多元正态分布培训课件.ppt
合集下载
第一章多元正态分布 PPT

(1) E(AX ) AE(X )
1.7
2021/8/23 (2) E( AXB) AE( X )B
(1.8) 12
§1、1、4 随机向量的数字特 征
2、随机向量X 自协方差阵
Σ COV (X, X) E(X EX)(X EX)/ D(X)
D(X1 )
COV ( X1, X 2 ) COV ( X1, X P )
D(AX ) AD( X )A' AA'
cov( AX , BY ) Acov( X ,Y )B'
2021/8/23
14
§1、1、4 随机向量的数字特 征
(3)设X为 维n随机向量,期望和协方差存在记
μ E(X), Σ D(X) , A为n n常数阵, 则
E(X' AX) tr(AΣ) μ ' Aμ
欧氏距离,依勾股定理有
d (O, P) (x12 x22 )1/2
(1.14)
2021/8/23
19
§1、2 统计距离和马氏距离
但就大部分统计问题而言,欧氏距离是不能
令人满意的。这个地方因为,每个坐标对欧氏距
离的贡献是同等的。当坐标轴表示测量值时,它
们往往带有大小不等的随机波动,在这种情况下
,合理的方法是对坐标加权,使得变化较大的坐
X
j
X j E(X j ) (var X j )1/ 2
j 1, , p
X
( X1,
X
2
,
,
X
p
)
于是
E(X ) 0
D(X ) corr(X) R
(1.12)
何为标准化? 标准化的作用?
即标准化数据的协差阵正好是原指标的相关阵.
多元正态分布(新) ppt课件

2 22
EX1 1, EX 2 2 ,
(1 0,2 0, 1)
Var(
X
1
)
2 11VBiblioteka r(X2)
2 22
,
( X1, X 2 ) cov(X PPT课件1, X 2 ) 11 22
5
二元正态分布曲面(
2 11
1,
2 22
X i1 X1
11
§2多元正态分布的参数估计
一、多元样本及其样本数字特征
1.多元样本阵
X11 X12
X
X
21
X 22
X
n1
X n2
记
X(i) ( Xi1, Xi2 ,Xip )
X1p
X
2
p
X
np
i 1,2n
PPT课件
12
2、多元样本的数字特征
样本均值:
一、多元正态分布的定义 定义1:若p维随机向量 X (X1,X p) 的密度函数为:
f (x1,xp )
1
(2 ) p
1/ 2
exp
1 2
(x
μ)1( x
μ)
其中, x (x1,xp ), μ 是p维向量 是p阶
正定矩阵,则称X服从p维正态分布,记为 X ~ N p(μ,)
第一章 多元正态分布及其参数估计
PPT课件
1
§1多元正态分布的定义及其性质
多元正态分布的重要性: (1)多元统计分析中很多重要的理论和方法都是直接或间接
多元正态分布的检验精品PPT课件

139..2376
199.26 88.38
S d
88.38
418.61
T 2 11 9.36
13.27
0.0055 0.0012
00.0.0002162 139..2376 13.6
取 0.05,求得
n2 i 1
yi
s12
1 n1 1
n1 i 1
( xi
x)2,
s22
1 n2 1
n2 i 1
( yi
y)2
sw2
1 n1 n2 2
(n1 1)s12 (n2 1)s22
或检验统计量:
F
t2
1 n1
1 n2
1
xy sw
2
x
y
1 n1
1 n2
s2w
1
x
y
当F Fα(1,n1 n2 2)时,拒绝H 0
i
2
n
i
i
2
n
i 的T 2 联合置信区间为:
1
1
Xi
T
S2 ii n
i
Xi
T
S2 ii n
i 的Bonferroni 联合置信区间为:
1
1
Xi
t (n 1)
2p
S2 ii n
i
Xi
t (n 1)
2p
S2 ii n
§2.2 两个正态总体均值 的成组比较
一元情形的回顾
设 x1, x2 ,, xn1和 y1, y2 ,, yn2 分别取自于
F
(
p,
n1
n2
p
1).
