数字信号处理Matlab实现实例(推荐给学生)
Matlab中的数字信号处理方法与实例

Matlab中的数字信号处理方法与实例数字信号处理是一门研究数字信号在数字域中分析、处理和改变的学科。
Matlab是一种强大的数值计算工具,被广泛应用于信号处理领域。
本文将介绍一些在Matlab中常用的数字信号处理方法与实例,并通过实例来展示它们的应用。
1. 信号的采样与重构信号采样是指将连续时间信号转化为离散时间信号的过程。
在Matlab中,我们可以使用“sample”函数对信号进行采样,并使用“hold”函数对采样后的信号进行重构。
下面是一个示例:```matlabfs = 100; % 采样频率t = 0:1/fs:1; % 时间序列x = sin(2*pi*5*t); % 原始信号subplot(2,1,1);plot(t,x);title('原始信号');xlabel('时间');ylabel('幅值');subplot(2,1,2);stem(t,x);title('采样和重构后的信号');xlabel('时间');ylabel('幅值');```在这个例子中,我们生成了一个频率为5Hz的正弦信号,然后对该信号进行采样和重构。
从结果可以看出,原始信号和重构后的信号基本上是一致的。
2. 信号的频谱分析频谱分析是指将信号从时域转换到频域的过程,可以用来分析信号的频率成分。
在Matlab中,我们可以使用“fft”函数对信号进行傅里叶变换,并使用“abs”函数获取信号的幅度谱。
下面是一个示例,演示如何对信号进行频谱分析:```matlabfs = 100; % 采样频率t = 0:1/fs:1; % 时间序列x = sin(2*pi*5*t); % 原始信号N = length(x); % 信号长度X = fft(x); % 傅里叶变换f = (0:N-1)*(fs/N); % 频率坐标plot(f,abs(X));title('信号的频谱');xlabel('频率');ylabel('幅度');```在这个示例中,我们同样生成了一个频率为5Hz的正弦信号,然后对该信号进行傅里叶变换,并绘制出信号的频谱图。
第2章 基于MATLAB实现的数字信号处理实验

x 2(n)
5
0 -5
0
5
10 n
15
20
25
30
1 0.5
h(n)
0 -0.5 -1 -5
0
5
10 n
15
20
25
30
第2章 基于MATLAB实现的数字信号处理实验
2.2 离散信号的分析
四、实验思考题
1. 思考序列相关性的应用?
五、实验报告要求
1. 2. 简述实验目的及实验原理。 按实验步骤附上实验过程中的信号序列、系统单位脉冲响应及 系统响应序列的时域和幅频特性曲线,并对所得结果进行分析 和解释。 总结实验中的主要结论。 简要回答实验思考题。
第2章 基于MATLAB实现的数字信号处理实验
2.3 验证采样定理
三、实验步骤
2. 实验内容2(3)的程序运行结果如下图所示:
Reconstruction of x a(t) when Ts=0.01 1
x a(t)
0 -1 0 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Reco
2.4 应用FFT实现信号频谱分析
三、实验步骤
3. 实验内容1的程序运行结果如下图所示:
15 10
5
0 -6
-4
-2
0
2
4
6
4 2 0 -2 -4 -6
-4
-2
0
2
4
6
第2章 基于MATLAB实现的数字信号处理实验
2.4 应用FFT实现信号频谱分析
三、实验步骤
4. 实验内容2的程序运行结果如下图所示:
n
第2章 基于MATLAB实现的数字信号处理实验
matlab数字信号处理85个实用案例精讲

matlab数字信号处理85个实用案例精讲MATLAB数字信号处理85个实用案例精讲MATLAB是一种强大的数学软件,广泛应用于数字信号处理领域。
本文将介绍85个实用案例,涵盖了数字信号处理的各个方面,包括信号生成、滤波、频谱分析、时频分析、数字滤波器设计等。
1. 信号生成案例:生成正弦信号在MATLAB中,可以使用sin函数生成正弦信号。
例如,生成频率为100Hz,幅度为1的正弦信号,代码如下:t = 0:0.001:1;f = 100;x = sin(2*pi*f*t);2. 滤波案例:低通滤波低通滤波器可以滤除高频信号,保留低频信号。
在MATLAB中,可以使用fir1函数设计低通滤波器。
例如,设计截止频率为100Hz的低通滤波器,代码如下:fs = 1000;fc = 100;N = 100;b = fir1(N, fc/(fs/2), 'low');3. 频谱分析案例:计算功率谱密度功率谱密度是信号在频域上的能量分布。
在MATLAB中,可以使用pwelch函数计算功率谱密度。
例如,计算频率为100Hz的正弦信号的功率谱密度,代码如下:t = 0:0.001:1;f = 100;x = sin(2*pi*f*t);[Pxx, f] = pwelch(x, [], [], [], 1000);4. 时频分析案例:计算短时傅里叶变换短时傅里叶变换可以分析信号在时间和频率上的变化。
