2017-2018学年山东省济南市市中区八年级(上)期末数学试卷

合集下载

山东省济南市八年级(上)期末数学试卷(含答案)

山东省济南市八年级(上)期末数学试卷(含答案)

山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼2.(4分)下列说法正确的是()A.﹣3是﹣9的平方根B.1的立方根是±1C.a是a2的算术平方根D.4的负的平方根是﹣23.(4分)下列从左到右的变形属于因式分解的是()A.2a(a+1)=2a2+2a B.a2﹣6a+9=a(a﹣6)+9C.a2+3a+2=(a+1)(a+2)D.a2﹣1=a(a﹣)4.(4分)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()5.(4分)分式,,﹣的最简公分母为()A.2xy2B.5xy C.10xy2D.10x2y26.(4分)下列二次根式中,最简二次根式是()A.B.C.D.7.(4分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A.75,70B.70,70C.80,80D.75,808.(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3249.(4分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°10.(4分)如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B逆时针旋转60°,得到△BAE,连接ED,则下列结论中:①AE∥BC;②∠DEB=60°;③∠ADE=∠BDC;④∠AED=∠ABD,其中正确结论的序号是()A.①②B.①③C.②③D.①②④11.(4分)将一组数,2,,2,,…,2,按下列方式进行排列:①,2,,2,②2,,4,3,2…若的位置记为(1,3),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)12.(4分)如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)计算:()3=.14.(4分)将多项式x2﹣2在实数范围内分解因式的结果为.15.(4分)如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=°.16.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.17.(4分)已知a,b是两个连续整数,且a<﹣1<b,则a b=.18.(4分)把两块同样大小的含45°角的三角尺按如图所示的方式放置,其中一块三角尺的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B、C、D在同一直线上,若AB=3,则CD=.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.(6分)计算:(1)+(2﹣)0;(2)﹣3﹣20.(6分)解分式方程:=2﹣.21.(6分)分解因式:(a2+1)2﹣4a2.22.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3:2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?23.(8分)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程频数频率A360.45B0.25C16bD8合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(Ⅰ)求∠ODC的度数;(Ⅱ)若OB=2,OC=3,求AO的长.26.(12分)常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2一16=(x﹣y+4)(x﹣y﹣4)这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC的形状,并说明理由.27.(12分)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC 绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B=.(2)(问题解决)如图2,在等边三角形ABC内有一点P,且P A=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;(3)(灵活运用)如图3,在正方形ABCD内有一点P,且P A=,BP=,PC=1,求∠BPC的度数.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.2.【解答】解:A.﹣9没有平方根,此选项错误;B.1的立方根是1,此选项错误;C.|a|是a2的算术平方根,此选项错误;D.4的负的平方根是﹣2,此选项正确;故选:D.3.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.4.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.5.【解答】解:分式,,﹣的最简公分母为10xy2,故选:C.6.【解答】解:A、原式=2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;B、被开方数含分母,不是最简二次根式,故本选项错误;C、原式=3,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、符合最简二次根式的定义,故本选项正确;故选:D.7.【解答】解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:=75;70出现了13次,出现的次数最多,则众数是70;故选:A.8.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.9.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.10.【解答】解:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠ABC=∠ACB=60°,∠AEB=∠BDC∵将△BCD绕着点B逆时针旋转60°,得到△BAE,∴BE=BD,∠DBE=60°,∠EAB=∠ACB=60°∴∠EAB=∠ABC=60°,△BED是等边三角形∴AE∥BC∵△BED是等边三角形∴∠DEB=60°故①②正确∵∠AEB=∠BDC,∠AEB=∠AED+∠BED,∠BDC=∠BAC+∠ABD∴∠AED=∠ABD故④正确∵∠BDC>60°,∠ADE<60°∴∠BDC≠∠ADE故③错误.故选:D.11.【解答】解:这组数据可表示为:①,,,,,②,,,,;…∵19×2=38,∴19÷5=3…4,∴为第4行,第4个数字.故选:B.12.【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠CBH+∠∠ABM+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.【解答】解:()3=﹣.故答案为:﹣.14.【解答】解:x2﹣2=,故答案为:,15.【解答】解:由题意可得:m∥n,则∠CAD+∠1=180°,可得:∠3=∠4,故∠4+∠CAD=∠2,则∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.16.【解答】解:由题意可得:空白部分一共有6个位置,白色部分只有在1或2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.17.【解答】解:∵3<<4,∴2<﹣1<3,∴a=2,b=3,∴a b=23=8,故答案为:8.18.【解答】解:过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=6,BF=AF=FC=AB=3,∵两个同样大小的含45°角的三角尺,∴AD=BC=6,在Rt△ADF中,根据勾股定理得,DF==3,∴CD=DF﹣FC=3﹣3,故答案为:3﹣3.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.【解答】解:(1)+(2﹣)0=3+1=4;(2)﹣3﹣=4﹣3×﹣=.20.【解答】解:去分母得:y﹣2=2y﹣6+1,移项合并得:y=3,经检验y=3是增根,分式方程无解.21.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.22.【解答】解:(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得:+=1,解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要10天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为4000×=1600(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.23.【解答】解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.24.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.【解答】解:(Ⅰ)由旋转的性质得,CD=CO,∠ACD=∠BCO,∵∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(Ⅱ)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°,在Rt△AOD中,由勾股定理得:AO==.26.【解答】(1)解:9a2+4b2﹣25m2﹣n2+12ab+10mn=(9a2+12ab+4b2)﹣(25m2﹣10mn+n2)=(3a+2b)2﹣(5m﹣n)2=(3a+2b+5m﹣n)(3a+2b﹣5m+n)(2)解:由2a2+b2+c2﹣2a(b+c)=0可分解得2a2+b2+c2﹣2ab﹣2ac=0利用拆项得(a2﹣2ab+b2)+(a2﹣2ac+c2)=0(a﹣b)2+(a﹣c)2=0根据两个非负数互为相反数,只能都同时等于0才成立,于是a﹣b=0,a﹣c=0所以可以得到a=b=c即:△ABC的形状是等边三角形.27.【解答】解:(1)如图1所示,连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;(2)∵△ABC是等边三角形,∴∠ABC=60°,将△BPC绕点B顺时针旋转60°得出△ABP′,如图2,∴AP′=CP=1,BP′=BP=,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴PP′=,∠BP′P=60°,∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90°,则△PP′A是直角三角形;∴∠BPC=∠AP′B=90°+60°=150°;过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30°,BM=,由勾股定理得:P′M=,∴AM=1+=,由勾股定理得:AB==.(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=(180°﹣90°)=45°,由勾股定理得:EP=2,∵AE=1,AP=,EP=2,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°;。

2017-2018学年山东省济南市八年级(上)期末数学试卷

2017-2018学年山东省济南市八年级(上)期末数学试卷

2017-2018学年山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4化简的结果是( )A .3-B .3C .3± D2.(412,0,2-这四个数中,为无理数的是( )A B .12 C .0 D .2-3.(4分)下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .4.(4分)下列计算,正确的是( )A B .13|2|22-=- C D .11()22-= 5.(4分)如图,在ABC ∆中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB⊥于E ,若4AB cm =,则DBE ∆的周长是( )A .4 cmB .C .1+D .46.(4分)方程组43235x y k x y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于( ) A .2 B .1 C .3 D .47.(4分)如图,直线//a b ,直线l 与a ,b 分别相交于A ,B 两点,AC AB ⊥交b 于点C ,140∠=︒,则2∠的度数是( )A .40︒B .45︒C .50︒D .60︒8.(4分)一次函数y kx b =+满足0kb >,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.(4分)在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵树分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是( )A .3,2B .2,3C .2,2D .3,310.(4分)如图, 将AOB ∆绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是( )A .45︒B .60︒C .70︒D .65︒11.(4分)如图,AB y ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到△11AB O 的位置,使点B 的对应点1B 落在直线y =上,再将△11AB O 绕点1B 逆时针旋转到△112A B O的位置,使点1O 的对应点2O 落在直线y =上,依次进行下去若点B 的坐标是(0,1),则点12O 的纵坐标为( )A .9+B .9C .18+D .1812.(4分)如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM PN =恒成立;(2)OM ON +的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1二、填空题(本大题共6个小题,每小题4分,共24分)13.(4x 的取值范围是 .14.(4分)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是 .15.(4分)如图,函数2y x =和4y ax =+的图象交于点(,3)A m ,则方程24x ax =+的解为x = .16.(4分)如图①,在边长为4cm 的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//PQ BD ,PQ 与边AD (或边)CD 交于点Q ,PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长度是 cm .17.(4分)如图,在ABC ∆中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若E D C∆的周长为24,ABC ∆与四边形AEDC 的周长之差为12,则线段DE 的长为 .18.(4分)如图,ABC∆是边长为5的等边三角形,点E在CA的延长线上,EP BC⊥,垂足为P,若2AE=,则BP的长度等于.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(16分)计算:(1)23)(22-(3(4)2(|1.20.(8分)解方程组(1)257 231x yx y-=⎧⎨+=-⎩(2)3(1)5 563(4)x yy x-=+⎧⎨-=+⎩.21.(10分)(1)如图,在ABC∆和DCE∆中,//AB DC,AB DC=,BC CE=,且点B,C,E在一条直线上.求证:A D∠=∠.(2)如图,在ABC∆中,AB AC=,40A∠=︒,BD是ABC∠的平分线.求BDC∠的度数.22.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形△111A B C ;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的△222A B C .23.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?24.(10分)A 、B 两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中1l ,2l 表示两人离A 地的距离()S km 与时间()t h 的关系,结合图象回答下列问题:(1)表示甲离A 地的距离与时间关系的图象是 (填1l 或2)l ;甲的速度是 /k m h ;乙的速度是 /k m h .(2)甲出发后多少时间两人恰好相距15km ?25.(10分)【操作发现】(1) 如图 1 ,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合, 再将三角板绕点C 按顺时针方向旋转 (旋 转角大于0︒且小于45)︒. 旋转后三角板的一直角边与AB 交于点D . 在三角板另一直角边上取一点F ,使CF C D =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF . 请探究结果: ①直接写出EAF ∠的度数= 度;若旋转角BCD α∠=︒,则AEF ∠= 度(可 以用含α的代数式表示) ;②DE 与EF 相等吗?请说明理由;【类比探究】(2) 如图 2 ,ABC ∆为等边三角形, 先将三角板中的60︒角与ACB ∠重合, 再将三角板绕点C 按顺时针方向旋转 (旋 转角大于0︒且小于30)︒. 旋转后三角板的一直角边与AB 交于点D . 在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .①直接写出EAF ∠的度数= 度;②若1AE =,2BD =,求线段DE 的长度 .26.(10分)如图,将边长为8的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕AD ,BE (如图①),点O 为其交点.(1)探求AO 与OD 的数量关系,并说明理由;(2)如图②,若P ,N 分别为BE ,BC 上的动点.①当PN PD +的长度取得最小值时,求BP 的长度;②如图③,若点Q 在线段BO 上,1BQ =,则三线段QN ,NP ,PD 的和(即)QN NP PD ++是否存在最小值?若存在,请直接写出最小值,若不存在,请说明理由.。

