2.多元正态分布
多元统计分析:第二章 多元正态分布及

1 2 exp( it ) exp( s j ) 2 j 1
) E(e
isqU q
)
第二章 多元正态分布及参数的估计
§2.2
记Σ=AA′,则有以下定义。 定义2.2.2 若p维随机向量X的特征函数 t ' t 为:
X (t ) exp[ it '
,d为s×1常向量,令Z=BX+d,则
Z~Ns(Bμ+d , BΣB ).
该性质指出正态随机向量的任 意线性组合仍为正态分布.
19
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质2
证明 因Σ ≥0, Σ可分解为Σ=AA ,其中A 为p×q 矩阵.已知X~Np(μ,Σ),由定义 2.2.1可知 X = AU+μ
是对称非负定阵. 即 =´ , ´ ≥0 (为任给的p维常量).
7
第二章 多元正态分布及参数的估计
§2.1 随机向量—
(4) Σ=L2 ,其中L为非负定阵.
由于Σ≥0(非负定),利用线性代数中实对称阵的对角化定理,存 在正交阵Γ,使
1 0 LL
1 0 ' 0 p
并设:
i 0(i 1,, q), q1 0,, p 0.
10
第二章 多元正态分布及参数的估计
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
如例2.1.1,证明了X1,X2均为一元正态 分布,但由(X1,X2) 联合密度函数的形式易见 它不是二元正态.
厦门大学《应用多元统计分析》习题第02章 多元正态分布的参数估计

思考与练习2.1 试述多元联合分布和边缘分布之间的关系。
2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。
2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为:()()()()()()()()()121122222,d c x a b a x c x a x c f x x b a d c −−+−−−−−2⎡⎤⎣⎦=−−其中,。
求:12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。
⑵ 随机变量1X 和2X 的协方差和相关系数。
⑶ 判断1X 和2X 是否相互独立。
2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。
2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号目前工资 (美元)受教育年限(年)初始工资 (美元)工作经验(月)11 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。
2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1~(,p N nX μΣ)。
2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。
2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。
多元正态分布条件分布例题

多元正态分布条件分布例题
多元正态分布是指具有多个随机变量的正态分布。
它的概率密度函数可以用矩阵符号来表示。
对于一个具有n个变量的多元正态分布,其概率密度函数可以写作:
f(x) = (1 / ( (2π)^(n/2) |Σ|^0.5 )) exp(-0.5 (x-μ)' Σ^(-1) (x-μ))。
其中,x是一个n维向量,μ是一个n维向量,Σ是一个n×n 的对称正定矩阵,|Σ|表示Σ的行列式。
这个概率密度函数描述了多元正态分布的形状和分布情况。
现在让我们来看一个条件分布的例题。
假设我们有一个二维多元正态分布,其均值向量为μ = [1, 2],协方差矩阵为Σ = [[2, 1], [1, 2]]。
我们想要求在给定X1 = 1 的条件下,X2 的条件分布。
首先,我们可以计算边缘分布,即X1的边缘分布。
X1的边缘
分布仍然是一个正态分布,其均值和方差可以通过均值向量和协方差矩阵的对应元素得到。
然后,我们可以计算条件分布。
在给定X1 = 1 的条件下,X2 的条件分布也是一个正态分布,其均值和方差可以通过边缘分布的均值和方差以及协方差矩阵的相关元素计算得到。
通过这个例题,我们可以理解多元正态分布的条件分布是如何计算的,以及如何利用均值向量和协方差矩阵来描述多元正态分布的形状和分布情况。
第2章多元正态分布的参数估计

第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。
在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。
本章将介绍多元正态分布的参数估计方法。
多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。
在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。
首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。
我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。
均值向量的估计可以通过计算样本向量的平均值来得到。
均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。
协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。
协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。
这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。
修正的常用方法有Ledoit-Wolf修正和修正。
在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。
在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。
参数估计的过程中,还需要考虑到样本量的大小。
当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。
第2章 多元正态分布均值向量和协差阵的检验

第一章 多元正态分布的参数估计一、填空题1.设X 、Y 为两个随机向量,对一切的u 、v ,有 ,则称X 与Y 相互独立。
2.多元分析处理的数据一般都属于 数据。
3.多元正态向量()'=p X X X ,,1 的协方差阵∑是 ,则X 的各分量是相互独立的随机变量。
4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条件是 和 。
5.若p 个随机变量1X ,2X , ,p X 的联合分布等于 ,则称1X ,2X , ,p X 是相互独立的。
6.多元正态分布的任何边缘分布为 。
7.若()∑,~μp N X ,A 为p s ⨯阶常数阵,d 为s 维常数向量,则~d AX + 。
8.多元正态向量X 的任何一个分量子集的分布称为X 的 。
9.多元样本中,不同样品的观测值之间一定是 。
10.多元正态总体均值向量和协差阵的极大似然估计量分别是 。
11.多元正态总体均值向量μ和协差阵∑的估计量X 、S n 11-具有 、 和 。
12.设X 和S 分别是多元正态总体()∑,μp N 的样本均值向量和离差阵,则~X ,X 和S 。
13.若()()∑,~μαp N X ,n ,,2,1 =α且相互独立,则样本离差阵()()()()∑='--=nX X X X S 1~ααα 。
14.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= 。
二、判断题1.多元分布函数()x F 是单调不减函数,而且是右连续的。
2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。
3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。
多元统计分析_第2章_多元正态分布_s