在MATLAB中,可以使用spectrogram函数计算短时傅里叶变换。
例如,计算频率为100Hz的正弦信号的短时傅里叶变换,代码如下:t = 0:0.001:1;f = 100;x = sin(2*pi*f*t);spectrogram(x, [], [], [], 1000, 'yaxis');5. 数字滤波器设计案例:设计巴特沃斯滤波器巴特沃斯滤波器是一种常用的数字滤波器,可以实现平滑滤波和带通滤波。
数字信号处理Matlab实现实例

数字信号处理Matlab 实现实例第1章离散时间信号与系统例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。
解 MATLAB程序如下:a=[-2 0 1 -1 3];b=[1 2 0 -1];c=conv(a,b);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n'); ylabel('幅度');图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。
例1-2 用MATLAB计算差分方程当输入序列为时的输出结果。
解 MATLAB程序如下:N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];k=0:1:N-1; y=filter(a,b,x);stem(k,y)xlabel('n');ylabel('幅度')图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。
例1-3 用MATLAB 计算例1-2差分方程所对应的系统函数的DTFT 。
解 例1-2差分方程所对应的系统函数为:1231230.80.440.360.02()10.70.450.6z z z H z z z z -------++=+--其DTFT 为23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωωωωω--------++=+--用MATLAB 计算的程序如下:k=256;num=[0.8 -0.44 0.36 0.02];den=[1 0.7 -0.45 -0.6];w=0:pi/k:pi;h=freqz(num,den,w);subplot(2,2,1);plot(w/pi,real(h));gridtitle('实部')xlabel('\omega/\pi');ylabel('幅度') subplot(2,2,2);plot(w/pi,imag(h));gridtitle('虚部')xlabel('\omega/\pi');ylabel('Amplitude') subplot(2,2,3);plot(w/pi,abs(h));gridtitle('幅度谱')xlabel('\omega/\pi');ylabel('幅值') subplot(2,2,4);plot(w/pi,angle(h));gridtitle('相位谱')xlabel('\omega/\pi');ylabel('弧度')第2章离散傅里叶变换及其快速算法例2-1对连续的单一频率周期信号按采样频率采样,截取长度N分别选N =20和N =16,观察其DFT结果的幅度谱。
使用MATLAB进行数字信号处理的实例介绍

使用MATLAB进行数字信号处理的实例介绍引言:数字信号处理(Digital Signal Processing, 简称DSP)是一门研究如何以数字形式对信号进行采样、分析和处理的学科。
随着数字技术的快速发展,MATLAB作为一种强大的工具,被广泛应用于数字信号处理的研究和实践中。
本文将通过一些实际例子,介绍如何使用MATLAB进行数字信号处理。
一、信号的采样与重构信号的采样与重构是数字信号处理的基础,它涉及到将连续时间信号转换为离散时间信号,并恢复出原始信号。
我们以音频信号为例,使用MATLAB进行信号采样与重构的处理。
1.1 采样:音频信号可以看作是时间上连续的波形,我们需要将其转换为离散形式。
在MATLAB中,可以使用"audioread"函数读取音频文件,并通过设定采样频率和采样位数,将连续的音频信号转换为离散形式。
1.2 重构:采样得到的离散信号需要恢复到连续形式,MATLAB中可以通过"audiowrite"函数将离散信号重新写入到音频文件,并设定采样频率和采样位数恢复出连续的音频信号。
二、傅里叶变换与频谱分析傅里叶变换是一种将信号从时域转换到频域的方法,它可以将信号分解成不同频率的正弦波成分。
频谱分析是数字信号处理中的重要方法,它可以帮助我们了解信号的频率成分和能量分布。
2.1 单频信号的傅里叶变换:我们以一个简单的单频信号为例,使用MATLAB进行傅里叶变换和频谱分析。
首先,我们可以通过构造一个正弦波信号,并设定频率、振幅和采样频率。