济南市八年级上学期末数学试卷

济南市八年级上学期末数学试卷

济南市八年级上学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分) (2018八上·宁波期末) 下列长度的三条线段能组成三角形的是()A . 1,2,3B . 3,4,5C . 5,6,11D . 4,5,102. (2分)(2017·宁波模拟) 在下列四个标志中,属于轴对称图形的是()A .B .C .D .3. (2分)(2019·金台模拟) 下列运算中,计算正确的是()A . (3a2)3=27a6B . (a2b)3=a5b3C . x6+x2=x3D . (a+b)2=a2+b24. (2分)若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A . ﹣15B . 15C . 2D . -85. (2分) (2018九下·扬州模拟) 在式子 , , , 中, 可以取到3和4的是()A .B .C .D .6. (2分) (2016八上·路北期中) 计算(x﹣6)(x+1)的结果为()A . x2+5x﹣6B . x2﹣5x﹣6C . x2﹣5x+6D . x2+5x+67. (2分) (2017七下·淮安期中) 下列各式是完全平方式的是()A . x2+2x﹣1B . 1+x2C . x+xy+1D . x2+2x+18. (2分)下列从左到右的变形中是因式分解的有()①x2﹣y2﹣1=(x+y)(x﹣y)﹣1②x4m+xm=xm(x3m+1)③(x﹣y)2=x2﹣2xy+y2④x2﹣9y2=(x+3y)(x﹣3y)A . 1个B . 2个C . 3个D . 4个9. (2分) (2017八下·平顶山期末) 如图,等腰△ABC的周长为19,底边BC=5,AB的垂直平分线DE交AB 于点D,交AC于点E,则△BEC的周长为()A . 9B . 10C . 11D . 1210. (2分)(2017·松北模拟) 下列多边形中,内角和与外角和相等的是()A . 四边形B . 五边形C . 六边形D . 八边形11. (2分) (2015七下·成华期中) 下列各式中,能用平方差公式进行计算的是()A . (﹣x﹣y)(x+y)B . (2x﹣y)(y﹣2x)C . (1﹣ x)(﹣1﹣ x)D . (3x+y)(x﹣3y)12. (2分)如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A . a2-b2=a2-2ab+b2B . (a+b)2=a2+2ab+b2C . a2-b2=(a+b)(a-b)D . a2+ab=a(a+b)13. (2分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A . 对应点连线与对称轴垂直B . 对应点连线被对称轴平分C . 对应点连线被对称轴垂直平分D . 对应点连线互相平行14. (2分) (2016七上·沙坪坝期中) 用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去.则第n个图形需要棋子()A . 4n枚B . 4n﹣1枚C . 3n+1枚D . 3n﹣1枚二、填空题 (共6题;共6分)15. (1分)分解因式:4x2+8x+4= ________16. (1分)(2016·枣庄) 计算:﹣2﹣1+ ﹣|﹣2|=________.17. (1分) (2017八上·濮阳期末) 如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)18. (1分) (2017七下·无锡期中) 世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一个微小的无花果,质量只有0.000000076克,这个数用科学记数法表示为________.19. (1分) (2020八上·滨州期末) 当x=________时,分式的值为零.20. (1分) (2019八上·吉林期末) 如图,△ABC≌△A′B′C′,其中∠A=46°,∠B′=27°,则∠C=________°.三、计算题 (共2题;共15分)21. (5分)化简求值:(x+1)2+(x+1)(x2﹣1)﹣x3 ,其中x=2.22. (10分) (2020八上·江汉期末) 因式分解:(1);(2) .四、作图题 (共1题;共15分)23. (15分) (2020八下·贵阳开学考) 如图,三个顶点的坐标分别为(1)在图中画出关于轴的对称图形,并写出点的坐标;(2)求的面积;(3)在轴上找出使的值最小的点,并写出点的坐标.五、解答题 (共3题;共15分)24. (5分)(2017·阜康模拟) 先化简,再求值:÷(1﹣),其中a= ﹣2.25. (5分)求当x取何值时,分式的值大于0?26. (5分) (2019九上·西城期中) 如图,在四边形ABCD中,,,,,如果,求CD的长.参考答案一、单选题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共6题;共6分)15-1、16-1、17-1、18-1、19-1、20-1、三、计算题 (共2题;共15分)21-1、22-1、22-2、四、作图题 (共1题;共15分)23-1、23-2、23-3、五、解答题 (共3题;共15分)24-1、25-1、26-1、。

山东省济南市八年级上学期数学期末考试试卷

山东省济南市八年级上学期数学期末考试试卷

山东省济南市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七下·福建期中) 已知点P(a,b),ab>0,a+b<0,则点P在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分)(2018·河南模拟) 一次中学生田径运动会上,参加男子跳高的20名运动员成绩如下所示:成绩(单位:米) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23245211则下列叙述正确的是()A . 这些运动员成绩的中位数是1.70B . 这些运动员成绩的众数是5C . 这些运动员的平均成绩是1.71875D . 这些运动员成绩的中位数是1.7263. (2分)(2011·义乌) 如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A . 60°B . 25°C . 35°D . 45°4. (2分)不等式的解集是()A .B .C .D .5. (2分)一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m>1,则k、b ()A . k>0且b<0B . k>0且b>0C . k<0且b<0D . k<0且b>06. (2分) (2016八上·临海期末) 在下列图形中,不是轴对称图形的是()A .B .C .D .7. (2分) (2020八上·昌平期末) 直线不经过的象限是()A . 第四象限B . 第三象限C . 第二象限D . 第一象限8. (2分) (2018八上·海安月考) 在△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,∠ACD 的度数为()A . 50°B . 60°C . 70°D . 130°9. (2分) (2017七下·五莲期末) 在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A . 22B . 21C . 20D . 1910. (2分) (2019七上·川汇期中) 某商品进价加价25%后出售,最后降价处理库存,要使后续销售不亏本,售价降价不能高于()A . 20%B . 25%C . 30%D . 40%11. (2分) (2015八下·嵊州期中) 如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A . 2B . 4C . 4D . 812. (2分)使方程组有自然数解的整数m()A . 只有5个B . 只能是偶数C . 是小于16的自然数D . 是小于32的自然数二、填空题 (共8题;共8分)13. (1分) (2017七下·马山期中) 将点(0,1)向下平移2个单位,再向左平移4个单位后,所得点的坐标为________ .14. (1分) (2019八下·忠县期中) 2016年5月某日,重庆部分区县的最高温度如下表所示:地区合川永川江津涪陵丰都梁平云阳黔江温度(℃)2526292624282829则这组数据的中位数是________.15. (1分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2;④不等式kx+b>0的解集是x>2.其中说法正确的有________(把你认为说法正确的序号都填上).16. (1分) (2019七下·丹阳月考) 如图,在第1个中,40°,,在上取一点,延长到,使得在第2个中,;在上取一点,延长到,使得在第3个中,;…,按此做法进行下去,第3个三角形中以为顶点的内角的度数为________;第个三角形中以为顶点的内角的度数为________度.17. (1分)已知方程组,则x+y=________18. (1分)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图象信息,下列说法:①两人相遇前,甲速度一直小于乙速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的说法是________(填序号).19. (1分)(2017八上·上城期中) 如图,和都是等腰直角三角形,,连接交与,连接交于点,连接,下列结论:① ;② ;③ ;④ ;⑤ .正确的有________.20. (1分)若不等式组有解,则a的取值范围是________三、解答题 (共10题;共70分)21. (5分) (2017八下·双柏期末) 解方程组:.22. (5分)(2015·湖州) 解不等式组.23. (5分)如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.24. (7分) (2019八上·兴化月考)(1)在网格中画,使、、三边的长分别为、、(2)判断三角形的形状:________(直接填结论).(3)求的面积.25. (5分)已知平面内四条直线共有三个交点,则这四条直线中最多有几条平行线?26. (7分)(2017·临沂模拟) 九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?27. (10分)已知,在△ABC中,∠ABC和∠ACD的平分线相交于点O,(1)若∠A=70°,则∠BOC=________;(2)若∠A=80°,则∠BOC=________;(3)试探索:∠BOC和∠A的关系,证明你的结论.28. (6分) (2017八下·房山期末) 在平面直角坐标系xOy中,对于点P(x , y)和Q(x ,y′),给出如下定义:若,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2).结合定义,请回答下列问题:(1)点(-3,4)的“可控变点”为点________.(2)若点N(m,2)是函数图象上点M的“可控变点”,则点M的坐标为________;(3)点P为直线上的动点,当x≥0时,它的“可控变点”Q所形成的图象如下图所示(实线部分含实心点).请补全当x<0时,点P的“可控变点” Q所形成的图象;29. (15分)(2017·路北模拟) 如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为________;用含t的式子表示点P的坐标为________;(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6),并求当t为何值时,S有最大值?(3)试探究:在上述运动过程中,是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC的?若存在,求出点T的坐标;若不存在,请说明理由.30. (5分) (2018九上·深圳期中) 如图,己知A(0,8),B(6,0),点M、N分别是线段AB、AO上的动点,点M从点B出发,以每秒2个单位的速度向点A运动,点N从点A出发,以每秒1个单位的速度向点O运动,点M、N中有一个点停止时,另一个点也停止。

