,B 两点的距离|AB |=2r 2-d 2=29-3552=1255.4.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎪⎨⎪⎧x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程;(2)求|PM 1|·|PM 2|的取值范围. 解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32,整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0, 由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎢⎡⎭⎪⎫0,π4,∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝ ⎛⎦⎥⎤1289,645.(2016·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧x =-2+cos t ,y =1+sin t(t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=s 1+s 22-4s 1s 2= 2.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围. 解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x . (2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16sin α+cos α2-16>0,t 1+t 2=-4sin α+cos α,t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎪⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝ ⎛⎭⎪⎫α+π4,由α∈⎝ ⎛⎭⎪⎫0,π2,得α+π4∈⎝ ⎛⎭⎪⎫π4,3π4,∴22<sin ⎝⎛⎭⎪⎫α+π4≤1,故|PM |+|PN |的取值范围是(4,4 2 ].7.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点.(1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎪⎨⎪⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.解:(1)由⎩⎨⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝ ⎛⎭⎪⎫4,π6,B ⎝ ⎛⎭⎪⎫-4,π6或B ⎝⎛⎭⎪⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎪⎨⎪⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=232-4×-141=217.考点题型三 利用极坐标或参数方程求参数值例1.(2014·福建高考)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.解析 (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.针对训练1.(2016·全国卷Ⅰ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos ty =1+a sin t (t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解析:(Ⅰ)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(Ⅱ)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.考点题型四 直线与曲线位置关系问题例1.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2.所以直线l 的方程可化为ρcosθ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.例 2.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22.(ρ≥0,0≤θ<2π)(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:x -y +1=0. (2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎪⎫1,π2,即为所求.针对训练考点题型五 转化为普通方程求解类型题目例1.(2015·重庆卷)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛ ρ>0,3π4<θ<⎭⎪⎫5π4,则直线l 与曲线C 的交点的极坐标为________. 答案:(2,π) 解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).例2.(2015·湖北卷)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎨⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,则|AB |=________.答案:25解析:直线l 的直角坐标方程为y -3x =0,曲线C 的普通方程为y 2-x 2=4. 由⎩⎪⎨⎪⎧y =3x ,y 2-x 2=4,得x 2=12,即x =±22,则|AB |=1+k 2AB |x A -x B |=2 5. 针对训练1.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.2.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcosθ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 3.(2014·辽宁高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解析:(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数). (2)由⎩⎨⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.4.(2017·湖北八校联考)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的普通方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ,代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的普通方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3),且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3又点A 在曲线C ′上,∴代入C ′的普通方程x 24+y 2=1,得(2x -1)2+4(2y -3)2=4,∴动点P 的轨迹方程为(2x -1)2+4(2y -3)2=4.考点题型七 其他类型题目例1.(2017·贵州适应性考试)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)若半圆C 与圆D :(x -5)2+(y -3)2=m (m 是常数,m >0)相切,试求切点的直角坐标.解:(1)C 的普通方程为(x -2)2+y 2=4(0≤y ≤2),则C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos t ,y =2sin t(t为参数,0≤t ≤π).(2)C ,D 的圆心坐标分别为(2,0),(5,3),于是直线CD 的斜率k =3-05-2=33. 由于切点必在两个圆心的连线上,故切点对应的参数t 满足tan t =33,t =π6,所以,切点的直角坐标为⎝ ⎛⎭⎪⎫2+2cos π6,2sin π6,即(2+3,1).针对训练。

极坐标与参数方程专题

极坐标与参数方程专题

极坐标与参数方程专题1.已知曲线1C 的直角坐标方程1422=+y x ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,P 是曲线1C 上一点,∠xOP=α,)0(πα≤≤,将点P 绕点O 逆时针旋转角α后得到点Q, OQ OM 2=,OM 点M 的轨迹是曲线2C 。

(1)求曲线2C 的极坐标方程;(2)求|OM |的取值范围。

2.在直角坐标平面内,以坐标原点O 为极点,X 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是θρcos 4=,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 21233(t 是参数)。

