数字信号处理的MATLAB实现

合集下载

数字信号处理实验matlab版离散傅里叶级数(DFS)

数字信号处理实验matlab版离散傅里叶级数(DFS)

数字信号处理实验matlab版离散傅⾥叶级数(DFS)实验11 离散傅⾥叶级数(DFS)(完美格式版,本⼈⾃⼰完成,所有语句正确,不排除极个别错误,特别适⽤于⼭⼤,勿⽤冰点等⼯具下载,否则下载之后的word格式会让很多部分格式错误,谢谢)XXXX学号姓名处XXXX⼀、实验⽬的1、加深对离散周期序列傅⾥叶级数(DFS)基本概念的理解。

2、掌握⽤MA TLAB语⾔求解周期序列傅⾥叶级数变换和逆变换的⽅法。

3、观察离散周期序列的重复周期数对频谱特性的影响。

4、了解离散序列的周期卷积及其线性卷积的区别。

⼆、实验内容1、周期序列的离散傅⾥叶级数。

2、周期序列的傅⾥叶级数变换和逆变换。

3、离散傅⾥叶变换和逆变换的通⽤⼦程序。

4、周期重复次数对序列频谱的影响。

5、周期序列的卷积和。

三、实验环境MA TLAB7.0四、实验原理⽤matlab进⾏程序设计,利⽤matlab绘图⼗分⽅便,它既可以绘制各种图形,包括⼆维图形和三位图形,还可以对图像进⾏装饰和控制。

1、周期序列的离散傅⾥叶级数(1)连续性周期信号的傅⾥叶级数对应的第k次谐波分量的系数为⽆穷多。

⽽周期为N 的周期序列,其离散傅⾥叶级数谐波分量的系数只有N个是独⽴的。

(2)周期序列的频谱也是⼀个以N为周期的周期序列。

2、周期序列的傅⾥叶级数变换和逆变换例11-1已知⼀个周期性矩形序列的脉冲宽度占整个周期的1/4,⼀个周期的采样点数为16点,显⽰3个周期的信号序列波形。

要求:(1)⽤傅⾥叶级数求信号的幅度频谱和相位频谱。

(2)求傅⾥叶级数逆变换的图形,与原信号图形进⾏⽐较。

解MA TLAB程序如下:N=16;xn=[ones(1,N/4),zeros(1,3*N/4)];xn=[xn,xn,xn];n=0:3*N-1;k=0:3*N-1;Xk=xn*exp(-j*2*pi/N).^(n'*k); %离散傅⾥叶级数变换 x=(Xk*exp(j*2*pi/N).^(n'*k))/N; %离散傅⾥叶级数逆变换subplot(2,2,1),stem(n,xn);title('x(n)');axis([-1,3*N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2),stem(n,abs(x)); %显⽰逆变换结果 title('IDFS|X(k)|');axis([-1,3*N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk)); %显⽰序列的幅度谱 title('|X(k)|');axis([-1,3*N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk)); %显⽰序列的相位谱 title('arg|X(k)|');axis([-1,3*N,1.1*min(angle(Xk)), 1.1*max(angle(Xk))]);运⾏结果如图11-1所⽰。