均值差的T2置信区间
两个p维总体均值差 11 12,21 22,, p1 p2 的10(0 1)% T 2 联合置信区间为:
第3章多元正态分布49页PPT

3.设 x ~ N p (, ) ,则 x 的任何子向量也服从(多元)正态分布,
其均值为 的相应子向量,协方差矩阵为 的相应子矩阵。
注意:性质3说明了多元正态分布的任何边际分布仍为多 元正态分布,但反之不成立。
08.05.2020
© 谢中华, 天津科技大学数学系.
例 3.2.4 设 x ~ N4 (, ) ,这里
解 ax~N (a,a a)
例 3.2.3 设 x (x1, x2 ) ~ N2 (, ) ,这里
1 2
,
1122
12 22
.
试写出x1–x2的分布。
解 x 1 x 2 ~ N (1 2 ,1 2 2 2 212 )
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
x2
e2
2
x
3、标准正态分布与一般正态分布之间的关系
记 u ~ N (0 ,1 ),则 x= + u ~ N ( , 2 )
08.05.
二、多元正态分布的定义
多元统计分析
iid
定义3.2 设p 维随机向量 u(u1,u2,L,up),u1,u2,L,up ~N(0,1)
x1,x2.
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
第二节 多元正态分布的性质
1. 设x是一个p 维随机向量,则x服从多元正态分布,当且
(3)
xx14~N314,1444
41 11
1433.
其均值为 的相应子向量,协方差矩阵为 的相应子矩阵。
注意:性质3说明了多元正态分布的任何边际分布仍为多 元正态分布,但反之不成立。
08.05.2020
© 谢中华, 天津科技大学数学系.
例 3.2.4 设 x ~ N4 (, ) ,这里
解 ax~N (a,a a)
例 3.2.3 设 x (x1, x2 ) ~ N2 (, ) ,这里
1 2
,
1122
12 22
.
试写出x1–x2的分布。
解 x 1 x 2 ~ N (1 2 ,1 2 2 2 212 )
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
x2
e2
2
x
3、标准正态分布与一般正态分布之间的关系
记 u ~ N (0 ,1 ),则 x= + u ~ N ( , 2 )
08.05.
二、多元正态分布的定义
多元统计分析
iid
定义3.2 设p 维随机向量 u(u1,u2,L,up),u1,u2,L,up ~N(0,1)
x1,x2.
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
08.05.2020
© 谢中华, 天津科技大学数学系.
多元统计分析
第二节 多元正态分布的性质
1. 设x是一个p 维随机向量,则x服从多元正态分布,当且
(3)
xx14~N314,1444
41 11
1433.
第三讲多元正态分布

p
f ( x)dx 1
9
边缘分布函数及边缘密度函数
用途:
判断
随机变量的 独立性
多元向量的独立性
独立的充分必要条件:
F ( x1, x2 , xq , xq1,, x p ) F ( x1,, xq )F ( xq1,, x p )
或
f ( x1, x2 , xq , xq1,, x p ) f ( x1,, xq ) f ( xq1,, x p )
AX ~ Ns ( A, AAT ) 且对任何 s 维常数向量 d , X d ~ N p ( d , ) 。
考虑 AX d 的情形?