(1)过极点作直线l 的垂线,垂足为点P ,求P 的极坐标;(2)若点M,N 分别为曲线C 和直线l 上的动点,求|MN|的最小值。

3.已知直线l 的参数方程为⎩⎨⎧+=+-=ty tx 21(t 是参数),在直角坐标系xOy 中,以O 为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为6)4sin(242--=πθρ。

(1)求直线l 与圆C 的直角坐标方程;x-y+3=0 (x+2)2+(y-2)2=2 (2)设P ,Q 为直线l 与圆C 的两个交点,A (-1,2),求|PA|+|AQ|的值。

4.已知曲线1C 的参数方程为⎪⎪⎩⎪⎪⎨⎧-=-+=t t y tt x 12122(t 是参数),以坐标原点为极点,x 轴正半轴为极轴,单位长度保持不变,建立极坐标系,直线l 的极坐标方程为2)4sin(=+πθρ。

(1)试求曲线1C 和直线l 的普通方程;y 2=x x+y=2 (2)求出它们的公共点的极坐标。

5.长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴正半轴上滑动,BA =3PA ,点P 的轨迹为曲线C ,(1)以直线AB 的倾斜角α为参数,求曲线C 的参数方程; (2)求点P 到点D(0,-2)距离的最大值。

6.已知某圆的极坐标方程为6)4cos(242=+--πθρρ (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x,y )在该圆上,求x+y 的最大值和最小值.7.已知直线l 的参数方程为⎩⎨⎧+-=-=ty tx 23,t 为参数),以坐标原点o 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为)3cos(4πθρ-= (1)将直线l 的参数方程化为普通方程,将圆C 的极坐标方程化为直角坐标方程。

高考数学极坐标及参数方程专题

高考数学极坐标及参数方程专题

高考数学极坐标及参数方程专题1.设(,)P x y 是曲线(θ为参数,02θπ≤≤)上任意一点, (1)将曲线化为普通方程;(2)求的取值范围.2.知曲线1C 的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为。

(1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥, 02θπ≤<)。

3.已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数)经过伸缩变换32x x y y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程; (2)若点M 在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.4.在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线2C . (1)求2C 的方程(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .⎩⎨⎧=+-=θθsin ,cos 2y x x y5.在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。

(1)求1C ,2C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN V 的面积6.极坐标系中,已知射线1C :(0)6πθρ=≥动圆2C :220002cos 40()x x x R ρρθ-+-=∈. (1)求1C ,2C 的直角坐标方程;(2)若射线1C 与动圆2C 相交于M 与N 两个不同点,求0x 的取值范围.7.在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数) (1)求过椭圆的右焦点,且与直线42(3x t t y t=-⎧⎨=-⎩为参数)平行的直线l 的普通方程。

极坐标与参数方程历年高考题汇总

极坐标与参数方程历年高考题汇总

极坐标与参数方程历年高考题汇总I X = cos 0K (2010•辽宁)已知圆C 的参数方程为:\(0为参数)则它的一般标准方程是(I y = sin 〃x = -l+2cos03、(2。