第2章多元正态分布§2.1 多元分布§2.2 多元正态分布的定义及基本性质§2.3 正态分布的条件分布和独立性§2.4 矩阵正态分布§2.5 参数的极大似然估计§2.6 极大似然估计的性质13),21′=p ξξξ (ξ随机向量:pn ij ξξ×=)(随机矩阵:注:随机矩阵拉直后就是随机向量,二者都是由多个随机变量组成,只是摆放形势不同.4一、多元分布函数1212121122122.1.1 (,,,)()(,,,) ()(,,,)(,,,)(,,,)~.p p p p p pp ξξξξξξF x F x x x P ξx ξx ξx x x x x R F ξξ′===≤≤≤′=∈ 定义设是一随机向量,它的多元分布函数的联合分布函数定义为式中,记作512122112(1)(,,,)(1,2,,)(2)0(,,,)1(3)(,,,)(,,,)(,,,)0(4)(,,,)1p i p p p F x x x x i p F x x x F x x F x x F x x F =≤≤−∞=−∞==−∞=+∞+∞+∞= 是每个变量的单调非降右连续函数.多元分布函数的性质:71)( )2( ,0)( )1()(=∈∀≥⋅∫dx x f R x x f R f pR pp 当且仅当随机向量的分布密度,中某个能作为一个多元函数9二、边缘分布.)( 3.1.2)1(的边缘分布的分布称为个分量组成的随机向量的维随机向量,由它为若定义ξξξp q q p <10),,,,,,(),,,,,),,)111111)1()2()1(∞∞∞=∞≤∞≤≤≤=≤≤=≤⎟⎟⎠⎞⎜⎜⎝⎛=+ q p q q q q q u u F u ξu ξP u ξu ξP u ξP ξξξξξξ((((1)的分布函数为,则不妨假设11(1)(1212112111)(,,)(,,)q q u u u p p u u u p q p q P ξu f t t dt dt dt f t t dt dt dt dt ∞∞∞−∞−∞−∞−∞−∞−∞∞∞∞+−∞−∞−∞−∞−∞−∞≤=⎡⎤=⎢⎥⎣⎦∫∫∫∫∫∫∫∫∫∫∫∫ 若ξ有分布密度函数f (x ),则12p q p q q q dt dt t t x x f x x f ξ1111)1(),,,,,(),,(++∞∞−∞∞−∞∞−∫∫∫=的边缘分布密度为(1)13注:(1)有分布密度函数,则它的任何边缘分布也有分布密度函数;(2)若的任何边缘分布有分布密度函数,并不能推出有分布密度.ξξξ两个随机向量独立的充分必要条件:①联合分布函数等于边缘分布函数的乘积;②若随机向量为连续型的,联合分布密度等于边缘分布密度的乘积;③若随机向量为离散型,联合分布列等于边缘分布列的乘积;④联合特征函数等于边缘特征函数的乘积.1621).()(~),(~),(~,)4(t t t t ηηηξηξηξΦΦ+ΦΦξξ则量的随机向是相互独立且维数相同与若).()(),( ,)()(,,)5()2()1()2()1(t t t t t t q p ηξξΦΦ=Φ⇔ΦΦ⎟⎟⎠⎞⎜⎜⎝⎛Φ独立和则的特征函数和分别为和特征函数的表示维随机向量和分别为和若ηξηξηξηξη22(7) .p a ξξ′若为维随机向量,则它的分布由一切形如的分布所唯一决定).()exp()( ,),(~ )6(t A a t i t a A t ′Φ′=Φ+=Φξηξηξ则若ξ23).()exp()])([exp()exp()][exp()exp())]([exp()][exp()(t A a t i t A i E a t i A t i E a t i a A t i E t i E t ′Φ′=′′′=′′=+′=′=Φξηξξξη证明:(6)24.,3,,),()][exp()1( 1)][exp()( )7(:的分布它决定了知由性质的特征函数恰好是的函数把它看成得取的特征函数为证明ξξξξa a a i E t a it E t a a a Φ=′=Φ=′=Φ′′′ξξξξ25五、矩2.1.6 ()(), 1, 2, , ,1, 2, , ,()(), .ij ij ij n p E i n j p E ξξξεξξξ=×=== 定义设为随机矩阵,假定存在且有限记称为随机矩阵的均值)()( ij E ξξε=26,(1) ,,,( )(),()()A B C A B C A B CA A εξεξξεξεξ+=+=若为常数矩阵则特别当为随机向量时有注:以下总假定公式中用到的随机矩阵的矩是存在的.均值的性质:27)]([)]([)] )4()()( , )3()()( ,, )2(ξεξεξξηεξεηξεηεξεηξεA tr A tr A E n p A p n b a b a b a B A B A B A ==××+=++=+[tr()()(则常数矩阵,为随机矩阵,为若为常数,则若则为常数矩阵若注:以上四个性质均体现均值的线性性.28().),,cov()(),cov(])()][([),cov( ),,cov(,)(),), 7.2.1 2121的协方差称为时,记作当即其元素是矩阵定义为一个简称协差阵阵的协方差维随机向量,它们之间维和分别为和设定义ξξξξηξηξηεηξεξεηξηξηηηηξ===′−−=×′=′=D p n p n ξξξj i j i p n ((29() ),cov(),cov( j i ηξηξ=()),cov(),cov(j i ξξξξ=31.])(][)([)())()()( ,)2(.})(){() (),cov(,})(){() (),cov()1(′−−+=′−−=+′−′=′−′=a a D a a D a D a ξεξεξξξεξξξεξεξξεξξηεξεηξεηξ(则为常向量若特别协差阵的性质:32A AD A DB A B A B A ′=′=)()( ),cov(),cov( ,)3(ξξηξηξ特别则为常数矩阵和设协差阵的性质(续)35则记值和协差阵存在的均若随机向量定理 ),( ),( ,),,, 1.1.221ξξεμD ξξξξn =Σ=′= ()()( μμξξA A tr A E ′+Σ=′36μμμμξξξξξξA A tr A tr A Etr A Etr A E ′+Σ=′+Σ=′=′=′)()}({)()()(μμξξεξεξεξξεξ′+Σ=′′−′=) (,})(){() ()(:所以因为证明D。
应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料