┃精选3套试卷┃2018届济南市八年级上学期期末监测数学试题

┃精选3套试卷┃2018届济南市八年级上学期期末监测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知关于x的分式方程211ax-=+的解是负数,则a的取值范围是()A.a<1 B.a>1且a≠2 C.a<3 D.a<3且a≠2【答案】D【分析】先求得分式方程的解,然后再解不等式即可,需要注意分式方程的分母不为4.【详解】解:去分母得:a﹣4=x+4.解得:x=a﹣3.∵方程的解为负数,且x+4≠4,∴a﹣3<4且a﹣3+4≠4.∴a<3且a≠4.∴a的取值范围是a<3且a≠4.故选:D.【点睛】本题主要考查了分式方程,已知方程解的情况求参数的值,解题过程中易忽略分式有意义的条件是分母不为4,灵活的求含参数的分式方程的解是解题的关键.2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=50【答案】C【解析】试题分析:要组成直角三角形,三条线段满足较小的平方和等于较大的平方即可.A、72+242=252,B、52+122=132,D、302+402=502,能构成直角三角形,不符合题意;C、12+22≠32,本选项符合题意.考点:本题考查勾股定理的逆定理点评:解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A.6B.3C.2D.11【答案】A【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x <10.结合各选项数值可知,第三边长可能是6.故选A.【点睛】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题.4.如图,直线,∠1=40°,∠2=75°,则∠3等于( )A .55°B .60°C .65°D .70°【答案】C 【解析】试题分析:如图:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选C .考点:1.三角形内角和定理;2.对顶角、邻补角;3.平行线的性质5.如图,在同一直角坐标系中,直线l 1:y=kx 和l 2: y=(k -2)x+k 的位置可能是( )A .B .C .D .【答案】C【分析】根据比例系数的正负分三种情况:2k >,02k <<,k 0<,然后再结合交点横坐标的正负即可作出判断.【详解】当(2)kx k x k =-+ 时 ,解得2k x = ; 当2k >时 ,正比例函数图象过一、三象限,而一次函数图象过一、二、三象限,两函数交点的横坐标大于0,没有选项满足此条件;当02k <<时 ,正比例函数图象过一、三象限,而一次函数图象过一、二、四象限;两函数交点的横坐标大于0,C 选项满足条件;当k 0<时 ,正比例函数图象过二,四象限,而一次函数图象过二、三、四象限;两函数交点的横坐标小于0,没有选项满足此条件;故选:C .【点睛】本题主要考查正比例函数与一次函数的图象,掌握k 对正比例函数和一次函数图象的影响是解题的关键. 6.关于x 的方程1233x k x x -=+--无解,则k 的值为( ) A .±3B .3C .﹣3D .2 【答案】B 【详解】解:去分母得:26x x k =-+,由分式方程无解,得到30x -=,即3x ,= 把3x =代入整式方程得:32363k k =⨯-+=,,故选B .7.在二次根式56,22x y +,0.5,23x 中,最简二次根式的个数是( ) A .1个B .2个C .3个D .4个 【答案】A【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式进行解答.【详解】56214=,120.52==,233x x =都不是最简二次根式; 22x y +符合最简二次根式的要求.综上,最简二次根式的个数是1个,故选:A .【点睛】本题考查了最简二次根式,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.以下四家银行的行标图中,是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:根据轴对称图形的定义可知:第1个行标是轴对称图形;第2个行标不是轴对称图形;第3个行标是轴对称图形;第4个行标是轴对称图形;所以共3个轴对称图形,故选C.考点:轴对称图形9.下列图案中,不是轴对称图形的是( )A .B .C .D .【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项符合题意;C 、是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项不符合题意.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 【答案】C【解析】∵234a b c ==, ∴b=32a ,c=2a , 则原式222222222222232943123462a bc c a a a a a abc a a a a -+-+-===-----. 故选C.二、填空题11.若(x+2y)(2x ﹣ky ﹣1)的结果中不含xy 项,则k 的值为_____.【答案】1【分析】根据多项式乘以多项式法则展开,合并同类项,即可得出﹣k+1=0,求出即可.【详解】解:(x+2y )(2x ﹣ky ﹣1)=2x 2﹣kxy ﹣x+1xy ﹣2ky 2﹣2y=2x 2+(﹣k+1)xy ﹣2ky 2﹣2y ﹣x ,∵(x+2y )(2x ﹣ky ﹣1)的结果中不含xy 项,∴﹣k+1=0,解得:k =1,故答案为1.【点睛】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.12.(1)可燃冰是一种新型能源,它的密度很小,1cm 3可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是_________________.(2) 把多项式226x x --可以分解因式为(2)x -(___________)【答案】9.2×10-4 23x +【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定; (2)根据十字相乘法即可求解.【详解】(1)0.00092=9.2×10-4(2)226x x --=(2)x -(23x +)故答案为9.2×10-4;23x +. 【点睛】此题主要考查科学记数法的表示及因式分解,解题的关键是熟知十字相乘法因式分解的运用. 13.经过A 、B 两点的圆的圆心的轨迹是______.【答案】线段AB 的垂直平分线【分析】根据线段垂直平分线的性质即可得答案.【详解】∵线段垂直平分线上的点到线段两端点的距离相等,∴经过A 、B 两点的圆的圆心的轨迹是线段AB 的垂直平分线,故答案为线段AB 的垂直平分线【点睛】本题考查了相等垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等;熟练掌握性质是解题关键.14.如图,点A ,C ,D ,E 在Rt △MON 的边上,∠MON=90°,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,BH ⊥ON 于点H ,DF ⊥ON 于点F ,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为________.【答案】50【分析】易证△AEO ≌△BAH ,△BCH ≌△CDF 即可求得AO=BH ,AH=EO ,CH=DF ,BH=CF ,即可求得梯形DEOF 的面积和△AEO ,△ABH ,△CGH ,△CDF 的面积,即可解题.【详解】∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO ,∵在△AEO 和△BAH 中90AEO BAH O BHA AE AB ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△AEO ≌△BAH (AAS ),同理△BCH ≌△CDF (AAS ),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF 的面积=12(EF+DH )•FH=80, S △AEO =S △ABH =12AF•AE=9, S △BCH =S △CDF =12CH•DH=6, ∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故选:B .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEO ≌△BAH ,△BCH ≌△CDF 是解题的关键.15.在一次函数y=﹣3x+1中,当﹣1<x <2时,对应y 的取值范围是_____.【答案】-5<y<1【解析】解:由y=﹣3x+1得到x=﹣13y -,∵﹣1<x <2,∴﹣1<﹣13y -<2,解得﹣5<y <1.故答案为﹣5<y <1.点睛:本题考查了一次函数的性质,根据题意得出关于y 的不等式是解答此题的关键.16.如图,在平面鱼角坐标系xOy 中,A (﹣3,0),点B 为y 轴正半轴上一点,将线段AB 绕点B 旋转90°至BC 处,过点C 作CD 垂直x 轴于点D ,若四边形ABCD 的面积为36,则线AC 的解析式为_____.【答案】y =13x+1或y =﹣3x ﹣1. 【分析】过C 作CE ⊥OB 于E ,则四边形CEOD 是矩形,得到CE =OD ,OE =CD ,根据旋转的性质得到AB =BC ,∠ABC =10°,根据全等三角形的性质得到BO =CE ,BE =OA ,求得OA =BE =3,设OD =a ,得到CD =OE =|a ﹣3|,根据面积公式列方程得到C (﹣6,1)或(6,3),设直线AB 的解析式为y =kx+b ,把A点和C点的坐标代入即可得到结论.【详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转10°至BC处,∴AB=BC,∠ABC=10°,∴∠ABO+∠CBO=∠CBO+∠BCE=10°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=10°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴12AO•OB+12(CD+OB)•OD=12×3×a+12(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,3063k bk b-+=⎧⎨+=⎩或3069,k bk b-+=⎧⎨-+=⎩解得:131kb⎧=⎪⎨⎪=⎩或39.kb=-⎧⎨=-⎩,∴直线AB的解析式为113y x=+或y=﹣3x﹣1.故答案为113y x=+或y=﹣3x﹣1.【点睛】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.17.如图,在Rt △ABC ,∠C=90°,AC=12,BC=6,一条线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP= ______ .【答案】6或1【分析】本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=6,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC=1,P 、C 重合.【详解】解:①当AP=CB 时,∵∠C=∠QAP=90°,在Rt △ABC 与Rt △QPA 中,AP CB AB QP =⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP BC 6==;②当P 运动到与C 点重合时,AP=AC ,在Rt △ABC 与Rt △QPA 中,AP AC QP AB=⎧⎨=⎩ , ∴Rt △QAP ≌Rt △BCA (HL ),即AP AC 12==,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.综上所述,AP=6或1.故答案为6或1.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题18.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【答案】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.19.如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD ≌△AED,进一步分析就可以得到∠ACB 与∠ABC 的数量关系.(1) 判定△ABD 与△AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);(2)∠ACB 与∠ABC 的数量关系为:___________________【答案】SAS ∠ACB =2∠ABC【解析】试题分析:(1)根据已知以及作法可知可以利用SAS 判定△ABD 与△AED 全等;(2)根据△ABD ≌△A ED ,可得∠B=∠E,由作法可知CE=CD ,从而得∠E=∠CDE,再利用三角形外角的性质即可得∠ACB=2∠ABC.试题解析:(1)延长AC 到E ,使CE=CD ,连接DE ,∵AB=AC+CD ,AE=AC+CE ,∴AE=AB ,又∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD ,又AD 是公共边,∴△ABD ≌△AED (SAS ),故答案为SAS ;(2)∵△ABD ≌△AED ,∴∠B=∠E ,∵CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠ACB=2∠B ,故答案为∠ACB=2∠B.【点睛】本题考查了三角形全等的判定与性质,等腰三角形的性质、三角形的外角等,正确添加辅助线是解题的关键.20.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为a 的大正方形,两块是边长都为b 的小正方形,五块是长为a ,宽为b 的全等小矩形,且a b >.(1)观察图形,将多项式22252a ab b ++分解因式;(2)若每块小矩形的面积为10,四个正方形的面积和为58.求下列代数式的值:①+a b .②22a b ab +.【答案】(1)()()2225222a ab b a b a b ++=++;(2)①7,②1.【分析】(1)整个图形的面积一方面可以表示为两个大正方形的面积+两个小正方形面积+五个小矩形的面积,另一方面又可表示为边长分别为2a+b 与a+2b 的矩形的面积,据此解答即可;(2)①根据题意可得:10ab =,222258a b +=,然后根据完全平方公式即可求出结果;②先将所求式子分解因式,然后把由①得到的关系式整体代入计算即可.【详解】解:(1)观察图形可知:()()2225222a ab b a b a b ++=++; (2)根据题意,得:10ab =,222258a b +=,∴22a b 29+=.①∵()22222921049a b a ab b +=++=+⨯=,又∵0a b +>,∴7a b +=;②()2210770ab a a b ab b ==⨯=++. 【点睛】本题考查了因式分解在几何图形中的应用,属于常见题型,利用图形面积不同的表示方法是解(1)题的关键,熟练掌握完全平方公式和分解因式的方法是解(2)题的关键.21.如图,以A 点为圆心,以相同的长为半径作弧,分别与射线,AM AN 交于,B C 两点,连接BC ,再分别以,B C 为圆心,以相同长(大于12BC )为半径作弧,两弧相交于点D ,连接,,AD BD CD .若40NCD ∠=︒,求MBD ∠的度数.【答案】∠MBD=40°【分析】由等腰三角形的性质得到∠ABC=∠ACB ,∠DBC=∠DCB ,则∠ABD=∠ACD ,再根据邻补角即可得到∠MBD=∠NCD .【详解】由题意可知AB=AC ,DB=DC∴∠ABC=∠ACB ,∠DBC=∠DCB∴∠ABC+∠DBC=∠ACB+∠DCB ,即∠ABD=∠ACD∴180°-∠ABD=180°-∠ACD ,即∠MBD=∠NCD∴∠MBD=40°【点睛】本题考查了等腰三角形的性质,根据作图描述得到AB=AC ,DB=DC 是解题的关键.22.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?【答案】(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.【解析】(1)由图可知,当x≥30时,图象是一次函数图象,设函数关系式为y=kx+b ,使用待定系数法求解即可;(2)根据题意,从图象上看,30小时以内的上网费用都是60元;(3)根据题意,因为60<75<90,当y=75时,代入(1)中的函数关系计算出x 的值即可.【详解】(1)当x≥30时,设函数关系式为y=kx+b ,则30604090k b k b +=⎧⎨+=⎩, 解得330k b =⎧⎨=-⎩, 所以y=3x ﹣30;(2)若小李4月份上网20小时,由图象可知,他应付60元的上网费;(3)把y=75代入,y=3x-30,解得x=35,∴若小李5月份上网费用为75元,则他在该月份的上网时间是35小时.【点睛】本题考查了一次函数的应用,待定系数法求一次函数关系式,准确识图、熟练应用待定系数法是解题的关键.23.解答下列各题:(12810. (2)解方程:22322x x x-=+++. 【答案】(1)425-(2)3x =-【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到23(2)2x x =++-,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式28210=⨯⨯425=-(2)23(2)2x x =++-,解得3x =-,经检验,原方程的解为3x =-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.24.近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国智造”,高铁事业是“中国智造”的典范.一般的高铁包括G 字头的高速动车组以及D 字头的动车组.由长沙到北京的高铁G84的平均速度是动卧D928的平均速度的1.2倍,行驶相同的路程1500千米,G84少用1个小时.(1)求动卧D928的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D928二等座的票价为491元/张,G84二等座的票价为649元/张,如果你有机会给有关部门提一个合理化建议,使G84的性价比与D928的性价比相近,你如何建议,为什么?【答案】(1)1千米/时;(2)为了G84的性价比与D928的性价比相近,建议适当降低G84二等座票价【分析】(1)设D928的平均速度为x 千米/时,则G84的平均速度为1.2x 千米/时,根据时间=路程÷速度,结合行驶相同的路程1500千米,G84少用1个小时,即可得出关于x 的分式方程,解之检验后即可得出结论;(2)利用“速度与票价的比值”求出这两种列车的性价比,进行比较即可得出结论.【详解】(1)设D928的平均速度为x 千米/时,则G84的平均速度为1.2x 千米/时. 由题意:150015001.2x x-=1, 解得x=1.经检验:x=1,是分式方程的解.答:D928的平均速度1千米/时.(2)G84的性价比=250 1.2649⨯≈0.46,D928的性价比=250491≈0.51, ∵0.51>0.46,∴为了G84的性价比与D928的性价比相近,建议适当降低G84二等座票价.【点睛】本题考查了分式方程的应用.找准等量关系,正确列出分式方程是解题的关键.25.如图,点 A 、B 、C 表示三个自然村庄,自来水公司准备在其间建一水厂P ,要求水厂P 到三个村的距离相等。