9•福建)已知直线l :3x.4y-12=0与圆(°为参数)则他们的公共点的值是(A. 1距离为(22 + 3COS" (0为参数),直线/的方 y = -l +3sin 〃程为x-3y + 2 = O,则曲线C 上到直线2距离为上浮 的点的个数为(x = 3+cos07. (2011年高考陕西卷理科)设点A, B 分别在曲线CN(&为参数)和曲线C •/7 = 1I y = 4 + sin 0上,则AB 的最小值为( )A 、1 C 、3D. 4A 、兀2+歹2=4B 、(x-l )2+y21)、("1)2+0-2)2 =22、(2010 •湖南高考理科)极坐标方程Q = cos0和参数方程< 为参数)所表示的图形分别是() A 、圆、直线B 、直线、圆C 、圆、圆D 、S 线、直线个数是( A. 0B 、1 D 、34. (2009. r 东)若直线厶:・] 2t〔二U 为参数)与直线T x = s.丁 =为参数)垂直,则kI 牙=]+ t5、(2009•天津)设直线厶的参数方程为円+ 3, (t 为参数),直线<2的方程为尸3X +4则A 与厶的6. (2010年高考安徽卷理科7)设曲线C 的参数方程为2A> 1C> 3D 、48、(2010年重庆市理科8)直线y = E +近与圆心为D 的圆=e[0,2;r ))3y = l + 73sin^交于久B 两点,则直线血?与勿的倾斜角之和为 7 5 4(A ) —TT (B ) —TT (C ) —TT 6 4 3 9、(2010 •福建高考理科-T21)在直角坐标系xoy 中,直线?的参数方程为・ (D) -n 2 (r 为参 y =屁邑数)则直线的一般方程为 10. (2010 •陕西高考理科-T 15)已知圆C 的参数方程为4 x = cosa,(a 为参数人直线/的极坐y = l + sina ・标方程为Qsin<9 = 1,则直线/与圆C 的交点的直角坐标为 I y — co£ a11. (2010 •陕0高考文科•T15)参数方程彳-J '(a 为参数)化成普通方程I y = l + sina12、(2010年高考天津卷理科⑶已知圆Q 的圆心是直线K 一'(r 为参数)与2轴的交点,且圆l/ = l+rC 与直线Z+Z + 3 = 0相切。

2014~2017年极坐标与参数方程全国高考题汇总(精编完美版)

2014~2017年极坐标与参数方程全国高考题汇总(精编完美版)

2014~2017年极坐标与参数方程全国高考题汇总(精编完美版)1.【2014·全国Ⅱ】在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈(0,π)。

⑴求C的参数方程;⑵设点D在C上,C在D处的切线与直线l:y=3x+2垂直,根据⑴中你得到的参数方程,确定D的坐标。

解:⑴C的普通方程为(x-1)²+y²=1(0≤y≤1),可得C的参数方程为x=1+cost。

y=sint} (t为参数,0≤t≤π)。

⑵设D(1+cost。

sint)。

由⑴知C是以G(1,0)为圆心,1为半径的上半圆。

因为C在点D处的切线与t垂直,所以直线GD与t的斜率相同,tant=3,t=π/3.故D的直角坐标为(1+cosπ/3.sinπ/3),即(2.3√3)。

2.【2014·全国Ⅰ】已知曲线C:x²/4+y²/9=1,直线l:y=2-2t。

⑴写出曲线C的参数方程,直线l的普通方程;⑵过曲线C上任意一点P作与l夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值。

解析:⑴曲线C的参数方程为:{x=2cost。

y=3sint} (θ为参数)。

直线l的普通方程为:2x+y-6=0.⑵在曲线C上任意取一点P(2cost。

3sint),到l的距离为d=|2cost+3sint-6|/√(4+9),则|PA|=d/sin(30°)=2d。

设α为PA与x轴正半轴的夹角,则tanα=(2sint-3cost+3)/2cosθ,令其等于tan(30°)=√3/3,解得sinθ=5/√58,cosθ=7/√58.代入d的式子可得d=5/√58,故|PA|max=10/√58,|PA|min=2d=10/√58.3.【2015·全国Ⅰ】在直角坐标系xOy中。

直线⑴求C1,C2的极坐标方程;⑵若直线C3的极坐标方程为θ=π/4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程高
考真题
极坐标与参数方程高考真题
1、(2007)坐标系与参数方程:1O e 和2O e 的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把
1O e 和2O e 的极坐标方程化为直角坐标方程;
(Ⅱ)求经过1O e ,2O e 交点的直线的直角坐标方程.
2、(2008)坐标系与参数方程: 已知曲线
C 1:cos ()sin x y θθθ
=⎧⎨
=⎩为参数,曲线C 2
:()
x t y ⎧=⎪⎪⎨⎪=⎪⎩
为参数 。