然后使用"fft"函数对信号进行傅里叶变换,得到频谱图。
2.2 音频信号的频谱分析:音频信号是复杂的多频信号,我们可以通过将其进行傅里叶变换,得到其频谱分析结果。
在MATLAB中,可以使用"fft"函数对音频信号进行傅里叶变换,并通过频谱图展示信号的频谱信息。
三、数字滤波器设计与应用数字滤波器是数字信号处理中的关键技术,可以帮助我们去除噪声、提取有效信息,满足不同的信号处理需求。
数字信号处理MATLAB实验

实验一熟悉MATLAB环境一、实验目的(1)熟悉MATLAB的主要操作命令。
(2)学会简单的矩阵输入和数据读写。
(3)掌握简单的绘图命令。
(4)用MATLAB编程并学会创建函数。
(5)观察离散系统的频率响应。
二、实验内容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉了MATLAB基本命令的基础上,完成以下实验。
上机实验内容:(1)数组的加、减、乘、除和乘方运算。
输入A=[1 2 3 4],B=[3 4 56],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。
(2)用MATLAB实现以下序列。
a)x(n)=0.8n 0≤n≤15b)x(n)=e(0.2+3j)n 0≤n≤15c)x(n)=3cos(0.125πn+0.2π)+2sin(0.25πn+0.1π) 0≤n≤15d)将c)中的x(n)扩展为以16为周期的函数x16(n)=x(n+16),绘出四个周期。
e)将c)中的x(n)扩展为以10为周期的函数x10(n)=x(n+10),绘出四个周期。
(3)x(n)=[1,-1,3,5],产生并绘出下列序列的样本。
a )x 1(n)=2x(n+2)-x(n-1)-2x(n)b )∑=-=51k 2)k n (nx (n) x(4)绘出下列时间函数的图形,对x 轴、y 轴以及图形上方均须加上适当的标注。
a) x(t)=sin(2πt) 0≤t ≤10s b) x(t)=cos(100πt)sin(πt) 0≤t ≤4s(5)编写函数stepshift(n0,n1,n2)实现u(n-n0),n1<n0<n2,绘出该函数的图形,起点为n1,终点为n2。
(6)给定一因果系统)0.9z 0.67z -1)/(1z 2(1H(z)-2-1-1+++=求出并绘制H(z)的幅频响应与相频响应。
(7)计算序列{8 -2 -1 2 3}和序列{2 3 -1 -3}的离散卷积,并作图表示卷积结果。
MATLAB 下的数字信号处理实现示例

MATLAB 下的数字信号处理实现示例附录一信号、系统和系统响应1、理想采样信号序列(1)首先产生信号x(n),0<=n<=50n=0:50; %定义序列的长度是50A=444.128; %设置信号有关的参数a=50*sqrt(2.0)*pi;T=0.001; %采样率w0=50*sqrt(2.0)*pi;x=A*exp(-a*n*T).*sin(w0*n*T); %pi 是MA TLAB 定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形subplot(3,1,1);stem(x); %绘制x(n)的图形title(‘理想采样信号序列’);(2 )绘制信号x(n)的幅度谱和相位谱k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘理想采样信号序列的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘理想采样信号序列的相位谱’)(3)改变参数为:A 1,α 0.4,Ω 2.0734,T 1n=0:50; %定义序列的长度是50A=1; %设置信号有关的参数a=0.4;T=1; %采样率w0=2.0734;x=A*exp(-a*n*T).*sin(w0*n*T); %pi 是MA TLAB 定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形subplot(3,1,1);stem(x); %绘制x(n)的图形title(‘理想采样信号序列’);k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘理想采样信号序列的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘理想采样信号序列的相位谱’)2、单位脉冲序列在MatLab 中,这一函数可以用zeros 函数实现:n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB 中数组下标从1 