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3、了解MA TLAB 有关双线性变换法的子函数。

二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。

调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。

当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。

),(n x fft y =;采用n 点FFT 。

当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。

当x 为矩阵时,fft 函数按类似的方式处理列长度。

(2)ifft功能:一维快速傅里叶逆变换(IFFT)。

调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。

当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。

),(n x ifft y =;采用n 点IFFT 。

当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。

(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。

调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。

利用Matlab进行数字信号处理与分析

利用Matlab进行数字信号处理与分析

利用Matlab进行数字信号处理与分析数字信号处理是现代通信、控制系统、生物医学工程等领域中不可或缺的重要技术之一。

Matlab作为一种功能强大的科学计算软件,被广泛应用于数字信号处理与分析领域。

本文将介绍如何利用Matlab进行数字信号处理与分析,包括基本概念、常用工具和实际案例分析。

1. 数字信号处理基础在开始介绍如何利用Matlab进行数字信号处理与分析之前,我们首先需要了解一些基础概念。

数字信号是一种离散的信号,可以通过采样和量化得到。

常见的数字信号包括音频信号、图像信号等。

数字信号处理就是对这些数字信号进行处理和分析的过程,包括滤波、频谱分析、时域分析等内容。

2. Matlab在数字信号处理中的应用Matlab提供了丰富的工具箱和函数,可以方便地进行数字信号处理与分析。

其中,Signal Processing Toolbox是Matlab中专门用于信号处理的工具箱,提供了各种滤波器设计、频谱分析、时域分析等功能。

除此之外,Matlab还提供了FFT函数用于快速傅里叶变换,可以高效地计算信号的频谱信息。

3. 数字信号处理实例分析接下来,我们通过一个实际案例来演示如何利用Matlab进行数字信号处理与分析。

假设我们有一个包含噪声的音频文件,我们希望去除噪声并提取出其中的有效信息。

首先,我们可以使用Matlab读取音频文件,并对其进行可视化:示例代码star:编程语言:matlab[y, Fs] = audioread('noisy_audio.wav');t = (0:length(y)-1)/Fs;plot(t, y);xlabel('Time (s)');ylabel('Amplitude');title('Noisy Audio Signal');示例代码end接下来,我们可以利用滤波器对音频信号进行去噪处理:示例代码star:编程语言:matlabDesign a lowpass filterorder = 8;fc = 4000;[b, a] = butter(order, fc/(Fs/2), 'low');Apply the filter to the noisy audio signaly_filtered = filtfilt(b, a, y);Plot the filtered audio signalplot(t, y_filtered);xlabel('Time (s)');ylabel('Amplitude');title('Filtered Audio Signal');示例代码end通过以上代码,我们成功对音频信号进行了去噪处理,并得到了滤波后的音频信号。

数字信号处理相关MATLAB实验内容--第1章

数字信号处理相关MATLAB实验内容--第1章

实验1 离散时间信号的时域分析一、实验目的(1)了解MATLAB 语言的主要特点及作用;(2)熟悉MATLAB 主界面,初步掌握MATLAB 命令窗和编辑窗的操作方法;(3)学习简单的数组赋值、数组运算、绘图的程序编写;(4)了解常用时域离散信号及其特点;(5)掌握MATLAB 产生常用时域离散信号的方法。

二、知识点提示本章节的主要知识点是利用MATLAB 产生数字信号处理的几种常用典型序列、数字序列的基本运算;重点是单位脉冲、单位阶跃、正(余)弦信号的产生;难点是MATLAB 关系运算符“==、>=”的使用。

三、实验内容1. 在MATLAB 中利用逻辑关系式0==n 来实现()0n n -δ序列,显示范围21n n n ≤≤。

(函数命名为impseq(n0,n1,n2))并利用该函数实现序列:()()()632-+-=n n n y δδ;103≤≤-nn 0212. 在MATLAB 中利用逻辑关系式0>=n 来实现()0n n u -序列,显示范围21n n n ≤≤。

(函数命名为stepseq(n0,n1,n2))并利用该函数实现序列:()()()20522≤≤--++=n n u n u n y3. 在MATLAB 中利用数组运算符“.^”来实现一个实指数序列。

如: ()()5003.0≤≤=n n x n4. 在MATLAB 中用函数sin 或cos 产生正余弦序列,如:()()2003.0cos 553.0sin 11≤≤+⎪⎭⎫ ⎝⎛+=n n n n x πππ5. 已知()n n x 102cos 3π=,试显示()()()3,3,+-n x n x n x 在200≤≤n 区间的波形。

6. 参加运算的两个序列维数不同,已知()()6421≤≤-+=n n u n x ,()()8542≤≤--=n n u n x ,求()()()n x n x n x 21+=。

FFT算法(用matlab实现)

FFT算法(用matlab实现)

数字信号处理实验报告 实验二 FFT 算法的MATLAB 实现(一)实验目的:理解离散傅立叶变换时信号分析与处理的一种重要变换,特别是FFT 在数字信号处理中的高效率应用。

(二)实验原理:1、有限长序列x(n)的DFT 的概念和公式:⎪⎪⎩⎪⎪⎨⎧-≤≤=-≤≤=∑∑-=--=101010)(1)(10)()(N k kn N N n kn N N n W k x N n x N k W n x k x)/2(N j N eW π-=2、FFT 算法调用格式是 X= fft(x) 或 X=fft(x,N)对前者,若x 的长度是2的整数次幂,则按该长度实现x 的快速变换,否则,实现的是慢速的非2的整数次幂的变换;对后者,N 应为2的整数次幂,若x 的长度小于N ,则补零,若超过N ,则舍弃N 以后的数据。