《试卷3份集锦》济南市2017-2018年八年级上学期期末统考数学试题

《试卷3份集锦》济南市2017-2018年八年级上学期期末统考数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知一次函数y kx b =+的图象如图所示,则一次函数y bx k =-+的图象大致是( )A .B .C .D .【答案】C【分析】根据一次函数与系数的关系,由已知函数图象判断k 、b ,然后根据系数的正负判断函数y=-bx+k 的图象位置.【详解】∵函数y=kx+b 的图象经过第一、二、四象限,∴k <0,b>0,∴-b <0,∴函数y=-bx+k 的图象经过第二、三、四象限.故选:C .【点睛】本题考查一次函数的图象与系数,明确一次函数图象与系数之间的关系是解题关键.2.若x 2+6x+k 是完全平方式,则k=( )A .9B .﹣9C .±9D .±3【答案】A【解析】试题分析:若x 2+6x+k 是完全平方式,则k 是一次项系数6的一半的平方.解:∵x 2+6x+k 是完全平方式,∴(x+3)2=x 2+6x+k ,即x 2+6x+1=x 2+6x+k∴k=1.故选A .考点:完全平方式.3.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为( )A .5B .6C .7D .8【答案】A 【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC ,∠OCB=∠OCE ,根据平行线的性质可得:∠OBC=∠DOB ,∠OCB=∠COE ,所以∠OBD=∠DOB ,∠OCE=∠COE ,则BD=DO ,CE=OE ,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .△ABC 的三条中线的交点B .△ABC 三边的中垂线的交点 C .△ABC 三条角平分线的交点D .△ABC 三条高所在直线的交点.【答案】C 【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC 三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC 三条角平分线的交点.故选:C .【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.5.下列计算结果正确的是( )A .339a a a =B .()235a a =C .235a a a +=D .()3263a b a b =【答案】D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A .336a a a ⋅=,该选项错误;B . ()236a a =,该选项错误;C . 23,a a 不是同类项不可合并,该选项错误;D . ()3263a b a b =,该选项正确;故选D .【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.6.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD =B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒【答案】C 【分析】由图形可知AC=AC ,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC 和△ADC 中∵AB=AD ,AC=AC ,A 、添加CB CD =,根据SSS ,能判定ABC ADC ∆∆≌,故A 选项不符合题意;B 、添加BAC DAC ∠=∠,根据SAS 能判定ABC ADC ∆∆≌,故B 选项不符合题意;C .添加BCA DCA ∠=∠时,不能判定ABC ADC ∆∆≌,故C 选项符合题意;D 、添加90B D ∠=∠=︒,根据HL ,能判定ABC ADC ∆∆≌,故D 选项不符合题意;故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS 、SAS 、ASA 、AAS 和HL . 7.当一个多边形的边数增加时,它的内角和与外角和的差( )A .增大B .不变C .减小D .以上都有可能【答案】A【分析】设多边形的边数为n,求出多边形的内角和与外角和的差,然后根据一次函数的增减性即可判断.【详解】解:设多边形的边数为n则多边形的内角和为180°(n -2),多边形的外角和为360°∴多边形的内角和与外角和的差为180(n -2)-360=180n -720∵180>0∴多边形的内角和与外角和的差会随着n 的增大而增大故选A .【点睛】此题考查的是多边形的内角和、外角和和一次函数的增减性,掌握多边形的内角和公式、任何多边形的外角和都等于360°和一次函数的增减性与系数的关系是解决此题的关键.8.在等腰三角形ABC 中,794937A '''∠=︒,则B 可以有几个不同值( )A .4个B .3个C .2个D .1个 【答案】B【分析】根据等腰三角形的定义,∠A 可能是底角,也可能是顶角,进行分类讨论即可.【详解】解:①当∠A 是顶角时,∠B=∠C=7949'37"18050511.52︒'︒︒-''=, ②当∠A 为底角,∠B 也为底角时, 794937B '''∠=︒,③当∠A 为底角,∠B 为顶角时,∠B=7949'37"2020610248'''︒=︒︒-⨯,故答案为:B .【点睛】本题考查了等腰三角形等边对等角的性质,涉及分类讨论问题,解题的关键是对∠A ,∠B 进行分类讨论. 9.下列运算中,结果正确的是( )A .x 3·x 3=x 6B .3x 2+2x 2=5x 4C .(x 2)3=x 5D .(x +y)2=x 2+y 2【答案】A【分析】依据完全平方公式、幂的乘方、同底数幂的乘法、合并同类项的法则即可解答.【详解】A.x 3·x 3=x 6 ,正确; B.3x 2+2x 2=5x 2,故本选项错误;C.(x 2)3=x 6,故本选项错误;D.(x+y )2=x 2+2xy+y 2,故本选项错误;故选A .【点睛】本题考查了完全平方公式、合并同类项法则、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚.10.下列各组线段中,能够组成直角三角形的一组是( )A .1,2,3B .2,3,4C .4,5,6D .1【答案】D【解析】试题分析:A .222123+≠,不能组成直角三角形,故错误;B .222234+≠,不能组成直角三角形,故错误;C .222456+≠,不能组成直角三角形,故错误;D .2221(2)(3)+=,能够组成直角三角形,故正确.故选D .考点:勾股定理的逆定理.二、填空题11.若分式方程1x a x -+=a 无解,则a 的值为________. 【答案】1或-1【分析】根据分式方程无解,得到最简公分母为2求出x 的值,分式方程转化为整式方程,把x 的值代入计算即可. 【详解】解:去分母:x a ax a -=+ 即:1)2a x a -=-( . 显然a=1时,方程无解.由分式方程无解,得到x+1=2,即:x=-1.把x=-1代入整式方程:-a+1=-2a .解得:a=-1.综上:a 的值为1或者-1.【点睛】本题考查了分式方程的解,需要注意在任何时候考虑分母不能够为2.12.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.【答案】40°【分析】根据平移的性质得出△ACB ≌△BED ,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC 沿直线AB 向右平移到达△BDE 的位置,∴△ACB ≌△BED ,∵∠CAB =60°,∠ABC =80°,∴∠EBD =60°,∠BDE =80°,则∠CBE 的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD ,∠BDE 的度数是解题关键.13.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=_____°.【答案】1【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】解:∵∠3=30°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣30°=90°,∴∠5+∠6=180°﹣80°=90°,∴∠5=180°﹣∠2﹣108°①, ∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=90°,即∠1+∠2=1°.故答案为1.【点睛】本题考查了三角形的内角和定理,熟知正三角形、正四边形、正五边形个内角的度数是解答本题的关键. 14.计算:()232a bab ÷=_________. 【答案】54a b【解析】()232a b ab ÷=62544a b ab a b ÷=15.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2()a b -的值是____.【答案】1.【解析】根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据(a-b )2=a 2-2ab+b 2即可求解.【详解】解:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积是: 12ab×4=13-1=12,即:2ab=12, 则(a-b )2=a 2-2ab+b 2=13-12=1.故答案为:1.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a 2+b 2和ab 的值是关键.16.计算02(3)(3)--⨯-=_______.【答案】19【分析】先运用零次幂和负整数次幂化简,然后再计算即可.【详解】解:0211=1=(3)(3)99-⨯-⨯-. 故答案为:19. 【点睛】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键. 17.如图,在△ABC 中,∠C =∠ABC ,BE ⊥AC ,垂足为点E ,△BDE 是等边三角形,若AD =4,则线段BE 的长为______.【答案】1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C ,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.三、解答题18.A、B两车从相距360千米的甲、乙两地相向匀速行驶,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图所示,1l表示的是B车,2l表示的是A车.(1)汽车B的速度是多少?(2)求1l、2l分别表示的两辆汽车的s与t的关系式.(3)行驶多长时间后,A、B两车相遇?(4)什么时刻两车相距120千米?【答案】(1)120千米/时;(2)1l 对应的函数解析式为2360s t ,2l 对应的函数解析式为s t =;(3)120分钟;(4)当行驶43小时或83小时后,A ,B 两车相距120千米. 【分析】(1)根据函数图象可以得到汽车B 的速度;(2)根据图象可以设出1l 、2l 的解析式,由函数图象上的点可以求得它们的解析式;(3)根据函数关系式列方程解答即可;(4)分两种情况讨论,相遇前和相遇后,然后列方程解答即可.【详解】解:(1)由图象可得, 60(360240)12060(千米 /时);答:汽车B 的速度为120千米/时;(2)设1l 对应的函数解析式为s kt b =+,36060240b k b, 解得2360k b ,即1l 对应的函数解析式为2360s t ,∵2l 经过原点,则设2l 对应的函数解析式为smt , 6060m ,得1m =,即2l 对应的函数解析式为s t =;(3)当两车相遇时,可得方程,2360t t =-+解之得:120t =; (4)由图象可得,汽车A 的速度为:6060=6060千米/时; 设两车相距120千米时的时间是x ,则当两车没有相遇前,相距120千米时 12060360120x 解之得:43x =; 当两车相遇后,再相距120千米时 12060360120x ,解得83x =, 当83x =时,汽车B 行驶的距离是12032036830, 即B 汽车还没有达到终点,符合题意,答:当行驶43小时或83小时后,A ,B 两车相距120千米. 【点睛】 本题考查一次函数的应用和余元一次方程的应用,解题的关键是明确题意,找出所求问题需要的条件是解题的关键.19.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【答案】详见解析【分析】(1)首先设足球单价为x 元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程150090040x x=+,再解方程可得答案; (2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【详解】(1)设足球单价为x 元,则篮球单价为(x+40)元,由题意得:150090040x x=+, 解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,由题意得:100m+60n=1000,整理得:m=10-35n , ∵m 、n 都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点睛】1.分式方程的应用;2.二元一次方程的应用.20.先化简,再求值.(1﹣32x +)÷212x x -+的值,其中x=1. 【答案】13. 【解析】试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式=()()232211x x x x x +-+⋅++- =11x + 当x=1时,原式=13. 21.请你先化简:2344111x x x x x ⎛⎫-+⎛⎫-+÷ ⎪ ⎪++⎝⎭⎝⎭,然后从12x -≤≤中选一个合适的整数作为x 的值代入求值. 【答案】22x x+- ,当0x =时,原式1=. 【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值(使分式的分母和除式不为0)代入进行计算即可(答案不唯一). 【详解】2344111x x x x x ⎛⎫-+⎛⎫-+÷ ⎪ ⎪++⎝⎭⎝⎭ =()22231111x x x x x -⎛⎫--÷ ⎪+++⎝⎭=()()()222112x x x x x +-++- =22x x +-, 当0x =时,原式1=.22.(11)2017﹣|1|(2)如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 坐标.【答案】(1)1﹣2;(2)C 坐标为(﹣1,0)【分析】(1)根据实数的混合运算法则计算;(2)根据勾股定理求出AB ,根据坐标与图形性质解答.【详解】解:(1)4﹣(﹣1)2017+327-﹣12-=21321+--+=1﹣2;(2)由勾股定理得,AB =2200A B +=2234+=5,则OC =AC ﹣OA =1,则点C 坐标为(﹣1,0).【点睛】本题考查的是实数的混合运算、勾股定理,掌握实数的混合运算法则、勾股定理是解题的关键. 23.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC 关于x 轴对称的图形△A 1B 1C 1(点A 、C 分布对应A 1、C 1);(2)请在y 轴上找出一点P ,满足线段AP+B 1P 的值最小.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用关于x 轴对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.24.(阅读材料)数学活动课上,李老师准备了若干张如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为a ,宽为b 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(理解应用)(1)用两种不同的方法计算出大正方形(图2)的面积,从而可以验证一个等式.这个等式为 ; (2)根据(1)题中的等量关系,解决如下问题:①已知:a +b =5,a 2+b 2=11,求ab 的值;②已知:(2019-a ) 2+( a -2018) 2=5,求(2019-a )( a -2018)的值.【答案】(1)()2a b +=222b+b a a +;(2)①7ab =;②()()20192018=2a a --- 【分析】(1)根据图2中,大正方形的面积的两种求法即可得出结论;(2)①根据完全平方公式的变形计算即可;②设2019-=a x ,2018a y -=,则1x y +=,然后完全平方公式的变形计算即可.【详解】解:(1)图2大正方形的边长为a +b ,面积为()2a b +;也可以看作两个正方形和两个长方形构成,其面积为222b+b a a +.∴这个等式为()2a b +=222b+b a a +(2)①∵5a b +=,∴()2=25a b +.∵22+b =11a ,∴7ab =.②设2019-=a x ,2018a y -=,则1x y +=.∵()()222019+2018=5a a --,∴225x y +=.∵()2222x y x xy y +=++, ∴xy =()()22222x y x y +-+=-.即()()20192018=2a a ---.