开始x(1)=1;close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘单位冲击信号的相位谱’)3、矩形序列n=1:50x=sign(sign(10-n)+1);close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/25)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘单位冲击信号的相位谱’)4、特定冲击串:x(n) δ(n) +2.5δ(n −1) +2.5δ(n −2) +δ(n −3)n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB 中数组下标从1 开始x(1)=1;x(2)=2.5;x(3)=2.5;x(4)=1;close all;subplot(3,1,1);stem(x);title(‘单位冲击信号序列’);k=-25:25;X=x*(exp(-j*pi/12.5)).^(n’*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(‘单位冲击信号的幅度谱’);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (‘单位冲击信号的相位谱’)+∞5、卷积计算:y (n) x(n) ∗h(n) ∑x(m)h(n −m)m −∞在MA TLAB 中。
《数字信号处理》Matlab实验

《数字信号处理》Matlab 实验一.离散信号的 FFT 分析1.用Matlab 编程上机练习。
已知:N=2^5。
这里Q=0.9+j0.3。
可以推导出 ,首先根据这个式子计算X(k)的理论值,然后计算输入序列x(n)的32个值,再利用基2时间抽选的FFT 算法,计算x(n)的DFT X(k),与X(k)的理论值比较(要求计算结果最少6位有效数字)。
解:函数代码:>> function xn()>> format long>> q=0.9+0.3*i;>> wn=exp(-2*pi*i/32);>> xk=(1-q^32)./(1-q*wn.^[0:31])>>xn=q.^[0:31]>> xk1=fft(xn,32)>>diff=xk-xk1具体执行情况:>> function xn()format longq=0.9+0.3*i;wn=exp(-2*pi*i/32);xk=(1-q^32)./(1-q*wn.^[0:31])xk =Columns 1 through 20.5698 + 3.3840i 2.8369 + 8.8597iColumns 3 through 49.3189 - 9.8673i 1.2052 - 3.5439iColumns 5 through 61.8846 -2.0941i 0.8299 - 1.2413i11,011)()()(k k 10nk 10-=--===∑∑-=-=N k QW Q QW W n x k X N NnN N n N N n ,0.9214 - 1.0753i 0.3150 - 0.0644i Columns 9 through 100.9240 - 0.8060i 0.4202 - 0.2158i Columns 11 through 120.8513 - 0.6357i 0.5040 - 0.1701i Columns 13 through 140.6217 - 0.6931i 0.2441 - 0.8978i Columns 15 through 160.9454 - 0.2800i 0.7139 - 0.3158i Columns 17 through 180.6723 - 0.6496i 0.0263 + 0.5093i Columns 19 through 200.5671 + 0.6914i 0.3173 + 0.9841i Columns 21 through 220.8929 + 0.7792i 0.4066 + 0.8452i Columns 23 through 240.5847 + 0.9017i 0.9129 + 0.9283i Columns 25 through 260.0573 + 0.5531i 0.4219 + 0.9562i Columns 27 through 280.3298 + 0.3143i 0.4513 + 0.2638i0.7214 + 0.1879i 0.0933 + 1.7793iColumns 31 through 320.9483 + 1.9802i 0.4932 + 2.6347i>> xn=q.