Ifft 的调用格式与之相同。

(三)实验内容1、题一:若x(n)=cos(n*pi/6)是一个N=12的有限序列,利用MATLAB 计算它的DFT 并画出图形。

源程序: clc; N=12; n=0:N-1; k=0:N-1;xn=cos(n*pi/6); W=exp(-j*2*pi/N); kn=n'*kXk=xn*(W.^kn) stem(n,Xk); xlabel('k'); ylabel('Xk'); grid on ;也可用FFT 算法直接得出结果,程序如下: clc; N=12; n=0:N-1;xn=cos(n*pi/6);Xk=fft(xn,N); stem(n,Xk); xlabel('k'); ylabel('Xk'); grid on ;实验结果:24681012kX k分析实验结果:用DFT 和用FFT 对序列进行运算,最后得到的结果相同。

但用快速傅立叶变换的运算速度可以快很多。

2、题二:一被噪声污染的信号,很难看出它所包含的频率分量,如一个由50Hz 和120Hz 正弦信号构成的信号,受均值随机噪声的干扰,数据采样率为1000Hz ,通过FFT 来分析其信号频率成分,用MA TLAB 实现。

数字信号处理第三版用MATLAB上机实验

数字信号处理第三版用MATLAB上机实验

实验二:时域采样与频域采样一、时域采样1.用MATLAB编程如下:%1时域采样序列分析fs=1000A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz');ylabel('xn');title('xn');subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');%1时域采样序列分析fs=200A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=200;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs);Xk=fft(xn);subplot(3,2,3);stem(n,xn);xlabel('n,fs=200Hz'); ylabel('xn');title('xn');subplot(3,2,4);plot(n,abs(Xk));xlabel('k,fs=200Hz'); title('|X(k)|');%1时域采样序列分析fs=500A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=500;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,5);stem(n,xn);xlabel('n,fs=500Hz');ylabel('xn');title('xn');subplot(3,2,6);plot(n,abs(Xk));xlabel('k,fs=500Hz'); title('|X(k)|');2.经调试结果如下图:20406080-200200n,fs=1000Hzxnxn2040608005001000k,fs=1000Hz|X (k)|51015-2000200n,fs=200Hzx nxn510150100200k,fs=200Hz |X(k)|10203040-2000200n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|实验结果说明:对时域信号采样频率必须大于等于模拟信号频率的两倍以上,才 能使采样信号的频谱不产生混叠.fs=200Hz 时,采样信号的频谱产生了混叠,fs=500Hz 和fs=1000Hz 时,大于模拟信号频率的两倍以上,采样信号的频谱不产生混叠。

如何使用MATLAB进行数字信号处理

如何使用MATLAB进行数字信号处理

如何使用MATLAB进行数字信号处理MATLAB是一种常用的数学软件工具,广泛应用于数字信号处理领域。

本文将介绍如何使用MATLAB进行数字信号处理,并按照以下章节进行详细讨论:第一章: MATLAB中数字信号处理的基础在数字信号处理中,我们首先需要了解信号的基本概念和数学表示。

在MATLAB中,可以使用向量或矩阵来表示信号,其中每个元素对应着一个离散时间点的信号值。

我们可以使用MATLAB 中的向量运算和函数来处理这些信号。

此外,MATLAB还提供了一组强大的工具箱,包括DSP系统工具箱和信号处理工具箱,以便更方便地进行数字信号处理。

第二章: 数字信号的采样和重构在数字信号处理中,采样和重构是两个核心概念。

采样是将连续信号转换为离散信号的过程,而重构则是将离散信号重新转换为连续信号的过程。

在MATLAB中,可以使用"sample"函数对信号进行采样,使用"interp"函数进行信号的重构。

此外,还可以使用FFT(快速傅里叶变换)函数对离散信号进行频率分析和频谱表示。

第三章: 傅里叶变换与频域分析傅里叶变换是一种常用的信号分析工具,可将信号从时域转换到频域。

MATLAB中提供了强大的FFT函数,可以帮助我们进行傅里叶变换和频谱分析。

通过傅里叶变换,可以将信号分解为不同频率的分量,并且可以通过滤波器和滤波器设计来处理这些分量。

MATLAB还提供了许多用于频域分析的函数,如功率谱密度函数、频谱估计函数等。

第四章: 滤波与降噪滤波是数字信号处理中的重要任务之一,旨在去除信号中的噪声或不需要的频率成分。

在MATLAB中,可以使用FIR和IIR滤波器设计工具箱来设计和实现滤波器。

此外,MATLAB还提供了各种滤波器的函数和滤波器分析工具,如lowpass滤波器、highpass滤波器、带通滤波器等。

这些工具和函数可以帮助我们对信号进行滤波,实现信号降噪和频率调整。

第五章: 时域信号分析与特征提取除了频域分析外,时域分析也是数字信号处理的重要内容之一。

数字信号处理基于matlab(用DFT作谱分析,窗函数的设计)