【点睛】此题考查的是完全平方公式的几何意义和应用,掌握正方形面积的求法和完全平方公式的变形是解决此题的关键.25.如图,在平面直角坐标系中,点M 为x 正半轴上一点,过点M 的直线//l y 轴,且直线l 分别与反比例函数()80y x x =>和()0k y x x =>的图像交于P Q 、两点,14POQ S =.()1求k 的值;()2当45QOM ∠=︒时,求直线OQ 的解析式;()3在()2的条件下,若x 轴上有一点N ,使得NOQ 为等腰三角形,请直接写出所有满足条件的N 点的坐标.【答案】(1)k=﹣20;(2)y=﹣x ;(3)点N 的坐标为(50)或(10,0)或(﹣10,0)或(50).【分析】(1)由14POQ POM MOQ SS S +==结合反比例函数k 的几何意义可得1k +4=14,进一步即可求(2)由题意可得MO=MQ ,于是可设点Q (a ,﹣a ),再利用待定系数法解答即可;(3)先求出点Q 的坐标和OQ 的长,然后分三种情况:①若OQ=ON ,可直接写出点N 的坐标;②若QO=QN ,根据等腰三角形的性质解答;③若NO=NQ ,根据两点间的距离解答.【详解】解:(1)∵14POQ POM MOQ SS S +==,S △POM =1842⨯=,S △QOM =12k , ∴12k +4=14,解得20k ,∵k <0,∴k=﹣20;(2)∵45QOM ∠=︒,//l y 轴,∴45QOM OQM ∠=∠=︒,∴MO=MQ ,设点Q (a ,﹣a ),直线OQ 的解析式为y=mx ,把点Q 的坐标代入得:﹣a=ma ,解得:m=﹣1,∴直线OQ 的解析式为y=﹣x ;(3)∵点Q (a ,﹣a )在20y x=-上,∴220a -=-,解得a =,∴点Q 的坐标为(-,则OQ == 若NOQ 为等腰三角形,可分三种情况:①若OQ=ON=,则点N 的坐标是(,0)或(﹣,0);②若QO=QN ,则NO=2OM=N 的坐标是(0);③若NO=NQ ,设点N 坐标为(n ,0),则((222n n =-+,解得n =∴点N 的坐标是(0);综上,满足条件的点N 的坐标为(0)或(0)或(﹣,0)或(0).【点睛】本题考查了反比例函数系数k 的几何意义、等腰三角形的性质、勾股定理以及两点间的距离等知识,具有一定的综合性,熟练掌握相关知识是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.等腰三角形的底角等于50︒,则该等腰三角形的顶角度数为()A.50︒B.80︒C.65︒或50︒D.50︒或80︒【答案】B【分析】根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【详解】解:∵三角形为等腰三角形,且底角为50°,∴顶角=180°﹣50°×2=80°.故选:B.【点睛】本题考查等腰三角形的性质,三角形内角和定理,题目比较简单,理解等腰三角形两个底角相等是解题关键.2.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180B.220C.240D.300【答案】C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.3.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20 B.16 C.12 D.10【答案】D【分析】连接CD,CM,由于△ABC是等腰三角形,点D是BA边的中点,故CD⊥BA,再根据三角形的面积公式求出CD的长,再再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,故CD的长为AM+MD的最小值,由此即可得出结论.【详解】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,∴S△ABC=12BA•CD=12×4×CD=16,解得CD=8,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+12BA=8+12×4=8+2=1.故选:D.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4.若直角三角形两直角边长分别为5和12,则斜边的长为()A.17 B.7 C.14 D.13【答案】D【分析】利用勾股定理求出斜边即可.2251213+=,本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5.命题“邻补角的和为180︒”的条件是()A.两个角的和是180︒B.和为180︒的两角为邻补角C.两个角是邻补角D.邻补角的和是180︒【答案】C【分析】根据命题“邻补角的和为180︒”的条件是:两个角是邻补角,即可得到答案.【详解】命题“邻补角的和为180︒”的条件是:两个角是邻补角,故选C.【点睛】本题主要考查命题的条件和结论,学会区分命题的条件与结论,是解题的关键.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【答案】C【解析】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=1,7.已知当2x =时,分式2x a x b +-的值为0,当1x =时,分式2x a x b +-无意义,则a -b 的值为( ) A .4B .-4C .0D .14 【答案】B【分析】根据题意可得,当2x =时,分子0x a +=,当1x =时,分母20x b -=,从而可以求得a 、b 的值,本题得以解决.【详解】解:当2x =时,分式2x a x b+-的值为0,当1x =时,分式无意义, ∴20210a b +=⎧⎨⨯-=⎩, 解得,22a b =-⎧⎨=⎩, 224a b ∴-=--=-,故选B .【点睛】本题考查分式的值为零的条件、分式有意义的条件,解答本题的关键是明确题意,求出a 、b 的值. 8.如图,Rt △ABC 中,CD 是斜边AB 上的高,∠A=30°,BD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm【答案】C 【分析】根据题意易得:∠BCD=30°,然后根据30°角的直角三角形的性质先在直角△BCD 中求出BC ,再在直角△ABC 中即可求出AB .【详解】解:Rt △ABC 中,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵CD 是斜边AB 上的高,∴∠BCD=30°,∵BD=2cm ,∴BC=2BD=4cm ,∵∠ACB=90°,∠A=30°,∴AB=2BC=8cm .【点睛】本题考查的是直角三角形的性质,属于基本题型,熟练掌握30°角所对的直角边等于斜边的一半是解题关键.【答案】C【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.【详解】解:等腰三角形的周长是22.∴当8为腰时,它的底边长=22-8-8=6,8+6>8,能构成等腰三角形.当8为底时,它的腰长=(22-8)2=7÷,7+7>8,能构成等腰三角形.即它两边的长度分别是6和8或7和7.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.10.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是( )A .10%B .20%C .30%D .40%【答案】A【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.【详解】根据题意得:40-(12+10+6+8)=40-36=4,则第5组所占的百分比为4÷40=0.1=10%,故选A .【点睛】此题考查了频数与频率,弄清题中的数据是解本题的关键.二、填空题11.在等腰ABC 中,AB 为腰,AD 为中线,5AB =,3AD =,则ABD △的周长为________.【答案】12或10.1.【分析】如图1,根据等腰三角形的性质得到AD ⊥BC ,由勾股定理得到BD =4,于是得到△ABD 的周长为12,如图2,在等腰△ABC 中,AB =BC ,求得BD =2.1,于是得到△ABD 的周长为10.1.【详解】解:如图1,在等腰△ABC 中,AB =AC ,∵AD 为中线,∴AD ⊥BC ,∴BD 2222534AD ,∴△ABD 的周长=1+4+3=12,如图2,在等腰△ABC 中,AB =BC ,∵AD 为中线,∴BD =12BC =2.1,∴△ABD 的周长=1+3+2.1=10.1,综上所述,△ABD 的周长为12或10.1,故答案为:12或10.1.【点睛】本题考查了等腰三角形的性质以及勾股定理的应用,正确的分情况讨论是解题的关键.12.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =14,则该等腰三角形的顶角为_____.【答案】20°.【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.【详解】如图.∵△ABC 中,AB =AC ,∴∠B =∠C ,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =14, ∴∠A :∠B =1:4,∵∠A+∠B+∠C =180°,∴∠A+4∠A+4∠A =180°,即9∠A =180°,∴∠A =20°,故答案为:20°. 【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.13.如图,四边形ABCD 中,90BCD ∠=︒,,4,5ABD DBC AB DC ∠=∠==,则ABD ∆的面积为__________.【答案】10【分析】过点D作DE⊥AB与点E,根据角平分线的性质可得CD=DE,再用三角形面积公式求解. 【详解】解:如图,过点D作DE⊥AB与点E,∵ABD DBC∠=∠,∴BD平分∠ABC,∵∠BCD=90°,∴CD=DE=5,∵AB=4,∴△ABD的面积=12×AB×DE=12×4×5=10.故答案为:10.【点睛】本题考查了角平分线的性质和三角形面积求法,角平分线上的点到角两边距离相等,根据题意作出三角形的高,从而求出面积.14.如图,已知∠A=47°,∠B=38°,∠C=25°,则∠BDC的度数是______.【答案】110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B ,∠4=∠2+∠C .∴∠BDC=∠3+∠4=(∠1+∠B )+(∠2+∠C )=∠B+∠BAC+∠C .∵∠A =47°,∠B =38°,∠C =25°.∴∠BDC=47°+38°+25°=110°,故答案为 :110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.15.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC=60°,则∠EFD 的度数为_______度.【答案】15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF ,EC ⊥CF 知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF 是△BCE 旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE .又∵∠ECF=90°,∴∠EFC=∠FEC=12(180°﹣∠ECF )=12(180°﹣90°)=45°, 故∠EFD=∠DFC ﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.16.在Rt △ABC 中,90︒∠=C ,13AB =,12AC =,则BC =_____.【答案】1【分析】在Rt △ABC 中,∠C=90°,则AB 2=AC 2+BC 2,根据题目给出的AB ,AC 的长,则根据勾股定理可以求BC 的长.【详解】∵AB=13,AC=12,∠C=90°,∴22221312AB AC -=-=1.故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键. 17.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为_______.【答案】13【解析】试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB ,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.三、解答题18.如图1,某容器外形可看作由,,A B C 三个长方体组成,其中,,A B C 的底面积分别为22225,10,5,cm cm cm C 的容积是容器容积的14(容器各面的厚度忽略不计).现以速度v (单位:3/cm s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.()1在注水过程中,注满A 所用时间为______________s ,再注满B 又用了______________s ; ()2注满整个容器所需时间为_____________s ;()3容器的总高度为____________cm .【答案】(1)10,8;(2)1;(3)1【分析】(1)根据函数图象可直接得出答案;(2)设容器A 的高度为h A cm ,注水速度为vcm 3/s ,根据题意和函数图象可列出一个含有h A 及v 的二元一次方程组,求出v 后即可求出C 的容积,进一步即可求出注满C 的时间,从而可得答案;(3)根据B 、C 的容积可求出B 、C 的高度,进一步即可求出容器的高度.【详解】解:(1)根据函数图象可知,注满A 所用时间为10s ,再注满B 又用了18-10=8(s );故答案为:10,8;(2)设容器A的高度为h A cm,注水速度为vcm3/s,根据题意和函数图象得:102581210AAvhvh⎧=⎪⎪⎨⎪-=⎪⎩,解得:410Ahv=⎧⎨=⎩;设C的容积为ycm3,则有4y=10v+8v+y,将v=10代入计算得y=60,∴注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=1(s).故答案为:1;(3)∵B的注水时间为8s,底面积为10cm2,v=10cm3/s,∴B的高度=8×10÷10=8(cm),∵C的容积为60cm3,∴容器C的高度为:60÷5=12(cm),故这个容器的高度是:4+8+12=1(cm);故答案为:1.【点睛】本题考查了函数图象和二元一次方程组的应用,读懂图象提供的信息、弄清题目中各量的关系是解题的关键.19.在ABC∆中,AB AC=,在ABC∆的外部作等边三角形ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若96BAC∠=︒,求BDF∠的度数;(2)如图2,ACB∠的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN DN=,求证:MB MN=.【答案】(1)18BDF ∠=︒;(2)①补全图形,如图所示.见解析;②见解析.【解析】(1)分别求出∠ADF ,∠ADB ,根据∠BDF=∠ADF-∠ADB 计算即可;(2)①根据要求画出图形即可;②设∠ACM=∠BCM=α,由AB=AC ,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN ≌△ADN (SSS ),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC 中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN 即可解决问题;【详解】(1)解:如图1中,在等边三角形ACD ∆中,60CAD ADC ∠=∠=︒,AD AC =.∵E 为AC 的中点, ∴1302ADE ADC ∠=∠=︒, ∵AB AC =,∴AD AB =,∵BAD BAC CAD ∠=∠+∠,96BAC ∠=︒,60CAD ∠=︒,∴156BAD BAC CAD ∠=∠+∠=︒,∴12ADB ABD ∠=∠=︒,∴18BDF ADF ADB ∠=∠-∠=︒.(2)①补全图形,如图所示.②证明:连接AN .∵CM 平分ACB ∠,∴设AOM BCM a ∠=∠=,∵AB AC =,∴2ABC ACB a ∠=∠=.在等边三角形ACD ∆中,∵E 为AC 的中点,∴DN AC ⊥,∴NA NC =,∴NAC NCA a ∠=∠=,∴60DAN a ∠=︒+,在ABN ∆和ADN ∆中,AB AD BN DN AN AN =⎧⎪=⎨⎪=⎩∴()ABN ADN SSS ∆∆≌,∴30ABN ADN ∠=∠=︒,60BAN DAN a ∠=∠=︒+,∴602BAC a ∠=︒+,在ABC ∆中,180BAC ACB ABC ∠+∠+∠=︒∴60222180a a a ︒+++=︒,∴20a =︒,∴10NBC ABC ABN ∠=∠-∠=︒,∴30MNB NBC NCB ∠=∠+∠=︒,∴MNB MBN ∠=∠,∴MB MN =.【点睛】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,AC 和BD 相交于点O ,并且AB DC =,AC DB =.(1)求证:OB OC =.证明思路现在有以下两种:思路一:把OB 和OC 看成两个三角形的边,用三角形全等证明,即用∆_____∆≌______证明; 思路二:把OB 和OC 看成一个三角形的边,用等角对等边证明,即用∠____=∠____证明; (2)选择(1)题中的思路一或思路二证明:OB OC =.。

