反相求和运算电路

合集下载

6.1基本运算电路

6.1基本运算电路

1
t
(U
0.1m s
I
)dt
uO
(0.1ms)
5
(
t
0.1ms)
5
uo
(0.3
ms)
[
5 0.1ms
(0.3ms
0.1ms)ຫໍສະໝຸດ 5]V5V
正峰值未达运放的正饱和电压10V,所以仍正常线性积分.
例6.1.3 积分电路及输入波形如下,运放最大输出电压为10V, t =0 时电容电压为零,试画出输出电压波形。
二、变跨导模拟乘法器的基本工作原理
用压控电流源代 替了差分放大电 路中的恒流源。
二、变跨导模拟乘法器的基本工作原理
当 uY >> uBE3 时,iC3≈uY/RE
V1、V2管的跨导
gm
I E1 UT
iC3 2U T
uY
2REU T
uO
β
RC rbe
uX
gm RCuX
KuX uY
K RC
当rbIeC1、rbI'uCe Y2较有小限/时制g,m:必须为正且应较2R大EU。T
6.1.2 加减运算电路
一、求和运算电路
1. 反相求和运算电路
平衡电阻
R3 =R1 // R2 // RF
电路特点: 输入信号均加至运放反相端
分析:
根据“虚短”“虚断”,可得
un up 0
if i1 + i2
故得
uo ui1 ui2 RF R1 R2
uo
RF
(
ui1 R1
ui2 R2
)
优点:调节方便。
特点:1. 信号加至反相端,反相放大或缩小电压信号。
2. un up 0,运放输入端虚地。 uic 0 ,故对 KCMR 的要求低。这两点也是所有反相运算电路的特点。

加法运算和减法运算电路

加法运算和减法运算电路

=8V
12
例:由三运放放大器组成的温度测量电路。
E=+5V
R
R
R
Rt
+ A1 +
ui
_
+ A2 +
R R1 RW R R1
R2
+ A3 +
uo
R2
Rt :热敏电阻
集成化:仪表放大器
13
E=+5V
R
R
R
Rt
+ A1 +
ui _
+ A2 +
R R1 RW R R1
R2
+ A3 +
uo
R2
Rt f (TC)
( RP2 // R RP1 RP 2 //
R ui1
RP
RP1 // R 2 RP1 //
R
ui
2
)
(R1 Rf )Rf R1 R f
( RP1
//
RP 2
//
R)(
ui1 RP1
ui 2 ) RP 2
将RP= RN的条件代入可得:
uo
Rf
( ui1 RP1
ui 2 RP 2
)
在RP1=
RP2
ui1
可以变为:
uo ui2 ui1
反相输入结构的减法电路,由于出现虚地,放大电路没
有共模信号,故允许 ui1 、ui2 的共模电压范围较大,且输
入阻抗较低。在电路中,为减小温漂提高运算精度,同相端
须加接平衡电阻。
4
6.2.2 减法运算电路
1、差动减法器
由Ui1产生的输出电压为:
uo
Rf R1

求和运算电路

求和运算电路

Rf R1
uI1
Rf R2
uI2
若R1= R2 =Rf,则上式与差动比例运算电路的输出相同。 该电路的参数设计相对独立,可以通过Rf 、R1、R2方便的调 整增益。
第8章 运算放大器和模拟乘法器线性应用电路
2010.02
8.82..31.3反同相相输比入例比求例和运电算路电路
在同相比例运算电路的基础上,增加一个输入支路,就 构成了同相输入求和电路,如图8.2.3所示。
R
R
uI1
A1
R1 iI1 if Rf
R'2
R2 iI2
u I2
A2 uO
ห้องสมุดไป่ตู้
R'
图8.3.2 用反相输入求和电路实现的减法运算电路
第8章 运算放大器和模拟乘法器线性应用电路
2010.02
8.2.1 反相输入比R 例运算电路
R
uI1
A1
R1 iI1 if Rf
R'2
R2 iI2
u I2
A2 uO
R'
uO
图8.3.1 反相求和运算电路
uo (ui1 ui2 )
第8章 运算放大器和模拟乘法器线性应用电路
2010.02
8.82..31.2 反用相反输相入输比入例比运例算求电和路电路实现减法运算
图8.2.4所示的差分比例运算电路实现减法运算时,参数 配置有一定困难,实际中常用图8.3.2所示的电路来完成减法 运算。
R
Rf
uI1
R1
uo
uI2
R2
R'
RL
如果求出同相输入 端的电压,则可运用同 相比例运算的结论。因 运放具有虚断的特性, 对运放同相输入端的电 压可用叠加原理求得。