(3) 、 若 X ~ N p (, ),将 X , , 作如下剖分:
X X ( 2) X pq
11 12 ( 2) 21 22 p q p q 则 X (1) ~ Nq ( (1) , 11 ) , X ( 2) ~ N pq ( (2) , 22 ) 。
19
相关系数矩阵
若 X ( X1, X 2 , X p )T 的协方差阵存在,且每一 个分量的方差大于0,则称随机向量X 的相关阵为
1 12 R 1p
其中
12
1
2 p
1 p 2 p 1
ij
第一章 多元正态分布
多元正态分布及参数估计
基础知识 统计距离和马氏距离 多元正态分布 均值向量和协方差阵的估计 几种常用的抽样分布
2
基础知识
随机向量 分布密度函数 多元变量的独立性 随机向量的数字特征
3
随机变量(random variable)
第二章 多元正态分布 《应用多元统计分析》 ppt课件

写字母表示; 随机变量用大写字母表示,其实现值用小写字母表示。
1
一、随机向量
在理论上,对多维随机向量的研究和对一维随机 变量的研究思路是类似的,通过分布及其特征进 行刻画。不同的是,可能要考虑变量之间的相关 关系。
在统计应用上,对多维随机向量的研究和对一维 随机变量的研究思路也是一样的,要通过样本资 料来推断总体。
19
二、多元正态分布的数字特征
若 X ~ Np μ, Σ ,则 E(X) μ,D(X) Σ ,即 μ 恰好是
多维随机向量 X的均值向量, Σ 恰好是多维随机 向量 X 的协差阵。其中,
1
μ
2
,
p
11 12
Σ
21
22
p1 p2
1p
2
p
pp
20
三、多元正态分布的参数估计
若 X 的联合分布密度为 f (x1, x2 , , xp ),则 X(1) 的边缘 密度函数为:
f (x1, x2 , , xq )
f (x1, x2 ,
, xq , xq1,
, xp )dtq1
dt,p (2.3)
多维随机向量的独立性。若 p个随机变量
X1, X 2 ,, X p的联合分布密度等于各自边缘分布的 乘积,则称 X1, X 2 ,, X p是互相独立的。
1
x)(x( )
x)
n
(x1 x1)2
1
1 n
n
(x1 x1)(x 2 x2 )
1
n
(x 2 x2 )2
1
n
x 2
1
n
x
p
1
n
( x 1
x1)(x p
xp
1
一、随机向量
在理论上,对多维随机向量的研究和对一维随机 变量的研究思路是类似的,通过分布及其特征进 行刻画。不同的是,可能要考虑变量之间的相关 关系。
在统计应用上,对多维随机向量的研究和对一维 随机变量的研究思路也是一样的,要通过样本资 料来推断总体。
19
二、多元正态分布的数字特征
若 X ~ Np μ, Σ ,则 E(X) μ,D(X) Σ ,即 μ 恰好是
多维随机向量 X的均值向量, Σ 恰好是多维随机 向量 X 的协差阵。其中,
1
μ
2
,
p
11 12
Σ
21
22
p1 p2
1p
2
p
pp
20
三、多元正态分布的参数估计
若 X 的联合分布密度为 f (x1, x2 , , xp ),则 X(1) 的边缘 密度函数为:
f (x1, x2 , , xq )
f (x1, x2 ,
, xq , xq1,
, xp )dtq1
dt,p (2.3)
多维随机向量的独立性。若 p个随机变量
X1, X 2 ,, X p的联合分布密度等于各自边缘分布的 乘积,则称 X1, X 2 ,, X p是互相独立的。
1
x)(x( )
x)
n
(x1 x1)2
1
1 n
n
(x1 x1)(x 2 x2 )
1
n
(x 2 x2 )2
1
n
x 2
1
n
x
p
1
n
( x 1
x1)(x p
xp
多元统计分析:第二章 多元正态分布及ppt课件

§2.2 多元正态分布的性质3
性质3 若X~Np(μ,Σ),E(X)=μ,D(X)=Σ. 证明 因Σ≥0,Σ可分解为:Σ=AA′,
则由定义2.2.1可知
X =d AU+μ (A为p×q实矩阵)
其中U=(U1,…,Uq)′,且U1,…,Uq相互独立同 N(0,1)分布,故有
E(U )=0, D(U )=Iq .
Z=BX+d d= B(AU+μ)+d
= (BA)U+(Bμ+d) 由定义2.2.1可知
Z ~Ns(Bμ+d, (BA)(BA)),
Z ~Ns(Bμ+d, BΣB). (这里Σ=AA).
ppt精选版
21
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2
推论
分为
设X=
X(1) X(2)
r p-r
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
此定义中,不必要求σ>0,当σ退化为0时仍 有意义。把这种新的定义方式推广到多元情况
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
X=(X1,X2,…,Xp)′ 为一个p维随机向量,如果同时对p维 总体进行一次观测,得一个样品为 p 维数据.常把n个样品排成一个n×p矩 阵,称为样本资料阵.
ppt精选版
4
第二章 多元正态分布及参数的估计
§2.1 随 机 向
X xx1211
其L 中
性质3 若X~Np(μ,Σ),E(X)=μ,D(X)=Σ. 证明 因Σ≥0,Σ可分解为:Σ=AA′,
则由定义2.2.1可知
X =d AU+μ (A为p×q实矩阵)
其中U=(U1,…,Uq)′,且U1,…,Uq相互独立同 N(0,1)分布,故有
E(U )=0, D(U )=Iq .