(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;
(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C 。

写出1'C ,2'C 的参数方程。

1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由。

3、(2009) 已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,
3sin ,
x y θθ=⎧⎨=⎩(θ为参数).
(Ⅰ)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (Ⅱ)若C 1上的点P 对应的参数为2
t π
=
,Q 为C 2上的动点,求PQ 中点M 到直线
332,
:2x t C y t
=+⎧⎨
=-+⎩ (t 为参数)距离的最小值.
4、(2010)坐标系与参数方程:已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩
⎪⎨⎪⎧
x =cos θ
y =sin θ,(θ为参数).
(1)当α=π
3
时,求C 1与C 2的交点坐标;
(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.
5、(2011)坐标系与参数方程:在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα
=⎧⎨
=+⎩(α为
参数),M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v
,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程
(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3
π
θ=与C 1的异于极点的交点为
A ,与C 2的异于极点的交点为
B ,求AB .
6、(2012)已知曲线C 1的参数方程是⎩⎨⎧
x =2cos φ
y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴
为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π
3)
(Ⅰ)求点A 、B 、C 、D 的直角坐标;
(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。

7、(2013课标1)已知曲线1C 的参数方程为45cos ,
55sin x t y t
=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,
x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=。

(Ⅰ)把1C 的参数方程化为极坐标方程;
(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<)。

8、(2013课标2)已知动点P Q 、都在曲线2cos ,
:2sin x t C y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α
与=2t α(02απ<<),M 为PQ 的中点。

(Ⅰ)求M 的轨迹的参数方程;
(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点。

9、(2014课标1)已知曲线194:2
2=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数)
(1)写出曲线C 的参数方程,直线l 的普通方程;
(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.
10、(2014课标2)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2π
ρθθ=∈.
(1)求C 得参数方程;
(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.
11、(2015课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()2
2
2:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()π
R 4
θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.
12、(2015课标2)在直线坐标系xOy 中,曲线C 1
:cos sin x t y t ==αα{(t 为参数,t ≠0)其中0≤α
≤π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:p=2sin θ,C 3:cos θ。

(I ) 求C 1 与C 3 交点的直角坐标;
(II ) 若C 1 与C 2 相交于点A ,C 1 与C 3 相交于点B ,求|AB|的最大值.
13、【2015高考新课标1,文23】选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线1:2C x =-,圆()()22
2:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()π
R 4
θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.
14、2014(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线194:2
2=+y x C ,直线⎩⎨
⎧-=+=t y t x l 222:(t 为参数) (2)写出曲线C 的参数方程,直线l 的普通方程;
(3)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 15、(2014辽宁,23,10分)选修4—4:坐标系与参数方程
将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;
(2)设直线l:2x+y-2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.
16、(2009·辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭
⎫θ-π
3=1,M 、N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.
17、(2010·东北三校第一次联考)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=2
2,(1)求圆
O 和直线l 的直角坐标方程;
(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.
18、(2011·江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧
x =5cos φ,
y =3sin φ(φ为参数)的右焦点,且与直线

⎪⎨⎪

x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.
19、.(12分)(2010·福建)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨

x =3-22t ,y =5+2
2
t (t 为参数).在极坐标系
(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25
sin θ.
(1)求圆C 的直角坐标方程;
(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|P A |+|PB |.
20、【2015高考陕西,文23】选修4-4:坐标系与参数方程在直角坐标版权法xOy 吕,直线l 的
参数方程为1
32(x t
t y ⎧=+⎪⎪

⎪⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e 的极坐
标方程为ρθ=.(I)写出C e 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.
21、(2010·课标全国)已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧
x =cos θ,y =sin θ
(θ为参数).(1)当α=
π
3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.。

相关文档
最新文档