数字信号处理基于matlab(用DFT作谱分析,窗函数的设计)

实验一:用DFT作谱分析x1=[1 1 1 1];x2=[1 2 3 4 4 3 2 1];n1=0:8;x3=cos(n1*pi/4);n2=0:8;x4=sin(n2*pi/8);figuresubplot(2,2,1);stem(x1);subplot(2,2,2);stem(x2);subplot(2,2,3);stem(x3);subplot(2,2,4);stem(x4);N1=8;F1x1=fft(x1,N1);F1x2=fft(x2,N1);F1x3=fft(x3,N1);F1x4=fft(x4,N1);figuresubplot(2,2,1);stem(abs(F1x1));subplot(2,2,2);stem(abs(F1x2));subplot(2,2,3);stem(abs(F1x3));subplot(2,2,4);stem(abs(F1x4));N3=256;F3x1=fft(x1,N3);F3x2=fft(x2,N3);F3x3=fft(x3,N3);F3x4=fft(x4,N3);w=2/N3*[0:N3-1];figuresubplot(2,2,1);plot(w,abs(F3x1));subplot(2,2,2);plot(w,abs(F3x2));subplot(2,2,3);plot(w,abs(F3x3));subplot(2,2,4);plot(w,abs(F3x4));N6=64;t=0:1/64:1/64*(N6-1);x6=cos(8*pi*t)+cos(16*pi*t)+cos(20*pi*t);figure;plot(x6)Fx6=fft(x6,N6);N=64w6=2/N6*[0:N6-1];figure;plot(w6,Fx6)实验二:用双线性法设计IIR数字滤波器clear all;close all;clcT=1;Wp=2/T*tan(0.2*pi/2);Ws=2/T*tan(0.3*pi/2);Rp=1;Rs=15;[N,Wc]=buttord(Wp,Ws,Rp,Rs,'s');[B,A]=butter(N,Wc,'s');[C,D]=bilinear(B,A,1/T);W=0:0.001*pi:0.5*pi;H=freqs(B,A,W);Hd=freqz(C,D,W);figuresubplot(3,1,1);plot(W/pi,abs(H))grid ontitle('模拟巴特沃斯滤波器')xlabel('Frequency/Hz')ylabel('Magnitude')subplot(3,1,2);plot(W/pi,abs(Hd))grid ontitle('数字巴特沃斯滤波器')xlabel('Didital Frequency/pi')ylabel('Magnitude')Hd_db=-20*log(abs(Hd(1)./(abs(Hd)+eps)));subplot(3,1,3);plot(W/pi,Hd_db)grid ontitle('数字巴特沃斯滤波器波特图')xlabel('Didital Frequency/pi')ylabel('bd_Magnitude')x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4.8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];M=512;fx=fft(x,M);y=filter(C,D,x);fy=fft(y,M);f=1/512*[0:511]*250figuresubplot(2,1,1);plot(x);subplot(2,1,2);plot(f,abs(fx));figuresubplot(2,1,1);plot(y);subplot(2,1,2);plot(f,abs(fy));心电图谱分析1、滤波前波形和频谱2、滤波后波形和频谱实验三:用窗函数法设计FIR数字滤波器一、N=33,用四种窗设计滤波器function hd=ideal(N,wc)for n=0:N-1if n==(N-1)/2hd(n+1)=wc/pi;else hd(n+1)=sin(wc*(n-(N-1)/2))/(pi*(n-(N-1)/2));endendclear all;close all;clcN=33;wc=pi/4;hd=ideal(N,wc);w1=boxcar(N);w2=hamming(N);w3=hann(N);w4=blackman(N);h1=hd.*w1';h2=hd.*w2';h3=hd.*w3';h4=hd.*w4';M=512;fh1=fft(h1,M);db1=-20*log10(abs(fh1(1)./(abs(fh1)+eps)));fh2=fft(h2,M);db2=-20*log10(abs(fh2(1)./(abs(fh2)+eps)));fh3=fft(h3,M);db3=-20*log10(abs(fh3(1)./(abs(fh3)+eps)));fh4=fft(h4,M);db4=-20*log10(abs(fh4(1)./(abs(fh4)+eps)));w=2/M*[0:M-1];figure;subplot(2,2,1);stem(h1);grid on;title('矩形窗');xlabel('n');ylabel('h(n)');subplot(2,2,2);plot(w,abs(fh1));grid on;title('矩形窗');xlabel('w');ylabel('H(k)');subplot(2,2,3);plot(w,db1);grid on;title('矩形窗');xlabel('w');ylabel('20lg(H(k)/H(0))'); subplot(2,2,4);plot(w,angle(fh1)); grid on;title('矩形窗');xlabel('w');ylabel('相位特性');figure;subplot(2,2,1);stem(h2);grid on;title('汉宁窗');xlabel('n');ylabel('h(n)');subplot(2,2,2);plot(w,abs(fh2)); grid on;title('汉宁窗');xlabel('w');ylabel('H(k)');subplot(2,2,3);plot(w,db2);grid