Z=BX+d d= B(AU+μ)+d
= (BA)U+(Bμ+d) 由定义2.2.1可知
Z ~Ns(Bμ+d, (BA)(BA)),
Z ~Ns(Bμ+d, BΣB). (这里Σ=AA).
ppt精选版
21
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2
推论
分为
设X=
X(1) X(2)
r p-r
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
此定义中,不必要求σ>0,当σ退化为0时仍 有意义。把这种新的定义方式推广到多元情况
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
X=(X1,X2,…,Xp)′ 为一个p维随机向量,如果同时对p维 总体进行一次观测,得一个样品为 p 维数据.常把n个样品排成一个n×p矩 阵,称为样本资料阵.
ppt精选版
4
第二章 多元正态分布及参数的估计
§2.1 随 机 向
X xx1211
其L 中
多元正态分布.ppt

(2)
令
Y
X X
2 3
X1
0 0 1
1 0 0
0 1 0
X1 X2 X3
BX
,
由性质1知,Y为3维正态随机向量,且
0 1 0 2 0
y
Bx
0 1
0 0
10 00
02
1
xp ap1u1 ..... appu p p
u A
x1 xp
u p
u p
AA 1 2 1 2
§2.2
故 J (u x) 1 1 2. J(x u)
§2.2
⑤ 写出X=AU+μ
fX
(x)
1
(2 ) p
B
fX (x)dx
B
以下来求Jacobi行列式J(u→x).
§2.2
④ 积分变换的Jacobi行列式J(u→x)可利用线性变换
x=Au+μ及J(x→u)来计算:
x1 xp
因
J (x u) x
u1
u1
x1
a11u1
.....
a1pu p
1
2 1
1 1 2
1
1
2
1
2 2
12 1
2
1
2 2
2
二元正态随机向量X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品
目录 上页 下页 返回 结束
§1.1.2 分布函数与密度函数
描述随机变量的最基本工具是分布函数,类似地描述 随机向量的最基本工具还是分布函数。
定义1.2 设 X (X1, X 2,, X p )' 是一随机向量,它 的多元分布函数是
F(X ) F(x1, x2,, xp ) P(X1 x1,, X p xp ) 1.1
变量
序号 1
x xnp 11
x12
2
x21
x22
nx1 p
…
x2 p
…
xnp
目录 上页 下页 返回 结束
§1.1.1 随机向量
• 因此,样本资料矩阵可用矩阵语言表示为:
x11
X
x21
xn1
x12 x22
x1 p x2 p
• 许多随机向量确实遵从正态分布,或近似 遵从正态分布;
• 对于多元正态分布,已有一整套统计推断 方法,并且得到了许多完整的结果。
精品
目录 上页 下页 返回 结束
第一章 多元正态分布
多元正态分布是最常用的一种多元 概率分布。除此之外,还有多元对数正 态分布,多项式分布,多元超几何分布, 多元 分χ布2 、多元 分布 、多元指数 分布等。本章从多维变量及多元分布的 基本概念开始,着重介绍多元正态分布 的定义及一些重要性质。
观测得到的,把这 p 个指标表示为 X1, X 2 ,, X p常 用向量
X ( X1, X 2,, X p )'
表示对同一个体观测的 p 个变量。若观测了 n
个个体,则可得到如下表1-1的数据,称每一个个
体的 p 个变量为一个样品,而全体 n个样品形成一
个样本。
精品
目录 上页 下页 返回 结束
F(x)
x1
xp
f (t1,t p )dt1 dt p ,
(1.2)
对一切x R p 成立,则称 X(或 FX )有分布