山东省济南市市中区八年级(上)期末数学试卷(含解析)

山东省济南市市中区八年级(上)期末数学试卷(含解析)

山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)9的平方根是()A.3B.±3C.﹣3D.±2.(4分)下列各组数中,不能作为直角三角形三边长度的是()A.2、3、4B.3、4、5C.6、8、10D.5、12、13 3.(4分)点P(3,﹣1)关于x轴对称的点的坐标是()A.(﹣3,1)B.(﹣3,﹣1)C.(1,﹣3)D.(3,1)4.(4分)已知直线y=2x经过点(1,a),则a的值为()A.a=2B.a=﹣1C.a=﹣2D.a=15.(4分)下列计算中正确的是()A.÷=3B.+=C.=±3D.2﹣=2 6.(4分)如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°7.(4分)下列命题是假命题的是()A.角平分线上的点到角两边的距离相等B.直角三角形的两个锐角互余C.同旁内角互补D.一个角等于60°的等腰三角形是等边三角形8.(4分)在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 9.(4分)若方程组的解中x+y=2019,则k等于()A.2018B.2019C.2020D.202110.(4分)如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.11.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米12.(4分)如图,D为等边三角形ABC内的一点,DA=5,DB=4,DC=3,将线段AD 以点A为旋转中心逆时针旋转60°得到线段AD',下列结论:①点D与点D'的距离为5;②∠ADC=150°;③△ACD'可以由△ABD绕点A逆时针旋转60°得到;④点D到CD'=6+,其中正确的有()的距离为3;⑤S四边形ADCD′A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.14.(4分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加若干2=35.5,次测试成绩中随机抽取8次,计算得两人的平均成绩都是85分,方差分别是S甲2=41,从操作技能稳定的角度考虑,选派参加比赛.S乙15.(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是.16.(4分)如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是cm.17.(4分)如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB的周长为.18.(4分)如图,AB⊥y轴,垂足为B,∠BAO=30°,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O2020的纵坐标为.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算:(1)×+(2)2﹣6+20.(6分)解方程组:21.(6分)如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF.求证:△ABC是等腰三角形.22.(8分)列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.23.(8分)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于y轴对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.24.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时y与x之间的函数表达式;(3)求小张与小李相遇时x的值.25.(10分)期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)这次一共调查的学生人数是人;(2)所调查学生读书本数的众数是本,中位数是本.(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?26.(12分)小华同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旅转60°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.27.(12分)【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线11:y=2x+3与x轴交于点A、与y轴交于点B,将直线11绕点A逆时针旋转45°至直线12;求直线12的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)9的平方根是()A.3B.±3C.﹣3D.±【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:B.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.2.(4分)下列各组数中,不能作为直角三角形三边长度的是()A.2、3、4B.3、4、5C.6、8、10D.5、12、13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、22+32≠42,不符合勾股定理的逆定理,故正确;B、32+42=52,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、52+122=132,符合勾股定理的逆定理,故错误.故选:A.【点评】本题考查了勾股定理的逆定理:在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.(4分)点P(3,﹣1)关于x轴对称的点的坐标是()A.(﹣3,1)B.(﹣3,﹣1)C.(1,﹣3)D.(3,1)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【解答】解:点P(3,﹣1)关于x轴对称的点的坐标是:(3,1).故选:D.【点评】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.4.(4分)已知直线y=2x经过点(1,a),则a的值为()A.a=2B.a=﹣1C.a=﹣2D.a=1【分析】根据一次函数图象上的点的坐标特征,将点(1,a)代入直线方程,然后解关于a的方程即可.【解答】解:∵直线y=2x经过点(1,a),∴a=2×1=2,故选:A.【点评】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.5.(4分)下列计算中正确的是()A.÷=3B.+=C.=±3D.2﹣=2【分析】利用二次根式的除法法则对A进行判断;利用二次根式的加减法对B、D进行判断;利用二次根式的性质对C进行判断.【解答】解:A、原式==3,所以A选项正确;B、与不能合并,所以B选项错误;C、原式=|﹣3|=3,所以C选项错误;D、原式=,所以D选项错误.故选:A.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(4分)如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.【点评】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.7.(4分)下列命题是假命题的是()A.角平分线上的点到角两边的距离相等B.直角三角形的两个锐角互余C.同旁内角互补D.一个角等于60°的等腰三角形是等边三角形【分析】根据角平分线的性质定理、等边三角形的性质定理、直角三角形的性质定理判断即可.【解答】解:A、角平分线上的点到角两边的距离相等,正确,不符合题意;B、直角三角形的两个锐角互余,正确故不符合题意;C、两直线平行,同旁内角互补,错误,故符合题意;D、一个角等于60°的等腰三角形是等边三角形,正确,故不符合题意;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(4分)在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用出现次数最多的数是众数找到众数即可.【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.【点评】考查中位数、众数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数.9.(4分)若方程组的解中x+y=2019,则k等于()A.2018B.2019C.2020D.2021【分析】将方程组的两个方程相加,可得x+y=k﹣1,再根据x+y=2019,即可得到k﹣1=2019,进而求出k的值.【解答】解:,①+②得,5x+5y=5k﹣5,即:x+y=k﹣1,∵x+y=2019,∴k﹣1=2019∴k=2020,故选:C.【点评】本题考查二元一次方程组的解法,整体代入是求值的常用方法.10.(4分)如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,故反映到图象上应选A.故选:A.【点评】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.12.(4分)如图,D为等边三角形ABC内的一点,DA=5,DB=4,DC=3,将线段AD 以点A为旋转中心逆时针旋转60°得到线段AD',下列结论:①点D与点D'的距离为5;②∠ADC=150°;③△ACD'可以由△ABD绕点A逆时针旋转60°得到;④点D到CD'的距离为3;⑤S四边形ADCD′=6+,其中正确的有()A.2个B.3个C.4个D.5个【分析】连结DD′,根据旋转的性质得AD=AD′,∠DAD′=60°,可判断△ADD′为等边三角形,则DD′=5,可对①进行判断;由△ABC为等边三角形得到AB=AC,∠BAC=60°,则把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,于是可对③进行判断;再根据勾股定理的逆定理得到△DD′C为直角三角形,则可对②④进行判断;由于S四边形ADCD′=S△ADD′+S△D′DC,利用等边三角形的面积公式和直角三角形面积公式计算后可对⑤进行判断.【解答】解:连结DD′,如图,∵线段AD以点A为旋转中心逆时针旋转60°得到线段AD′,∴AD=AD′,∠DAD′=60°,∴△ADD′为等边三角形,∴DD′=5,所以①正确;∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,∴△ACD′可以由△ABD绕点A逆时针旋转60°得到,所以③正确;∴D′C=DB=4,∵DC=3,在△DD′C中,∵32+42=52,∴DC2+D′C2=DD′2,∴△DD′C为直角三角形,∴∠DCD′=90°,∵△ADD′为等边三角形,∴∠ADD′=60°,∴∠ADC≠150°,所以②错误;∵∠DCD′=90°,∴DC⊥CD′,∴点D到CD′的距离为3,所以④正确;∵S△ADD′+S△D′DC=×52+×3×4=6+,所以⑤错误.故选:B.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作(3,5).【分析】由于将“7排4号”记作(7,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).【点评】此题主要考查了根据坐标确定点的位置,解题的关键是理解题目的规定,知道坐标与位置的对应关系.14.(4分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加若干次测试成绩中随机抽取8次,计算得两人的平均成绩都是85分,方差分别是S甲2=35.5,S乙2=41,从操作技能稳定的角度考虑,选派甲参加比赛.【分析】根据方差的意义即可得到结论.【解答】解:∵S甲2=35.5,S乙2=41,乙的方差为大于甲的方差,∴选甲参加合适.故答案为:甲.【点评】本题考查了方差,牢记方差的意义解决本题的关键.15.(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是.【分析】一次函数图象的交点就是两函数组成的方程组的解.【解答】解:∵函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴二元一次方程组的解是,故答案为:.【点评】此题主要考查了一次函数与二元一次方程组,关键是掌握二元一次方程(组)与一次函数的关系.16.(4分)如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是20cm.【分析】把长方体展开为平面图形,分两种情形求出AB的长即可判断.【解答】解:把长方体展开为平面图形,分两种情形:如图1中,AB===4,如图2中,AB===20,∵20<4,∴爬行的最短路径是20cm.故答案为20.【点评】本题考查平面展开﹣最短路径问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.(4分)如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB的周长为6.【分析】分析已知条件,根据勾股定理可求得CA的长,△CAD≌△EAD,则DE=DC,在△BED中,BE=AB﹣AE,DE=DC,△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB.【解答】解:△ABC中,∠C=90°,CA=CB,AB=6根据勾股定理得2CB2=AB2,∴CB=3,∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB∴∠DEA=90°=∠C∴△CAD≌△EAD(AAS)∴AC=AE=3,DE=CD∴EB=AB﹣AE=6﹣3故△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB=6﹣3+3=6.【点评】此题考查了全等三角形的判定及性质,应用了勾股定理,三角形周长的求法,范围较广.18.(4分)如图,AB⊥y轴,垂足为B,∠BAO=30°,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O2020的纵坐标为1515+505.【分析】根据题意可知O2、O4、O6、O8……落在直线y=﹣x上,因此O2020也落在直线y=﹣x上,只要求出OO2020的长度,即可求出O2020纵坐标,而OO2020=OO2,而OO2可以根据直角三角形求出.【解答】解:在Rt△AOB中,OB=1,∠BAO=30°,∴AB=,OA=2,由旋转得:OB=O1B1=O2B2=……=1,OA=O1A=O2A1=……=2,AB=A1B1=A2B2=……=,∴OO2=1+2+=3+,∴OO2020=OO2=1010×(3+),∴O2020纵坐标为OO2020=×1010×(3+)=1515+505,故答案为:1515+505.【点评】考查一次函数图象上点的坐标特征,旋转以及直角三角形的性质,掌握含有30度角直角三角形的边角关系式解决问题的关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算:(1)×+(2)2﹣6+【分析】(1)先利用二次根式的乘法法则运算,然后化简后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=+4=3+4=7;(2)原式=4﹣6+4=2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(6分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.21.(6分)如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF.求证:△ABC是等腰三角形.【分析】根据D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF,可以得到Rt△BED和Rt△CFD全等的条件,从而可以证明Rt△BED和Rt△CFD全等,即可得到∠B和∠C的关系,从而可以证明结论成立.【解答】证明:∵D为BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.【点评】本题考查全等三角形的判定与性质、等腰三角形的判定,解答本题的关键是明确题意,利用等腰三角形的判定和数形结合的思想解答.22.(8分)列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.【分析】(1)设学校购进黑色文化衫x件,白色文化衫y件,根据购进黑、白两种颜色的文化衫100件共需2400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=每件的利润×数量,即可求出结论.【解答】解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(8分)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是4;(2)若点D与点C关于y轴对称,则点D的坐标为(﹣4,3);(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【分析】(1)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)利用关于y轴对称点的性质得出答案;(3)利用三角形面积求法得出符合题意的答案.【解答】解:(1)如图所示:△ABC的面积是:3×4﹣×1×2﹣×2×4﹣×2×3=4;故答案为:4;(2)点D与点C关于y轴对称,则点D的坐标为:(﹣4,3);故答案为:(﹣4,3);(3)∵P为x轴上一点,△ABP的面积为4,∴BP=8,∴点P的横坐标为:2+8=10或2﹣8=﹣6,故P点坐标为:(10,0)或(﹣6,0).【点评】此题主要考查了三角形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.24.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时y与x之间的函数表达式;(3)求小张与小李相遇时x的值.【分析】(1)由图象看出小张的路程和时间,根据速度公式可得结论;(2)首先求出点B的坐标,利用待定系数法可得函数解析式;(3)求小李的函数表达式,列方程组可得小张与小李相遇时x的值.【解答】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得:,解得:,∴小张停留后再出发时y与x之间的函数表达式;y=﹣300x+3000;(3)小李骑摩托车所用的时间:=3,∵C(6,0),D(9,2400),同理得:CD的解析式为:y=800x﹣4800,则800x﹣4800=﹣300x+3000,,答:小张与小李相遇时x的值是分.【点评】本题主要考查一次函数的应用,考查学生观察图象的能力,熟练掌握利用待定系数法求函数解析式.25.(10分)期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)这次一共调查的学生人数是20人;(2)所调查学生读书本数的众数是4本,中位数是4本.(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?【分析】(1)将条形图中的数据相加即可;(2)根据众数和中位数的概念解答即可;(3)先求出平均数,再解答即可.【解答】解:(1)1+1+3+4+6+2+2+1=20,故答案为:20;(2)众数是4中位数是4,;故答案为:4;4;(3)每个人读书本数的平均数是:=(1+2×1+3×3+4×6+5×4+6×2+7×2+8)=4.5∴总数是:800×4.5=3600答:估计该校学生这学期读书总数约3600本.【点评】本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.26.(12分)小华同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是∠NAB=∠MAC,NB与MC的数量关系是NB=MC;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旅转60°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.【分析】(1)由旋转知,AM=AN,∠BAC=∠NAM,进而得出∠MAC=∠NAB,判断出△CAM≌△BAN,即可得出结论;(2)由旋转知,AM=AN,∠BAC=∠NAM,进而得出∠MAC=∠NAB,判断出△CAM ≌△BAN,即可得出结论;(3)取A1C1的中点O,则C1O=A1O=A1C1,再判断出A1B1=A1C1,进而得出C1O =A1O=A1B1=4,再判断出∠B1A1C1=∠QA1P,进而判断出△PA1O≌△QA1B1,得出OP=B1Q,再判断出OP⊥B1C1时,OP最小,即可得出结论.【解答】解:(1)由旋转知,AM=AN,∠BAC=∠NAM,∴∠BAC﹣∠BAM=∠NAM﹣∠BAM,即:∠MAC=∠NAB∵AB=AC,∴△CAM≌△BAN(SAS),∴MC=NB,故答案为∠NAB=∠MAC,MC=NB;(2)(1)中结论仍然成立,理由:由旋转知,AM=AN,∠BAC=∠NAM,∴∠BAC﹣∠BAM=∠NAM﹣∠BAM,即:∠MAC=∠NAB,∵AB=AC,∴△CAM≌△BAN(SAS),∴MC=NB;(3)如图3,取A1C1的中点O,则C1O=A1O=A1C1,在Rt△A1B1C1中,∠C1=30°,∴A1B1=A1C1,∠B1A1C1=90°﹣∠C1=60°,∴C1O=A1O=A1B1=4,由旋转知,A1P=A1Q,∠QA1P=60°,∴∠B1A1C1=∠QA1P,∴∠PA1C1=∠B1A1Q,∴△PA1O≌△QA1B1(SAS),∴OP=B1Q,要线段B1Q长度的最小,则线段OP长度最小,而点O是定点,则OP⊥B1C1时,OP最小,在Rt△OPC1中,∠C1=30°,OC1=4,∴OP=OC1=2,即:线段B1Q长度的最小值为2.【点评】此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,含30度角的直角三角形的性质,构造出△PA1O≌△QA1B1是解本题的关键.27.(12分)【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线11:y=2x+3与x轴交于点A、与y轴交于点B,将直线11绕点A逆时针旋转45°至直线12;求直线12的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.【分析】(1)由垂直的定义得∠ADC=∠CEB=90°,平角的定义和同角的余角的相等求出∠DAC=∠ECB,角角边证明△CDA≌△BEC;(2)证明△ABO≌∠BCD,求出点C的坐标为(﹣3,5),由点到直线上构建二元一次方程组求出k=﹣5,b=﹣10,待定系数法求出直线l2的函数表达式为y=﹣5x﹣10;。