on;title('汉宁窗');xlabel('w');ylabel('20lg(H(k)/H(0))'); subplot(2,2,4);plot(w,angle(fh2)); grid on;title('汉宁窗');xlabel('w');ylabel('相位特性');figure;subplot(2,2,1);stem(h3);grid on;title('海明窗');xlabel('n');ylabel('h(n)');subplot(2,2,2);plot(w,abs(fh3)); grid on;title('海明窗');xlabel('w');ylabel('H(k)');subplot(2,2,3);plot(w,db3);grid on;title('海明窗');xlabel('w');ylabel('20lg(H(k)/H(0))'); subplot(2,2,4);plot(w,angle(fh3)); grid on;title('海明窗');xlabel('w');ylabel('相位特性');figure;subplot(2,2,1);stem(h4);grid on;title('布莱克曼窗');xlabel('n');ylabel('h(n)');subplot(2,2,2);plot(w,abs(fh4)); grid on;title('布莱克曼窗');xlabel('w');ylabel('H(k)');subplot(2,2,3);plot(w,db4);grid on;title('布莱克曼窗');xlabel('w');ylabel('20lg(H(k)/H(0))'); subplot(2,2,4);plot(w,angle(fh4)); grid on;title('布莱克曼窗');xlabel('w');ylabel('相位特性');二,用一种窗采用N=15或N=33、w=pi/4设计滤波器clear all;close all;clcN=15;wc=pi/4;hd=ideal(N,wc);w1=blackman(N);h1=hd.*w1';M=512;fh1=fft(h1,M);db1=-20*log10(abs(fh1(1)./(abs(fh1)+eps)));w=2/M*[0:M-1];figure;subplot(2,2,1);stem(h1);grid on;title('布莱克曼窗(N=15)');xlabel('n');ylabel('h(n)');subplot(2,2,2);plot(w,abs(fh1));grid on;title('布莱克曼窗(N=15)');xlabel('w');ylabel('H(k)');subplot(2,2,3);plot(w,db1);grid on;title('布莱克曼窗(N=15)');xlabel('w');ylabel('20lg(H(k)/H(0))');subplot(2,2,4);plot(w,angle(fh1));grid on;title('布莱克曼窗(N=15)');xlabel('w');ylabel('相位特性');N=33;wc=pi/4;hd=ideal(N,wc);w2=blackman(N);h2=hd.*w2';M=512;fh2=fft(h2,M);db2=-20*log10(abs(fh2(1)./(abs(fh2)+eps)));w=2/M*[0:M-1];figure;subplot(2,2,1);stem(h2);grid on;title('布莱克曼窗(N=33)');xlabel('n');ylabel('h(n)');subplot(2,2,2);plot(w,abs(fh2)); grid on;title('布莱克曼窗(N=33)'); xlabel('w');ylabel('H(k)');subplot(2,2,3);plot(w,db2);grid on;title('布莱克曼窗(N=33)'); xlabel('w');ylabel('20lg(H(k)/H(0))'); subplot(2,2,4);plot(w,angle(fh2)); grid on;title('布莱克曼窗(N=33)'); xlabel('w');ylabel('相位特性');三、提取50HZ基频信号N=512;t=0:1/512:1/512*(N-1);x=sin(100*pi*t)+sin(200*pi*t)+sin(300*pi*t); Fx=fft(x,N);w3=2/N*[0:N-1];figure;subplot(2,1,1);plot(x);grid on;title('抽样信号');xlabel('n');ylabel('y(n)');subplot(2,1,2);plot(w3,abs(Fx));grid on;title('抽样信号频谱');xlabel('pi');ylabel('Magnitude');N=33;wc=0.4;hd=ideal(N,wc);w1=boxcar(N);w2=blackman(N);h1=hd.*w1';y1=conv(x,h1);h2=hd.*w2';y2=conv(x,h2); figure;subplot(2,1,1);plot(y1(1:64)); grid on;title('矩形窗');xlabel('n');ylabel('y(n)');subplot(2,1,2);plot(y2(1:64)); grid on;title('布莱克曼窗');xlabel('n');ylabel('y(n)');Fy1=fft(y1,N);Fy2=fft(y2,N);figure;subplot(2,1,1);plot(abs(Fy1)); subplot(2,1,2);plot(abs(Fy2));。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明理工大学信息工程与自动化学院学生实验报告(2011—2012 学年第二学期)课程名称:数字信号处理开课实验室:信自楼111 2012 年 5 月 31 日年级、专业、班生医学号姓名成绩实验项目名称数字信号处理的matlab 实现指导教师教师评语教师签名:年月日一.实验目的熟练掌握matlab的基本操作。