密度 f 并称 X 为连续型随机向量。
一个 p 维变量的函数f 能作为R p 中某个随机向量
的分布密度,当且仅当
(i) f (x) 0 x R p
(1.5)
注意:在上述定义中,X 和 Y 的维数一般是不同的。
精品
目录 上页 下页 返回 结束
§1.1.4 随机向量的数字特征
1、随机向量X 的均值
i
设X
1,2,
p
(
,
X1, X 2 ,, X p )'有 定义随机向量
p X
个分量。若 的均值为
E(
X
i
)
i存在,
E ( X1 ) 1
(ii) f (x)dx 1 Rp 精品
目录 上页 下页 返回 结束
§1.1.3 多元变量的独立性
定义1.4:两个随机向量 X 和 Y 称为是相互独立的,若
P(X x, Y y) P(X x)P(Y y) (1.3)
对一切(X , Y )成立。若F(x, y) 为(X , Y )的联合分布函
式中,X (x1, x2 ,, xp ) R p,并记成X ~ F 。
多元分布函数的有关性质此处从略。
精品
目录 上页 下页 返回 结束
§1.1.2 分布函数与密度函数
定义1.3:设 X ~ F(X ) = F (x1, x2 ,, x p ) ,若存在一个
非负的函数 f ,使得
X1)
D(X 2 )
COV ( X 2 ,
X
P
)
COV ( X P , X1) COV ( X P , X 2 ) D(X P )
(x1,
x2
,,
x
p
)
x(/1)
x (/ 2)
xn2 xnp
x(/
n)
若无特别说明,本书所称向量均指列向量
定义1.1 设 X1, X 2 ,, X p 为 p 个随机变量,由它们组成
的向量 X ( X1, X 2,, X p )' 称为随机向量。
(1.8)
精品
目录 上页 下页 返回 结束
§1.1.4 随机向量的数字特征
2、随机向量X 自协方差阵
Σ COV (X, X) E(X EX)(X EX)/ D(X)
D(X1 )
COV ( X1, X 2 ) COV ( X1, X P )
COV
(
X
2
,
精品
目录 上页 下页 返回 结束
§1.1多元分布的基本概念
§1.1.1 随机向量 §1.1.2 分布函数与密度函数 §1.1.3 多元变量的独立性 §1.1.4 随机向量的数字特征
精品
目录 上页 下页 返回 结束
§1.1.1 随机向量
假定所讨论的是多个变量的总体,所研究的数
据是同时观测 p个指标(即变量),又进行了 n 次
数,G(x) 和 H(y)分别为 X 和 Y 的分布函数,则 X 与 Y 独立
当且仅当
F(x, y) G(x)H ( y)
(1.4)
若 (X , Y) 有密度 f (x, y),用g(x) 和 h( y)分别表示 X和 Y
的分布密度,则 X 和 Y 独立当且仅当
f (x, y) g(x)h( y)
§1.1.1 随机向量
横看表1-1,记 X() (x1, x 2,, xp )' , 1,2,n
它表示第 个样品的观测值。竖看表1-1,第 j 列的元素
X j (x1j , x2 j ,, xnj )' , j 1,2, p
表示对 j 第个变量 x j 的n次观测数值。下面为表1-1
第一章 多元正态分布
§1.1 多元分布的基本概念 §1.2 统计距离和马氏距离 §1.3 多元正态分布 §1.4 均值向量和协方差阵的估计 §1.5 常用分布及抽样分布
精品
目录 上页 下页 返回 结束
第一章 多元正态分布
• 一元正态分布在统计学的理论和实际应用 中都有着重要的地位。同样,在多变量统 计学中,多元正态分布也占有相当重要的 位置。原因是:
E ( X )
E
(
X2
)
E ( X P )
2
P
μ
1.6
是一个p维向量,称为均值向量.
当 A 、B为常数矩阵时,由定义可立即推出如下性质:
(1) E(AX ) AE(X )
1.7
(2) E(AXB) AE(X )B