(汇总3份试卷)2018年济南市八年级上学期期末考试数学试题

(汇总3份试卷)2018年济南市八年级上学期期末考试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算()32-2a b的结果是( ) A .536a b -B .636a bC .538a b -D .638a b - 【答案】D【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.【详解】解:()()()33322323363-2288a ba b a b a b ⨯=-⋅⋅=-⋅⋅=-,故选D .【点睛】本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.2.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为( )A .5B .6C .7D .8【答案】A 【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC ,∠OCB=∠OCE ,根据平行线的性质可得:∠OBC=∠DOB ,∠OCB=∠COE ,所以∠OBD=∠DOB ,∠OCE=∠COE ,则BD=DO ,CE=OE ,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质3.下列四组数据中,能作为直角三角形三边长的是( )A .1,2,3B 33,5C .23,24,25D .0.3,0.4,0.5【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;B、(3)2+(5)2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.若(2x﹣y)2+M=4x2+y2,则整式M为()A.﹣4xy B.2xy C.﹣2xy D.4xy【答案】D【分析】根据完全平方公式,即可解答.【详解】解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式的概念:两数和(或差)的平方,等于它们的平方和,再加上(或减去)它们积的2倍.5.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS 【答案】C【详解】试题分析:如图,连接EC、DC.根据作图的过程知,在△EOC 与△DOC 中,,△EOC ≌△DOC (SSS ).故选C .考点:1.全等三角形的判定;2.作图—基本作图.6.如图,△ABC 中,∠C =90°,ED 垂直平分AB ,若AC =12,EC =5,且△ACE 的周长为30,则BE 的长为( )A .5B .10C .12D .13【答案】D 【分析】ED 垂直平分AB ,BE =AE ,在通过△ACE 的周长为30计算即可【详解】解:∵ED 垂直平分AB ,∴BE =AE ,∵AC =12,EC =5,且△ACE 的周长为30,∴12+5+AE =30,∴AE =13,∴BE =AE =13,故选:D .【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.7.若将一副三角板按如图所示的方式放置,则下列结论:①13∠=∠;②如果230∠=︒,则有//AC DE ;③如果230∠=︒,则有//BC AD ;④如果230∠=︒,必有4C ∠=∠;其中正确的有( )A.①②③B.①②④C.②③④D.①②③④【答案】B【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,∴∠1=∠3,故本选项正确.②∵∠2=30°,∴∠1=90°-30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故本选项正确.③∵∠2=30°,∴∠3=90°-30°=60°,∵∠B=45°,∴BC不平行于AD,故本选项错误.④由∠2=30°可得AC∥DE,从而可得∠4=∠C,故本选项正确.故选B.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.8.如图,平行四边形ABCD中,AB = 6cm,AD=10 cm,点P在AD 边上以每秒1 cm的速度从点A向点D 运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次C.3次D.4次【答案】C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q 在BC 上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD ∥BC ,∵四边形PDQB 是平行四边形,∴PD=BQ ,∵P 的速度是1cm/秒,∴两点运动的时间为12÷1=12s ,∴Q 运动的路程为12×4=48cm ,∴在BC 上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t ,∴t=0,此时两点没有运动,∴点Q 以后在BC 上的每次运动都会有PD=QB ,∴在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有3次,故选C .【点睛】本题考查列了矩形的性质和平行线的性质. 解决本题的关键是理解以P 、D 、Q 、B 四点组成平出四边形的次数就是Q 在BC 上往返运动的次数.9.如图,在ABC ∆中,68BAC ∠=︒,36C ∠=︒,AD 平分BAC ∠,M 、N 分别是AD 、AB 上的动点,当BM MN +最小时,BMN ∠的度数为( )A .34︒B .68︒C .76︒D .90︒【答案】B 【分析】在AC 上截取AE=AN ,先证明△AME ≌△AMN (SAS ),推出ME=MN .当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,可求出∠NME 的度数,从而求出∠BMN 的度数.【详解】如图,在AC 上截取AE=AN ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,AE AN EAM NAM AM AM ⎧⎪∠∠⎨⎪⎩===,∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME ,当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,∴MN ⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B .【点睛】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN 进行转化,利用垂线段最短解决问题.10.如图,把ABC ∆纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是( )A .122A ∠+∠=∠B .12A ∠+∠=∠C .2(12)A ∠=∠+∠D .1122A ∠+∠=∠ 【答案】A 【分析】画出折叠之前的部分,连接AA ',由折叠的性质可知DAE DA E '∠=∠,根据三角形外角的性质可得∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接AA '由折叠的性质可知DAE DA E '∠=∠∵∠1是DAA '的外角,∠2是AA E '的外角∴∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠∴∠1+∠2=DAA DA A ''∠+∠+EAA EA A ''∠+∠=()()DAA EAA DA A EA A ''''∠+∠+∠+∠=DAE DA E '∠+∠=2DAE ∠故选A .【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.二、填空题11____________________.【答案】4 2【分析】根据算术平方根和立方根的定义进行解答.,=2.故答案为:4;2【点睛】本题主要考查算术平方根和立方根的定义,关键在于熟练掌握算术平方根和立方根的定义,仔细读题,小心易错点.12.若3(23)10x x +--=,则21x +=______.【答案】3或5或-5【分析】由已知3(23)10x x +--=可知(2x-3)x+3=1,所以要分3种情况来求即可. 【详解】解:∵3(23)10x x +--= ∴(2x-3)x+3=1∴当2x-3=1时,x+3取任意值,x=2;当2x-3=-1时,x+3是偶数,x=1;当2x-3≠0且x+3=0时,x=-3∴x 为2或者1或者-3时,∴2x+1的值为:5或者3或者-5故答案为:5,-5,3.【点睛】本题考查了一个代数式的幂等于1时,底数和指数的取值.找到各种符合条件各种情况,不能丢落. 13.点A (﹣3,2)关于y 轴的对称点坐标是_____.【答案】(3,2)【解析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】点A (﹣3,2)关于y 轴的对称点坐标是(3,2).故答案为:(3,2).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如果关于x 的一元二次方程2410x x m --+= 没有实数根,那么m 的取值范围是_____________.【答案】3m <-【分析】由已知方程没有实数根,得到根的判别式小于0,列出关于m 的不等式,求出不等式的解集即可得到m 的范围.【详解】解:∵方程x 2-4x-m+1=0没有实数根,∴△=16-4(-m+1)=4m+12<0,解得:m <-1.故答案为:m <-1【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.15.如图,在ABC ∆中,3AB AC ==,30B ∠=,点P 是BC 边上的动点,设BP x =,当ABP ∆为直角三角形时,x 的值是__________.【答案】332或23 【分析】分两种情况讨论:①∠APB=90°,②∠BAP=90°,分别作图利用勾股定理即可解出x .【详解】①当∠APB=90°时,如图所示,在Rt △ABP 中,AB=3,∠B=30°,∴AP=12AB=32 ∴BP=222233AB AP =3=322⎛⎫-- ⎪⎝⎭ ②当∠BAP=90°时,如图所示,在Rt △ABP 中,AB=3,∠B=30°,BP x =∴12AP x =, 222AP AB =BP +即22213=2⎛⎫+ ⎪⎝⎭x x 解得23x =综上所述,x 的值为332或23. 故答案为:332或23. 【点睛】本题考查勾股定理的应用,解题的关键是掌握直角三角形中30度所对的直角边是斜边的一半. 16.如图,直线a b ∥,ABC ∆的顶点C 在直线b 上,边AB 与直线b 相交于点D .若BCD ∆是等边三角形,20A ∠=︒,则1∠=__°【答案】40【分析】根据等边三角形的性质得到∠BDC=60°,根据平行线的性质求出∠2,根据三角形的外角性质计算,得到答案.【详解】如图,∵△BCD 是等边三角形,∴∠BDC=60°,∵a ∥b ,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2-∠A=1°,故答案为1.【点睛】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是60°是解题的关键.17.计算:11()22--+-=_____.【答案】.【解析】分别根据负指数幂和绝对值进行化简每一项即可解答;【详解】解:11|2222-⎛⎫-+=-+= ⎪⎝⎭;故答案为.【点睛】本题考查实数的运算,负整数指数幂的运算;掌握实数的运算性质,负整数指数幂的运算法则是解题的关键.三、解答题18.某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?【答案】(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x 元,则购买一个乙种篮球需要(x+2)元, 根据题意得:20001400220x x =⨯+,解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m 个乙种足球,则购买(50﹣m )个甲种足球,根据题意得:50×(1+10%)(50﹣m )+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.19.