了解数字信号处理的MATLAB实现。

二.实验设备安装有matlab的PC机一台。

三.实验内容.1.求信号x(n)=cos(6.3Пn/3)+cos(9.7Пn/30)+cos(15.3Пn/30),0≤n≤29的幅度频谱.2. 用冲击响应不变法设计一个Butterworth低通数字滤波器,要求参数为:Wp=0.2Пαp=1dBWs=0.3Пαs=15dB3.用双线性变换法设计一个Chebyshev高通IIR滤波器,要求参数为:Wp=0.6Пαp=1dBWs=0.4586Пαs=15dB4.用窗函数法设计一个低通FIR滤波器,要求参数为:Wp=0.2Пαp=0.3dBWs=0.25Пαs=50dB5.用频率抽样法设计一个带通FIR滤波器,要求参数为:W1s=0.2П W1p=0.35П W2p=0.65П W2s=0.8Пαs=60dB αp=1dB6.根据 4 点矩形序列,( n ) = [1 1 1 1] 。

做 DTFT 变换,再做 4 点 DFT 变换。

然后分别补零做 8 点 DFT 及 16 点 DFT。

7.调用filter解差分方程,由系统对u(n)的响应判断稳定性8编制程序求解下列系统的单位冲激响应和阶跃响应。

y[n]+ 0.75y[n -1]+ 0.125y[n -2] = x[n]- x[n -1]四.实验源程序1.n=[0:1:29];x=cos(6.3*pi*n/30)+cos(9.7*pi*n/30)+cos(15.3*pi*n/30);subplot(2,2,1);stem(n,x);title('信号x(n),0<=n<=29');X=fft(x);magX=abs(X(1:1:16));k=0:1:15;subplot(2,2,2);stem(k,magX);title('FFT幅度');2.wp=0.2*pi; %通带边界数字频率(Hz)ws=0.3*pi; %阻带边界数字频率(Hz)Rp=1; %通带波动(dB)As=15; %阻带波动(dB)T=1; %取T=1OmegaP=wp*T; %模拟原型通带边界频率OmegaS=ws*T; %模拟原型阻带边界频率[cs,ds]=afd_butt(OmegaP,OmegaS,Rp,As);%调用模拟Butterworth滤波器的设计[b,a]=imp_invr(cs,ds,T); %调用模拟到数字滤波器转换函数%[b0,B,A]=dir2cas(b,a); %直接型转换为级联型系数的计算[H,w]=freqz(b,a,501); %调用计算频率特性函数mag=abs(H);pha=angle(H);subplot(2,2,1);plot(w/pi,mag);title('幅频特性');subplot(2,2,2);plot(w/pi,-pha/pi);title('相频特性');3.ws=0.4586*pi; %通带边界数字频率(Hz)wp=0.6*pi; %阻带边界数字频率(Hz)Rp=1; %通带波动(dB)As=15; %阻带衰减(dB)[N,wn]=cheb1ord(wp/pi,ws/pi,Rp,As);%Chebyshew滤波器参数计算[b,a]=cheby1(N,Rp,wn,'high'); %数字Chebyshew高通滤波器设计%[b0,B,A]=dir2cas(b,a); %直接型转换为级联型系数计算[H,w]=freqz(b,a,501); %调用计算频率特性函数mag=abs(H);pha=angle(H); %计算幅频和相频特性subplot(2,2,1);plot(w/pi,mag);title('幅频特性');subplot(2,2,2);plot(w/pi,-pha/pi);title('相频特性');4.p=0.2*pi;ws=0.3*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=[0:1:M-1];wc=(ws+wp)/2;hd=ideal_lp(wc,M);w_ham=(hamming(M))';h=hd.*w_ham;[H,w]=freqz(h,[1],501);mag=abs(H);pha=angle(H);db=20*log10((mag+eps)/max(mag));delta_w=2*pi/1000;Rp=-(min(db(1:1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:1:501)));subplot(2,2,1);stem(n,h);title('单位抽样响应');subplot(2,2,2);plot(w/pi,db);title('幅频特性(db)');Rp=-(min(db(1:1:wp/delta_w+1)))As=-round(max(db(ws/delta_w+1:1:501)))5.M=40;alpha=(M-1)/2;l=0:M-1;wl=(2*pi/M)*l;T1=0.109021;T2=0.59417456;Hrs=[zeros(1,5),T1,T2,ones(1,7),T2,T1,zeros(1,9),T1,T2,ones(1,7),T2,T1,zeros(1, 4)];Hdr=[0,0,1,1,0,0];wdl=[0,0.2,0.35,0.65,0.8,1];k1=0:floor((M-1)/2);k2=floor((M-1)/2)+1:M-1;angH=[-alpha*(2*pi)/M*k1,alpha*(2*pi)/M*(M-k2)];H=Hrs.