实验七-比例求和运算及微分运算电路

合集下载

集成运算放大器的基本运算电路

集成运算放大器的基本运算电路

ui2 u
u i3
u
0
R1
R2
R3
2.加减运算电路
ui1
R1
Rf
ui2
R2
N
-∞
ui3
R 3
P

R
ui4
4
R'
当ui1、ui2短路时 当Ui1、Ui2、Ui3、Ui4共同作用时
若又满足Rf =R1=R2=R3=R4时则
利用叠加定理求uo与ui1、ui2、 ui3各ui4之间的关系
uo
当ui3、ui4短路时
(ui1 ui2 ui3 )
Uo (ui1 ui2 ui3 )
上式中比例系数为-1,实现了加法运算。
2)同相求和运算电路
R'
ui1 i1
R 1
ui2 i2
R2
ui3 i3
R 3
i f
Rf
N

u-

P u+ +
R1//R2//R3=R′//Rf
根据 “虚断”概念
uo
i1+i2+i3=0
ui1 u
2.一般单限比较器
图4-22所示的电路是一般单限比较器. UREF为外加参考电压。 集成运放的反相输入端接信号ui,同相输入端接参考电压UREF。
由于Aod→∞,所以当U﹣<U+时,ui<UREF时,受电源电压的 限制,uo只能为正极限值UOM,即UOH=﹣UOM; 反之,当U﹣>U+时,uo为负极限值,即UOL=﹣UOM。 其传输入特性如图4-22(b)实线所示。
I1
U i1 R1
因虚地, u﹢=u﹣=
,
I2
Ui2 R2

多级运算电路实验报告(3篇)

多级运算电路实验报告(3篇)

第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。

2. 掌握多级运算电路的设计方法。

3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。

4. 培养实验操作能力和数据分析能力。

二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。

本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。

4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。

三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。

2. 示波器:用于观察实验过程中信号的变化。

3. 数字万用表:用于测量电路的电压、电流等参数。

4. 电阻、电容、二极管、运放等电子元器件。

5. 电路板、导线、焊接工具等。

四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。

2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。

3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。

4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。

5. 分析实验数据,验证实验结果是否符合理论计算。

五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

模电实验07_比例、求和运算电路实验

模电实验07_比例、求和运算电路实验

6脚OUT:放大器输出端
4 脚 V-- :负电源入端( -12V )
7脚V+:正电源入(+12V)
中。
相 对
6 实验报告要求
准备报告: 写出电路的具体设计过程。 总结报告: 根据实验结果,分析产生误差的原因。
VDD -12V VDD RF 40kΩ
4
2
U1 1 Uo
Ui3
4
R3
2
10kΩ 5 Ui2 6
R2
3
6
20kΩ R1 20kΩ 3 R4 40kΩ
71Βιβλιοθήκη 5741Ui1
VCC VCC 12V
0
比例求和设计电路
μΑ741器件的引脚排列和说明
• 引脚说明:
2脚IN--:反相输入端
3脚IN+:同相输入端
(2)设计一个能实现下列运算关系的电路: UO=-10UI1+5UI2 UI1=UI2=0.1~1V
3 参考电路
UO=2UI1+2UI2-4UI3
UO=-10UI1+5UI2
4.实验内容及要求
① 根据设计题目要求,选定电路,确定集成 运算放大器型号,并进行参数设计 ② 按照设计方案组装电路 ③ 在设计题目所给输入信号范围内,任选几 组信号输入,测出相应输出电压 uo,将实 测值与理论值作比较,计算误差。 注意:实际上输入可以是任意波形,由于实 验室条件所限,本实验输入信号选用直流信 号。
1.实验目的
掌握比例、求和电路的设计方法。通过实验,了解影 响比例、求和运算精度的因素,进一步熟悉电路的特 点和功能。
2.实验题目
(1)用一个运放设计一个数字运算电路,实
现下列运算关系: UO=2UI1+2UI2-4UI3 已知条件如下: UI1=50~100mV UI2=50~200mV UI3=20~100mV