如图,△ABC 三个顶点的坐标分别为A(3,4),B(1,2),C(5,1),(1)请画出△ABC 关于y 轴对称的图形△A 1B 1C 1,(2)△A 1B 1C 1三个顶点坐标分别为A 1 ,B 1 ,C 1【答案】(1)见解析;(2)()()()3,41,25,1---,,【分析】(1)根据题意,找出对应的对称坐标,即可画出;(2)由对称图形可知,其对应坐标.【详解】(1)如图所示:(2)由对称性,得A 1()3,4-,B 1()1,2-,C 1()5,1-.【点睛】此题主要考查轴对称图形的画法与坐标求解,熟练掌握,即可解题.20.如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______;(3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______.【答案】(1)3;(2)63761;(3)0,1,0,5【分析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答;(2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答.【详解】(1)∵C (−1,−3),∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3),∴AB =4−(−2)=6,AC=BC(3)(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (−2,3)、B (4,3), ∴12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年山东省济南市市中区八年级(上)期末数学试卷一、选择题(共12小题.每小题4分,满分48分每小题只有一个速项符合题意)1. 16的算术平方根是( ) A.−4 B.4C.±4D.±82. 下列各组数中,能作为直角三角形三边长的是( ) A.3,4,5 B.1,2,3C.6,7,8D.7,8,93. 下列语句不是命题的是( ) A.连接AB 并延长至C 点 B.对顶角相等C.内错角相等D.同角的余角相等4. 如图,两个一次函数图象的交点坐标为(2, 4),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2的解为( )A.{x =4y =2B.{x =2y =4C.{x =3y =0D.{x =−4y =05. 已知平面直角坐标系中点A 的坐标为(−4, 3).点A 和点B 关于y 轴对称,则B 点坐标是( ) A.(−4, −3) B.(4, 3)C.(4, −3)D.(−3, 4)6. 如图,直线AB // CD ,∠A =70∘,∠C =40∘,则∠E 等于________度.A.40∘B.30∘C.60∘D.70∘7. 下列计算:(1)(√2)2=2,(2)√(−2)2=2,(3)(−2√3)2=12,(4)(√2+1)(√2−1)=1.其中结果正确的个数为( ) A.2 B.1C.3D.48. 已知点(−1, y 1),(4, y 2)在一次函数y =3x −2的图象上,则y 1,y 2,0的大小关系是( ) A.y 1<0<y 2 B.0<y 1<y 2C.y 1<y 2<0D.y 2<0<y 19. 多多班长统计去年1∼8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A.众数是42B.极差是47C.中位数是58D.每月阅读数量超过40的有4个月10. 如图,在△ABC 中,AB =AC ,∠A =40∘,AB 的垂直平分线MN 交AC 于D 点,则∠DBC 的度数是( )A.30∘B.20∘C.50∘D.40∘11. 如图,在平面真角坐标系中,点A 的坐标为(−4, 6),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A.(0, 53) B.(0.1) C.(0, 2)D.(0, 103)12. 为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行“活动,自行车队从甲地出发,途径乙地短智休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发.沿自行车队行进路线前往丙地,在内地完成2小时装卸工作后按原路返间甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍.如图表示自行车队,邮政车离甲地的路程x(km)与自行车队离开甲地时间x(ℎ)的函数关系图象,请根据图象提供的信息,下列结论正确的个数为( ) (1)自行车队行驶的速度是24km/ℎ;(2)邮政车行驶速度是60km/ℎ:(3)邮政车出发53小时与自行车队首次相遇:(4)邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km .A.2个B.1个C.3个D.4个二、填空题(共6小题,每小题4分.满分24分)在平面直角坐标系中,点(2, 3)到x 轴的距离是________.一次函数y =x +2的图象不经过第________象限.数据−2,0,1,2,4的方差是________.已知{a +2b =43a +2b =8 ,则a +b 等于________.如图,已知∠AOB =45∘,点P 在边OA 上,OP =10,点M ,N 在边OB 上.PM =PN ,若MN =2,则OM =________.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P(−1, 1),Q(2, 3),则P 、Q 的“实际距离“为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A(3, 1),B(4, −2).C(−1, −3),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离“相等,则点M 的坐标为________.三.解答题(本大题共9个小题,共78分解答应写出文字说明、证明过程或演算步骤)计算:√18−√102+√5解方程组:{x +y =13x −y =7在等腰△ABC 中,腰长AB =5,底边BC=6.求△ABC 的面积.某服装店购进A ,B 两种新式服装共需6000元,按标价售出后共获得利润3800元,这两种服装的进价,标价如表所示:求这两种服装各购进的件数.前几日,“冰花男孩”的照片夜成为网红,大家纷捐款,启动“青春暖冬行动”我市某中学八年级全体同学也积极参加了捐款活动,该年级同学捐款情况的部分统计如图所示:(1)求该年级的总人数:(2)请将条形图补充完整,并写出捐款金额的众数:(3)该年级平均每人捐款多少元?如图,在平面直角坐标系中,边长为2的正方形ABCD 在第一像限内,AB // x 轴,点A 的坐标为(5, 3).已知直线l:y =12x +m .将直线l 向上平移.(1)如果平移后的直线恰好经过点A ,求m 的值.(2)在第(1)问的条件下,直线与正方形的边长BC 交于点E ,求△ABE 的面积.(3)平移过程中的直线若与正方形有交点,求m 的取值范围.星期天8:00−8:30.燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米’的加气量,依次给在加气站排队等候的若干辆车加气,储气罐中的储气量y(米”与时间x (小时)的函数关系如图所示,(1)8:00−8:30,燃气公司向储气罐注入了________米3的天然气;(2)求直线BC 的函数解析式;(3)正在排队等候的第20辆车加完后,储气罐内还有天然气________米3,并求出这时的时间.如图1,Rt △ACB 中,∠ACB =90∘,∠ABC 的平分线BE 和∠BAC 的外角平分线AD 相交于点P .(1)观察猜想∠APB=________度,请说明理由.(2)如图2.BE.AD分别交AC和BC的延长线于E.D.过P作PF⊥AD交AC的延长线于点H.交BC的延长线于点F.连接AF交DH于点G.①猜想PF、PA的数量关系.并说明理由;②猜想BD、AH与AB之间存在怎样的数量关系.并说明理由.如图1.在平面直角坐标系中,一次函数y=−√3x+2√3的图象与x轴,y轴分别交于点A.点C,过点1作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段OC,OA,AC的长分别为OC=________,OA=________,AC=________,∠ACO=________度.(2)将图1中的△ABC折叠,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2,求线段AD的长;(3)点M是直线AC上一个动点(不与点A、点C重合).过点M的另一条直线MN与y轴相交于点N.是否存在点M,使△AOC与△MCN全等?若存在,请求出点M的坐标;若不存在,请说明理由.参考答案与试题解析2017-2018学年山东省济南市市中区八年级(上)期末数学试卷一、选择题(共12小题.每小题4分,满分48分每小题只有一个速项符合题意)1.【答案】此题暂无答案【考点】算三平最根【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】命体与白理【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】一次于数与旋恒一次普程(组)【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】关于较洗、y装对氢的点的坐标【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】三角形射外角性过平行体的省质【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】平使差香式二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】一次水体的性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】中位数折都起计图极差众数【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】等体三火暗服判定与性质线段垂直来分线慢性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】轴明称月去最键路线问题坐标正测形性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答二、填空题(共6小题,每小题4分.满分24分)【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水体的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】方差【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】代入使碳古解革元一次方程组二元一都接程组的解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰于角三旋形【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】位因顿确定【解析】此题暂无解析【解答】此题暂无解答三.解答题(本大题共9个小题,共78分解答应写出文字说明、证明过程或演算步骤)【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】代入使碳古解革元一次方程组二元一都接程组的解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二元一正构程组的置用——移程问题二元一因方程似应用一元一表方型的应片——解程进度问题一元体次拉程的言亿——其他问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】扇表统病图众数条都连计图加水正均数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次函常的头合题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角使如合题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次函常的头合题【解析】此题暂无解析【解答】此题暂无解答。

相关文档
最新文档