*exp(j*angH);h=real(ifft(H,M));[db,mag,pha,grd,w]=freqz_m(h,1);[Hr,ww,a,L]=Hr_Type2(h);subplot(2,2,1);stem(l,h);title('单位抽样响应');subplot(2,2,2);plot(w/pi,db);axis([0,1,-100,10]);title('幅频特性')set(gca,'XTickMode','manual','XTick',[0,0.2,0.35,0.65,0.8,1]);6.% x(n)=[1 1 1 1],长度为4的离散序列,求DTFT[x(n)];n=0:3;x=[1 1 1 1];k=0:1000;w=(2*pi/1000)*k;X=x*(exp(-j*2*pi/1000)).^(n'*k);magX=abs(X);angX=angle(X);realX=real(X);imagX=imag(X);hold onfigure(1);subplot(2,1,1);plot(k/500,magX);gridxlabel('frequency in pi units');title('Magnitude Part of DTFT') subplot(2,1,2);plot(k/500,angX/pi*180);gridxlabel('freqency in pi units');title('Anagle Part of DTFT')hold off%N=4,x=[1 1 1 1] 求DFT[x(n)]N=4; k=0:N-1X=dft(x,N);magX=abs(X)phaX=angle(X)*180/pihold onfigure(2);subplot(2,1,1);stem(k,magX);gridxlabel('k');ylabel('|X(k)|');title('Magmitude of the DFT:N=4') subplot(2,1,2);stem(k,phaX);gridxlabel('k');ylabel('Degrees');title('Angle of the DFT:N=4')hold off% N=8 x=[1 1 1 1 0 0 0 0],在后面补4个0再求DFT.x=[1,1,1,1,zeros(1,4)];N=8;k=0:N-1X=dft(x,N);magX=abs(X)phaX=angle(X)*180/pihold onfigure(3);subplot(2,1,1);stem(k,magX);gridxlabel('k');ylabel('|X(k)|');title('Magmitude of the DFT:N=8')subplot(2,1,2);stem(k,phaX);gridxlabel('k');ylabel('Degrees');title('Angle of the DFT:N=8')hold off% N=16 x=[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0], 在后面补12个零后求DFT. x=[1,1,1,1,zeros(1,12)];N=16;k=0:N-1X=dft(x,N);magX=abs(X)phaX=angle(X)*180/pihold onfigure(4);subplot(2,1,1);stem(k,magX);gridxlabel('k');ylabel('|X(k)|');title('Magmitude of the DFT:N=16')subplot(2,1,2);stem(k,phaX);gridxlabel('k');ylabel('Degrees');title('Angle of the DFT:N=16')hold off7.A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,60)]; %产生信号x1(n)=R8(n)x2n=ones(1,60); %产生信号x2(n)=u(n)hn=impz(B,A,40); %求系统单位脉冲响应h(n)subplot(3,1,1);stem(hn,'.'); %调用函数tstem绘图title('(a) 系统单位脉冲响应h(n)');box ony1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(3,1,2);stem(y1n,'.');title('(b) 系统对R8(n)的响应y1(n)');box ony2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(3,1,3);y='y2(n)';stem(y2n,'.');title('(c) 系统对u(n)的响应y2(n)');box on8.clear;n=[-20:20];b=[1,-1];a=[1,0.75,0.125];x1=(n==0);y1=filter(b,a,x1)附:前面用到的函数(1)function [b,a]=afd_butt(Wp,Ws,Rp,As);if Wp<=0error('Passband edge must be large than 0')endif Ws<=Wperror('stopband edge must be larger than Passband edge ')endif (Rp<=0)||(As<0)error('PB ripple and/or SB attenuation must be larger than 0 ') endN=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(Wp/Ws))); fprintf('\n***Butterworth Filter Order =%2.0f\n',N)OmegaC=Wp/((10^(Rp/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC);(2)function [b0,B,A]=dir2cas(b,a);b0=b(1);b=b/b0;a0=a(1);a=a/a0;b0=b0/a0;M=length(b);N=length(a);if N>Mb=[b zeros(1,N-M)];else if M>Na=[a zeros(1,M-N)];N=M;elseNM=0;endK=floor(N/2);B=zeros(K,3);A=zeros(K,3);if K*2==N;b=[b 0];a=[a 0];endbroots=cplxpair(roots(b));aroots=cplxpair(roots(a));for i=1:2:2*KBrow=broots(i:1:i+1,:);Brow=real(poly(Brow));B(fix((i+1)/2),:)=Brow;Arow=aroots(i:1:i+1,:);Arow=real(poly(Arow));A(fix((i+1)/2),;)=Arow;end(3)function [db,mag,pha,grd,w] = freqz_m(b,a);% Modified version of freqz subroutine% ------------------------------------% [db,mag,pha,grd,w] = freqz_m(b,a);% db = Relative magnitude in dB computed over 0 to pi radians % mag = absolute magnitude computed over 0 to pi radians% pha = Phase response in radians over 0 to pi radians% grd = Group delay over 0 to pi radians% w = 501 frequency samples between 0 to pi radians% b = numerator polynomial of H(z) (for FIR: b=h)% a = denominator polynomial of H(z) (for FIR: a=[1])%[H,w] = freqz(b,a,1000,'whole');H = (H(1:1:501))'; w = (w(1:1:501))';mag = abs(H);db = 20*log10((mag+eps)/max(mag));pha = angle(H);% pha = unwrap(angle(H));grd = grpdelay(b,a,w);% grd = diff(pha);% grd = [grd(1) grd];% grd = [0 grd(1:1:500); grd; grd(2:1:501) 0];% grd = median(grd)*500/pi;(4)function [Hr,w,b,L] = Hr_Type2(h);% Computes Amplitude response of Type-2 LP FIR filter% ---------------------------------------------------% [Hr,w,b,L] = Hr_Type2(h)% Hr = Amplitude Response% w = frequencies between [0 pi] over which Hr is computed % b = Type-2 LP filter coefficients% L = Order of Hr% h = Type-2 LP impulse response%M = length(h);L = M/2;b = 2*[h(L:-1:1)];n = [1:1:L]; n = n-0.5;w = [0:1:500]'*pi/500;Hr = cos(w*n)*b';(5)function hd=ideal_lp(wc,M)alpha=(M-1)/2;n=[0:1:(M-1)];m=n-alpha+eps;hd=sin(wc*m)./(pi*m);(6)function[b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b');a=real(a')(7)function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC^N;B=real(poly(z));b=k*B;b0=k;a=real(poly(p));五.实验结果1.实验内容1的运行结果如下图所示:2.实验内容2的运行结果如下所示:a=1.0000 -3.3635 5.0684 -4.2759 2.1066 -0.5706 0.06613.实验内容3的运行结果如下所示:4.实验内容4的运行结果如下所示:Rp =0.0357As = 505.实验内容5的运行结果如下所示:6.实验内容6的运行结果如下所示:k =0 1 2 37.实验内容7的运行结果如下所示:8.实验内容8的运行结果如下所示:六.总结体会这次实验让我获益匪浅,它让我深刻体会到实验前的理论知识准备的重要性。

相关文档
最新文档