^[0:31]xn =Columns 1 through 21.0000 0.0000 + 0.0000i Columns 3 through 40.0000 + 0.0000i 0.0000 + 0.0000iColumns 5 through 60.0000 + 0.0000i -0.0000 + 0.0000iColumns 7 through 8-0.0000 + 0.0000i -0.0000 + 0.0000iColumns 9 through 10-0.0000 + 0.0000i -0.0000 + 0.0000iColumns 11 through 12-0.0000 - 0.0000i -0.0000 - 0.0000iColumns 13 through 14-0.2000 - 0.4000i -0.3600 - 0.5200iColumns 15 through 16-0.9680 - 0.1760i 0.4816 - 0.3488i0.2381 - 0.2695i 0.2951 - 0.1711i Columns 19 through 200.1169 - 0.4655i 0.4449 - 0.9838i Columns 21 through 220.6955 + 0.2480i 0.5516 + 0.4319i Columns 23 through 240.3669 + 0.5542i 0.9639 + 0.2088i Columns 25 through 260.3049 + 0.9771i -0.5187 + 0.4709i Columns 27 through 28-0.6081 + 0.2682i -0.1278 + 0.5589i Columns 29 through 30-0.4827 + 0.0647i -0.6538 + 0.5134i Columns 31 through 32-0.8425 - 0.4341i -0.1280 - 0.1434i >> xk1=fft(xn,32)xk1 =Columns 1 through 20.5698 + 3.3839i 2.8366 + 8.8599i Columns 3 through 49.3182 - 9.8692i 1.2051 - 3.5439i1.8845 -2.0942i 0.8298 - 1.2413i Columns 7 through 80.9213 - 1.0754i 0.3150 - 0.0645i Columns 9 through 100.9240 - 0.8060i 0.4202 - 0.2158i Columns 11 through 120.8514 - 0.6356i 0.5040 - 0.1701i Columns 13 through 140.6217 - 0.6931i 0.2441 - 0.8977i Columns 15 through 160.9454 - 0.2800i 0.7139 - 0.3159i Columns 17 through 180.6723 - 0.6496i 0.0263 + 0.5093i Columns 19 through 200.5671 + 0.6913i 0.3172 + 0.9840i Columns 21 through 220.8929 + 0.7792i 0.4065 + 0.8452i Columns 23 through 240.5846 + 0.9016i 0.9129 + 0.9283i Columns 25 through 260.0572 + 0.5531i 0.4219 + 0.9563i0.3297 + 0.3144i 0.4512 + 0.2638iColumns 29 through 300.7213 + 0.1879i 0.0932 + 1.7793iColumns 31 through 320.9480 + 1.9802i 0.4928 + 2.6347i>> diff=xk-xk1diff =1.0e-013 *Columns 1 through 20.4625 + 0.8501i 0.9504 - 0.4003iColumns 3 through 40.6010 + 0.4028i 0.4752 + 0.7001iColumns 5 through 60.5502 + 0.8501i 0.4625 + 0.8501iColumns 7 through 80.7751 + 0.9250i 0 + 0.3875i Columns 9 through 100.7751 - 0.4625i 0.3126 - 0.4625iColumns 11 through 12-0.4625 - 0.3126i 0.4625 + 0.3875iColumns 13 through 14-0.9250 + 0.6938i 0.3875 - 0.0781iColumns 15 through 160.3875 - 0.6156i 0 + 0.9641iColumns 17 through 180.9250 - 0.7598i -0.4625 - 0.0422iColumns 19 through 200.4625 + 0.1172i 0.4625 + 0.3094iColumns 21 through 220.9250 + 0.4625i 0.9250 + 0.2313iColumns 23 through 240.3875 + 0.1563i 0.3875 - 0.2313iColumns 