实验七比例求和运算电路

实验七比例求和运算电路

03 实验步骤与操作
搭建比例运算电路
选择合适的运算放大器
搭建电路
根据实验需求,选择具有适当性能指 标的运算放大器,如低失真、低噪声 等。
按照设计好的电路图,在面包板上搭 建比例运算电路,注意元件布局和走 线。
设计比例运算电路
根据所需放大倍数,设计合适的比例 运算电路,包括电阻、电容等元件的 选型和取值。
搭建求和运算电路
设计求和运算电路
根据实验需求,设计能够实现两 个或多个输入信号求和的运算电
路。
选择合适的元件
根据设计需求,选择合适的电阻、 电容等元件,实现信号的加权和求 和。
搭建电路
在面包板上按照设计好的电路图搭 建求和运算电路,确保连接正确且 紧固。
组合比例求和运算电路
连接比例运算电路和求和运算电路
实验意义及价值
拓展电子技术应用领域
比例求和运算电路作为一种基本的模拟电路,在电子技术应 用领域具有广泛的应用前景,如信号处理、自动控制等。
促进电子技术教学发展
通过本次实验,可以帮助学生深入理解和掌握模拟电路的基 本原理和设计方法,提高其实践能力和创新意识。
对未来研究的建议
深入研究高性能比例求和运算电路
实验七比例求和运算电路
目 录
• 引言 • 比例求和运算电路基本原理 • 实验步骤与操作 • 实验数据分析与讨论 • 实验结论与总结
01 引言
实验目的
掌握比例求和运算电 路的基本原理和实现 方法。
通过实验验证理论分 析和电路设计的正确 性。
学会使用运算放大器 构建比例求和电路。
实验背景
比例求和运算电路是模拟电子技术中的一种基本电路,广泛应用于信号处理、自动 控制等领域。

《电工学》比例求和放大电路实验

《电工学》比例求和放大电路实验

比例求和放大电路实验一、实验目的1、掌握用集成运算放大器组成比例、求和电路的特点及性能;2、学会上述电路的测试和分析方法;3、掌握各电路的工作方法。

二、实验仪器与设备三、实验原理实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。

运算放大器是具有高增益、高输入阻抗的直接耦合放大器。

它外加反馈网络后,可实现各种不同的电路功能。

如果反馈网络为线形电路,运算放大器可实现加、减、微分、积分运算;如果反馈网络为非线形电路,则可实现对数、乘法、除法等运算;除此之外还可组成各种波形发生器,如正弦波、三角波、脉冲发生器等。

1、电压跟随器图2.7.1 电压跟随器图 图2.7.2 反相比例反大器 电路如图2.7.1所示,设组件LM324为理想器件时,则o i v v =即输出电压跟随输入电压的变化。

2、反相比例运算在图2.7.2所示电路中,设组件LM324为理想器件时,则fo i 1R v v R =-其输入电阻if 1R R ≈,2f11R R R R =≈。

由上式可知,输出与输入反相,选择不同的电阻比值,就改变了运算放大器的闭环增益vf A 。

在选择电路参数时应考虑:(1)根据增益,确定f R 与1R 的比值,即vf f 1/A R R =-(2)具体确定f R 与1R 的值若f R 太大,则1R 也大,这样容易引起较大的失调温漂;若f R 太小,则1R 也小,输入电阻i R 也小,,不能满足高输入阻抗的要求。

一般取f R 为几十千欧~几百千欧。

若对放大器的输入电阻已有要求,则可根据i 1R R =,先定1R ,再求f R 。

(3)为减小偏置电流和温漂的影响,一般取2f1R R R =,由于反相比例运算电路属于电压负反馈,其输入、输出阻抗均较低。

3、同相比例放大器在图2.7.3所示电路中,设组件LM324为理想器件时,则f o i 11R v v R ⎛⎫=+ ⎪⎝⎭由上式可知,输出与输入同相,选择不同的电阻比值,就改变了运算放大器的闭环增益vf A 。