电子技术基础(第二版)前三章习题答案

电子技术基础(第二版)前三章习题答案

第一章1.1 能否将1.5V 的干电池以正向接法接到二极管两端?为什么?解:不能。

因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V 时,管子会因电流过大而烧坏。

1.2已知稳压管的稳压值U Z =6V ,稳定电流的最小值I Zmin =5mA 。

求图T1.4所示电路中U O1和U O2各为多少伏。

解:U O1=6V ,U O2=5V 。

1.3写出图T1.3所示各电路的输出电压值,设二极管导通电压U D =0.7V 。

(该题与书上略有不同)解:U O1≈1.3V ,U O2=0,U O3≈-1.3V ,U O4≈2V ,U O5≈1.3V ,U O6≈-2V 。

1.5 电路如图P1.5(a )所示,其输入电压u I1和u I2的波形如图(b )所示,二极管导通电压U D =0.7V 。

试画出输出电压u O 的波形,并标出幅值(该题与书上数据不同)解:u O 的波形如解图P1.5所示。

解图P1.51.9电路如图T1.9所示,V CC =15V ,β=100,U BE =0.7V 。

试问: (1)R b =50k Ω时,u O =? (2)若T 临界饱和,则R b ≈? 解:(1)R b =50k Ω时,基极电流、集电极电流和管压降分别为26bBEBB B =-=R U V I μAV2mA 6.2 C C CC CE B C =-===R I V U I I β所以输出电压U O =U CE =2V 。

1.11电路如图P1.11所示,试问β大于多少时晶体管饱和? 解:取U CES =U BE ,若管子饱和,则Cb C BECC b BE CC R R R U V R U V ββ=-=-⋅所以,100Cb=≥R R β时,管子饱和。

图1.11 1.12 分别判断图P1.12所示各电路中晶体管是否有可能工作在放大状态第二章2.1试分析图T2.2所示各电路是否能够放大正弦交流信号,简述理由。

运放电路的分析方法

运放电路的分析方法
信息加密包括:(1)数据传输加密。目的是对 传输中的数据流加密,常用的方针有线路加密 和端点加密两种。前者是对保密信息通过各线 路采用不同的加密密钥提供安全保护,是保护 网络节点之间的链路信息安全。后者则指信息 在发送者端对信息加密处理,并封装成 T C P / IP 数据包,成为一种不可识别的数据进行传输, 当这些信息到达目的地址后,再按照密钥重组、 解密,成为可读数据。(2)数据存储加密。目是保 护在存储介质上的数据安全,可分为密文存储 和存取控制两种。前者一般是通过加密算法转 换、附加密码、加密模块等方法实现;后者则是 对用户资格、格限加以审查和限制,防止非法用 户存取数据或合法用户越权存取数据。(3)数据完 整性分析。完整性分析主要关注某个文件或对 象是否被更改,这经常包括文件和目录的内容 及属性,它在发现被更改的、被特洛伊化的应用 程序方面特别有效。只要是成功的攻击导致了 文件或其它对象的任何改变,它都能够发现。缺 点是一般以批处理方式实现,不用于实时响应。
U I= - (R 1/ R 2 )U R= U T 显然,当 U I>U T 时,U o′= U OH,所以 U o= - UZ (U Z 为稳压管的稳压值);同理,U I < U T 时, U o= + U Z。图 5 是 U R> 0 时 U o 与 U I 的关系曲线。 综上所述,分析比较器的步骤是:首先求出
一、运放的特点
尽管集成运放的应用是多种多样的,但在 一般分析计算中,都将看成是理想运放。
1、线性区 当运放工作在线性区,其输入
信号与输出信号应满足 U o = A od (U P- U N)由于 Aod 非常大,为使其工作在线性区,必须引入负 反馈,以减小输入电压(U P-U N),保证输出电 压不超过线性范围。如运放的输出端与反向输

模电作业答案 (1)

模电作业答案 (1)

第1章半导体二极管及其应用电路1.二极管电路如图1所示,设二极管是理想的。

试判断图中的二极管是导通还是截止,并求出A、O两端电压U AO。

(a) (b)图1解:图a:对D1有阳极电位为0V,阴极电位为-12 V,故D1导通,此后使D2的阴极电位为0V,而其阳极为-15 V,故D2反偏截止,U AO=0 V。

图b:对D1有阳极电位为12 V,阴极电位为0 V,对D2有阳极电位为12 V,阴极电位为-6V.故D2更易导通,此后使V A=-6V;D1反偏而截止,故U AO=-6V。