25 through 260.8501 -0.9250 - 0.4625iColumns 27 through 280.0127 - 0.7751i 0.7001 - 0.9250iColumns 29 through 300.1626 0.7814 - 0.9250iColumns 31 through 320.4816 + 0.9250i 0.7255 - 0.8501i由以上结果可知,由基2时间抽选的FFT算法所得到的DFT结果与利用公式法所得的理论值稍有偏差,但误差较小,从结果可以看出大概在小数点第15位才开始出现误差,故而用计算机FFT处理数据在精度上是可以接受的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的互相关函数
。
解 用 MATLAB 计算程序如下: x=[1 3 -1 1 2 3 3 1]; y=[2 1 -1 1 2 0 -1 3]; k=length(x); xk=fft(x,2*k);
yk=fft(y,2*k); rm=real(ifft(conj(xk).*yk)); rm=[rm(k+2:2*k) rm(1:k)]; m=(-k+1):(k-1);
数字信号处理 Matlab 实现实例
第1章 离散时间信号与系统
例 1-1 用 MATLAB 计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解 MATLAB 程序如下:
a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c);
程序中第一个 butter 的边界频率 2π×1000,为脉冲响应不变法原型低通滤波器的边 界频率;第二个 butter 的边界频率 2/T=2/0.00025,为双线性变换法原型低通滤波器的边 界频率.图 3.1 给出了这两种设计方法所得到的频响,虚线为脉冲响应不变法的结果;实线 为双线性变换法的结果。脉冲响应不变法由于混叠效应,使得过渡带和阻带的衰减特性变差, 并且不存在传输零点。同时,也看到双线性变换法,在 z=-1 即ω=π或 f=2000Hz 处有一个 三阶传输零点,这个三阶零点正是模拟滤波器在Ω=∞处的三阶传输零点通过映射形成的。
例 3-2 设计一数字高通滤波器,它的通带为 400~500Hz,通带内容许有 0.5dB 的波 动,阻带内衰减在小于 317Hz 的频带内至少为 19dB,采样频率为 1,000Hz。
wc=2*1000*tan(2*pi*400/(2*1000)); wt=2*1000*tan(2*pi*317/(2*1000)); [N,wn]=cheb1ord(wc,wt,0.5,19,'s'); [B,A]=cheby1(N,0.5,wn,'high','s'); [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/pi*500; plot(f,20*log10(abs(h))); axis([0,500,-80,10]); grid; xlabel('') ylabel('幅度/dB') 图 3.2 给出了 MATLAB 计算的结果,可以看到模拟滤波器在Ω=∞处的三阶零点通过高通变换 后出现在ω=0(z=1)处,这正是高通滤波器所希望得到的。
w1=95/500; w2=105/500; [B,A]=butter(1,[w1, w2],'stop'); [h,w]=freqz(B,A); f=w/pi*500; plot(f,20*log10(abs(h)));
axis([50,150,-30,10]); grid; xlabel('频率/Hz') ylabel('幅度/dB')
y(n)受到噪声的干扰。
第 3 章 无限长单位脉冲响应(IIR)滤波器的设计方法
例 3-1 设采样周期 T=250μs(采样频率 fs =4kHz),用脉冲响应不变法和双线性变换 法设计一个三阶巴特沃兹滤波器,其 3dB 边界频率为 fc =1kHz。
[B,A]=butter(3,2*pi*1000,'s'); [num1,den1]=impinvar(B,A,4000); [h1,w]=freqz(num1,den1); [B,A]=butter(3,2/0.00025,'s'); [num2,den2]=bilinear(B,A,4000); [h2,w]=freqz(num2,den2); f=w/pi*2000; plot(f,abs(h1),'-.',f,abs(h2),'-'); grid; xlabel('频率/Hz ') ylabel('幅值/dB')
k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前 41 个样点的输出,即该系统的单位脉冲响应。
例 1-3 用 MATLAB 计算例 1-2 差分方程
所对应的系统函数的 DTFT。 解 例 1-2 差分方程所对应的系统函数为:
wn=kaiser(30,4.55); nn=[0:1:29]; alfa=(30-1)/2; hd=sin(0.4*pi*(nn-alfa))./(pi*(nn-alfa)); h=hd.*wn'; [h1,w1]=freqz(h,1); plot(w1/pi,20*log10(abs(h1))); axis([0,1,-80,10]); grid; xlabel('归一化频率/') ylabel('幅度/dB')
xlabel('\omega/\pi');ylabel('弧度')
第2章 离散傅里叶变换及其快速算法
例 2-1
解 此时离散序列
,即 k=8里叶变换 DFT,程序如下: k=8; n1=[0:1:19]; xa1=sin(2*pi*n1/k); subplot(2,2,1) plot(n1,xa1) xlabel('t/T');ylabel('x(n)'); xk1=fft(xa1);xk1=abs(xk1); subplot(2,2,2) stem(n1,xk1) xlabel('k');ylabel('X(k)'); n2=[0:1:15]; xa2=sin(2*pi*n2/k); subplot(2,2,3) plot(n2,xa2) xlabel('t/T');ylabel('x(n)'); xk2=fft(xa2);xk2=abs(xk2); subplot(2,2,4) stem(n2,xk2) xlabel('k');ylabel('X(k)');
xlabel('n'); ylabel('幅度');
图 1.1 给出了卷积结果的图形,求得的结果存放在数组 c 中为:{-2 -4 1 3 1 5 1 -3}。
例 1-2 用 MATLAB 计算差分方程
当输入序列为
时的输出结果
。
解 MATLAB 程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)];
计算结果示于图 2.1,(a)和(b)分别是 N=20 时的截取信号和 DFT 结果,由于截取了两 个半周期,频谱出现泄漏;(c) 和(d) 分别是 N=16 时的截取信号和 DFT 结果,由于截取了 两个整周期,得到单一谱线的频谱。上述频谱的误差主要是由于时域中对信号的非整周期截 断产生的频谱泄漏。
stem(m,rm) xlabel('m'); ylabel('幅度'); 其计算结果如图 2.2 所示。
例 2-3 计算两个序列的的互相关函数,其中 x(n)={2 3 5 2 1 –1 0 0 12 3 5 3 0 –1 –2 0 1 2} ; y(n)=x(n-4)+e(n), e(n)为一随机噪声,在 MATLAB 中可以用随机函数 rand 产生 解 用 MATLAB 计算程序如下: x=[2 3 5 2 1 -1 0 0 12 3 5 3 0 -1 -2 0 1 2]; y=[0 0 0 0 2 3 5 2 1 -1 0 0 12 3 5 3 0 -1 -2 0 1 2]; k=length(y); e=rand(1,k)-0.5; y=y+e; xk=fft(x,2*k); yk=fft(y,2*k); rm=real(ifft(conj(xk).*yk)); rm=[rm(k+2:2*k) rm(1:k)]; m=(-k+1):(k-1); stem(m,rm) xlabel('m'); ylabel('幅度'); 计算结果如图 2.3(a),我们看到最大值出现在 m=4 处,正好是 y(n)对于 x(n)的延迟。 2. 3(b)是 x(n)的自相关函数,他和 y(n)的区别除时间位置外,形状也略不同,这是由于
图 3.3 给出了 MATLAB 计算的结果,可以看出数字滤波器将无穷远点的二阶零点映射为 z=±1 的二阶零点,数字带通滤波器的极点数是模拟低通滤波器的极点数的两倍。
例 3-4 一数字滤波器采样频率 fs = 1kHz,要求滤除 100Hz 的干扰,其3dB 的边界频 率为 95Hz 和 105Hz,原型归一化低通滤波器为
例 3-3 设计一巴特沃兹带通滤波器,其3dB 边界频率分别为 f2=110kHz 和 f1=90kHz, 在阻带 f3 = 120kHz 处的最小衰减大于10dB,采样频率 fs=400kHz。
w1=2*400*tan(2*pi*90/(2*400)); w2=2*400*tan(2*pi*110/(2*400)); wr=2*400*tan(2*pi*120/(2*400)); [N,wn]=buttord([w1 w2],[0 wr],3,10,'s'); [B,A]=butter(N,wn,'s'); [num,den]=bilinear(B,A,400); [h,w]=freqz(num,den); f=w/pi*200; plot(f,20*log10(abs(h))); axis([40,160,-30,10]); grid; xlabel('频率/kHz') ylabel('幅度/dB')