电子技术实验课件-比例求和运算电路

电子技术实验课件-比例求和运算电路

实验结果分析
1
实验数据记录
记录实验过程中得到的数据,包括输入
计算结果总结
2
信号、输出信号和电流电压数值。
根据实验数据进行计算,并对比例求和
电路的性能进行评估和总结。
3
比例求和电路应用案例
介绍比例求和电路在实际应用中的案例, 包括信号处理、自动控制等领域。
实验总结
1 实验感想和收获
分享您在实验过程中的感想和对比例求和电路的理解。
电子技术实验课件-比例求和运 算电路
在本课程中,我们将介绍比例求和运算电路的原理、作用和应用。通过实验 过程和实验结果分析,您将深入了解此电路的设计和调试方法,并了解其在 实际应用中的效果。
引言
比例求和运算电路是一种重要的电子电路,它能够对输入信号进行线性变换 和求和运算。本节将介绍比例求和运算电路的定义、作用和应用领域。
理论知识
1
比例求和电路原理
比例求和电路基于电压与电流之间的线性关系,通过合理的配置电阻和电流源实现信号的比 例变换和求和运算。
2
比例求和电路公式
பைடு நூலகம்
比例求和电路的公式和计算方法将在本节详细介绍,将帮助您更好地理解电路的工作原理。
实验过程
实验器材
收集所需实验器材,包括电阻、电流源、示波器等。
实验步骤
根据电路图设计、元器件连接和电路调试进行实验。
2 实验中遇到的问题及解决方法
描述在实验中遇到的问题,并分享您是如何解决它们的。
3 实验中需要注意的事项
提醒实验者在进行比例求和运算电路实验时需要注意的事项和注意事项。
参考文献
相关电子技术实验教材
推荐一些关于比例求和电路的电子技术实验教 材,以供进一步学习和参考。

比例求和积分微分电路

比例求和积分微分电路

比例求和积分微分电路 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】报告课程名称:模拟电路实验名称:比例、求和、积分、微分电路学院:信息工程学院专业:班级: 3组号:指导教师:吴迪报告人:李子茜学号: 16实验时间: 2015 年 10 月 9 日星期五实验地点 N102实验报告提交时间: 2015 年 10 月 21 日一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能;2、掌握用运算放大器组成积分微分电路;3、学会上述电路的测试和分析方法二、实验仪器1、数字万用表2、双踪示波器3、信号发生器三、预习要求(1)复习比例、求和、积分微分电路的基本工作原理;(2)估算所有要填入表格的理论值;(3)拟定实验步骤,做好记录表格。

对于理想运放,当其工作在线性状态时,若U+≈U-,则这一特性称为理想运放输入端的“虚短路”特性;若I+=I-≈0,则这一特性称为理想运放输入端的“虚开路”特性。

四、实验内容1.熟悉电压跟随电路运算放大器UA741上的引脚排列如图5-5所示。

1和5为偏置(调零端),2为反向输入端,3为正向输入端,4为-Vcc,6为输出端,7接+Vcc,8为空脚。

电压跟随实验电路如图5-6所示。

按表5-18内容实验并测量记录。

注意:集成运放实验板上的+12V、-12V和GND孔必须与实验箱上电源部分的+12V、-12V和GND 孔连接,以保证集成运放的正常供电。

图5-5 UA741引脚排列图图5-6 电压跟随电路2.熟悉反相比例放大器反相比例放大电路的实验电路如图5-7,已知Uo=-RF*Ui/R1,按表5-19的实验内容测量并测量记录。