2.电路如图2所示,设二极管为理想的,输入电压为正弦波,试分别画出各图输出电压的波形。

(a) (b)图2解:图(a):图(b):第2章 半导体三极管及其放大电路7.电路如图5(a)所示,晶体管的β=80,r bb '=100Ω。

(1)分别计算R L =∞和R L =3k Ω时的Q 点,A us ,R i 和R o 。

(2)由于电路参数不同,在信号源电压为正弦波时,测得输出波形如图4(b )、(c )、(d )所示,试说明电路分别产生了什么失真,如何消除。

(3)若由PNP 型管组成的共射电路中,输出电压波形如图4(b )、(c )、(d )所示,则分别产生了什么失真?(a)(b) (c)(d)图5解(1)在空载和带负载情况下,电路的静态电流、r be 均相等,它们分别为Ω≈++=≈=≈--=k 3.1mV26)1(mA76.1 Aμ 22EQbb'be BQ CQ BEQ bBEQCC BQ I r r I I R U R U V I sββ空载时,静态管压降、电压放大倍数、输入电阻和输出电阻分别为Ω==-≈⋅+≈Ω≈≈=-≈-=≈-=k 593k 3.1308V 2.6 c o bes bebebe b i becc CQ CC CEQ R R A r R r A r r R R r R A R I V U uusu∥β R L =5k Ω时,静态管压降、电压放大倍数分别为LCQ cCEQR V I R U V CCCC =--∵∴V 3.2)(L c CQ Lc L CEQ ≈-+=R R I R R V R U CC∥47115 bes bebe 'L -≈⋅+≈-≈-=uusuA r R r A r R A βΩ==Ω≈≈=k 5k 3.1c o be be b i R R r r R R ∥(2)(a )饱和失真,增大R b ,减小R c 。

模拟电子技术答案 第7章 信号的运算和处理

模拟电子技术答案 第7章 信号的运算和处理

第7章信号的运算和处理自测题一、现有电路:A.反相比例运算电路B.同相比例运算电路C.积分运算电路D.微分运算电路E.加法运算电路F.乘方运算电路选择一个合适的答案填入空内。

(1)欲将正弦波电压移相+90o,应选用( C )。

(2)欲将正弦波电压转换成二倍频电压,应选用( F )。

(3)欲将正弦波电压叠加上一个直流量,应选用( E )。

(4)欲实现A u=−100 的放大电路,应选用( A )。

(5)欲将方波电压转换成三角波电压,应选用( C )。

(6)欲将方波电压转换成尖顶波波电压,应选用( D )。

二、填空:(1)为了避免50H z电网电压的干扰进入放大器,应选用( 带阻)滤波电路。

(2)已知输入信号的频率为10kH z~12kH z,为了防止干扰信号的混入,应选用( 带通)滤波电路(3)为了获得输入电压中的低频信号,应选用( 低通)滤波电路。

(4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用( 有源)滤波电路。

三、已知图T7.3所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k大于零。

试分别求解各电路的运算关系。

(a)(b)图T7.3解:图(a)所示电路为求和运算电路,图(b)所示电路为开方运算电路。

它们的运算表达式分别为:(a) 12413121234()(1)//f I I O f I R u u R u R u R R R R R R =-+++⋅⋅+ 11O O u u dt RC =-⎰(b) '23322144O I O O R R R u u u ku R R R =-⋅=-⋅=-⋅O u =习题本章习题中的集成运放均为理想运放。

7.1填空:(1) ( 同相比例 )运算电路可实现A u >1 的放大器。

(2) ( 反相比例 )运算电路可实现A u <0 的放大器。

(3) ( 微分 )运算电路可将三角波电压转换成方波电压。

(4)( 同相求和 )运算电路可实现函数123Y aX bX cX =++,a 、b 和c 均大于零。

模拟电子技术基础知识点总结

模拟电子技术基础知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4反相求和运算电路multisim 仿真
4.1反相求和运算电路multisim模型的建立
求和电路的输出电压决定于多个输入电压相加的结果。

利用集成运放实现求和运算时,常常采用反相输入方式,当然也可以采用同相输入方式。

上图是具有三个输入端的反相求和电路
4.2反相求和电路的理论分析及计算
为了保证集成运放两个输入端对地的电阻平衡,同相输入端电阻R4的阻值应为R4=R1∥R2∥R3∥RF
由于虚断,i_=0,因此i1+i2+i3=If
又因集成运放的反相输入端虚地,故上式可写为
U1/R1+U2/R2+U3/R3=-Uo/RF
则输出电压为
Uo=-((RF/R1)U1+(RF/R2)U2+(RF/R3)U3)
可见,电路的输出电压Uo反映了输入电压U1,U2U3相加所得的结果,即电路能够实现求和运算。

如果电路中电阻的阻值满足关系R1=R2=R3=R,则上式成为Uo=-RF/R(U1+U2+U3)
通过上面的分析可以看出,反相输入求和电路实质是利用虚地和虚断的特点,通过各路输入电流相加的方法实现输入电压的相加。

4.3反相求和运算电路仿真结果分析
可得i1=299.76μA i2=299.76μA i3=299.764μA iF=899.649μA 所以i1+i2+i3≈iF
U1=U2=U3=3V R1=R2=R3=RF=10K
Uo=-RF/R(U1+U2+U3)=-(3+3+3)=9V≈Uo=-8.996v。

相关文档
最新文档