表5-7 反相比例放大电路3.熟悉同相比例放大电路同相比例放大电路的实验电路如图5-8所示。

U0=(1+R F/R1)U i,按表5-20的实验内容测量并记录。

图5-8 同相比例放大电路表5-20 同相比例放大电路测试表实验电路如图5-9所示。

模电实验报告 比例求和运算及微积分电路

模电实验报告  比例求和运算及微积分电路

实验六 比例求和运算及微积分电路一、实验目的1、掌握集成运算放大器的特点,性能及使用方法。

2、掌握比例求和电路的测试及分析方法。

3、掌握各电路的功能工作原理和计算方法。

二、实验仪器 1、数字万用表 2、信号发生器 3、示波器4、交流毫伏表5、直流稳压电源 三、实验内容 1、电压跟随器验证电压跟随器的电压跟随特性。

(此电路经常用于多级放大器的第一级,起阻抗匹配作用)经测量Ui=Uo=14.142mV2、反相比例电路验证反相比例运算电路的输入与输出的关系为:i ifo U R R U -= 电路图如下:经验证Uo=10Ui=141.406mV3、同相比例放大器验证同相比例放大电路输入与输出之间的关系:Ui R Rf U o ⎪⎪⎭⎫⎝⎛+=11 电路图如下:测得Ui=14.142mV Uo=155.546mV Uo=101Ui4、反相求和电路验证反相求和电路的输入与输出之间的关系式:)2211(U Ui R Rf Ui R Rf o +-=电路图如下图所示:由图可知:Ui1=6.955mV, Ui2=2.303mV, Uo=92.564mV验证92.564mV = -【(R3/R4)6.955+(R3/R1)2.303】mV5、加减运算放大电路验证其输入输出之间的关系式:)12(1Ui Ui R RfUo -=电路图如下图所示:实验测得:Ui1=6.978mV Ui2=2.318mV Uo=46.655mV 可验证Uo=10(6.978-2.318)6、积分电路连接积分电路,检查无误之后接通12±V 直流电源。

①取Ui=-1V ,用示波器观察波形Uo ,并且测量运放输出电压的正向饱和电压值。

②取Ui=1V ,测量运放的负向饱和电压值③将电路中的积分电容改为0.1微法,Ui 分别输入1KHz 幅值为2V 的方波和正弦信号,观察Ui 和Uo 的大小及相位关系,并记录波形,计算电路的有效积分时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七比例求和运算及微分运算电路
一.实验目的
1.掌握集成运算放大器的特点,性能及使用方法。

2.掌握比例求和电路,微积分电路的测试和分析方法。

3.掌握各电路的工作原理和理论计算方法。

二.实验仪器
1.GOS-620模拟示波器
2.GFG-8250A信号发生器
3.台式三位半数字万用表
4.指针式交流毫伏表
5.SPD3303C直流电源
三.实验内容及步骤
1.搭接电压跟随器并验证其跟随特性,测量2-3组数据进行验证。

Ui(V) 6.0mV 7.0mV 8.0mV Uo(V) 6.0mV 7.0mV 8.0mV
2.测量反向比例电路的比例系数,测量其计算值与理论值进行比较
理论值:Uo=-(R F/Ri)*Ui,ui=7mV,uo=-70mV
实际值: uo=7mV,ui=69mV
3.测量同相比例放大器的比例系数及上限截止频率
理论值:uo=-(1+RF/Ri)*ui,ui=6.9mV,uo=75.9mV
实际值:ui=6.9mV,uo=76mV
4.测量反相求和电路的求和特性,注意多路输入信号可通过电阻分压法获取
仿真值如下图所示,
Ui1=3.185mV,Ui2=1.706mV,Uo=48.899mV,
满足输入与输出运算关系:
Uo=-[(RF /R1)*Ui1+( RF /R2)*Ui2]
5.验证双端输入求和的运算关系
6.积分电路
如图所示连接积分运算电路,检查无误后接通±12V直流电源
①取ui=-1V,用示波器观察波形uo,并测量运放输出电压值的正向饱和电压值
正向饱和电压值为11V
②取ui=1V,测量运放的负向饱和电压值。

注意±1V的信号源可用1Hz交流信号代替
反向饱和电压值为-11V
③将电路中的积分电容改为0.1uF,ui分别输入1kHz幅值为2V的方波和正弦波信号,
观察ui和uo的大小及相位关系并记录波形,计算电路的有效积分时间。

Ui=1.414V,Uo=222.157mV
Ui=2V,Uo=288.8mV
④改变电路的输入信号的频率,观察ui和uo的相位,幅值关系。

7.微分电路
实验电路如图所示
①输入正弦波信号,f=500Hz,有效值为1V,用示波器观察ui和uo的波形及相位,并
测量输出电压值,记录数据和波形图。

②改变正弦波频率(20Hz-40Hz),观察ui和uo的相位,幅值变化情况并记录。

随着正弦波频率增大,ui和uo的相位不发生改变,uo幅值逐渐增大。

③输入方波,f=200Hz,U=±5V,用示波器观察uo波形,并重复上述实验
④输入三角波,f=200Hz,U=±2V, 用示波器观察uo波形,并重复上述实验
8.积分-微分电路
实验电路如图所示
①输入f=200Hz,U=±6V的方波信号,用示波器观察ui和uo的波形并记录
②将f改为500Hz, 重复上述实验。

相关文档
最新文档