1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]
多元正态分布随机数

多元正态分布随机数
多元正态分布是统计学中一种常见的概率分布,通常用于描述多个变量之间的关系。
在多元正态分布中,每个变量都是服从正态分布的,而且不同变量之间还存在一定的相关性。
这种分布在各个领域都有广泛的应用,比如金融、医学、工程等。
在金融领域,多元正态分布常常被用来建立投资组合的模型。
通过对不同资产的收益率进行建模,可以更好地了解不同资产之间的关系,从而优化投资组合的配置。
通过多元正态分布,投资者可以进行风险控制,提高收益率,并根据不同的风险偏好选择适合自己的投资组合。
在医学领域,多元正态分布也被广泛应用。
例如,在流行病学研究中,可以利用多元正态分布来建立疾病传播的模型。
通过对不同因素的影响进行建模,可以更好地预测疾病的传播路径,从而采取有效的控制措施。
多元正态分布在医学研究中的应用,有助于提高疾病控制的效率,保护人们的健康。
工程领域也经常使用多元正态分布来分析复杂系统的性能。
比如在电子工程中,可以利用多元正态分布来建立电路元件的故障模型。
通过对不同元件故障的概率进行建模,可以更好地预测整个系统的可靠性,从而提高系统的稳定性。
多元正态分布在工程领域的应用,有助于提高系统的设计效率,降低故障率,保障设备的正常运行。
总的来说,多元正态分布作为一种重要的概率分布,在各个领域都有着广泛的应用。
通过对多元正态分布的研究和应用,可以更好地理解复杂系统的特性,提高决策的准确性,促进科学技术的发展。
希望未来能有更多的研究者和工程师利用多元正态分布的优势,为人类社会的进步和发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) ~ Wp (n,) ,C为m×p阶的矩阵,则CC的分布
为Wm (n,CC) 分布。
(3) ~ Wp (n,) ,a 为任一p元常向量,满足a 'a 0 ,
则 a ' Aa ~ 2 (n) .
a 'a
三、 多元正态分布总体的抽样分布
定理1:设X1,X2,……Xn是来自多元正态总体Np(,) 的简单随机样本,有
二、协方差矩阵
1、定义:设 x (x1, x2,, xp )和 y ( y1, y2,, yq ) 分 别为 p 维和 q 维随机向量,则其协方差矩阵为
E
x1 x2
E(x1) E(x2 )
y1
E( y1)
xp E(xp )
y2 E( y2 )
yq
E(
yq
)
cov(
x1
x (x1, x2,, xp )
2.第 个样品的观测值:
x( ) (x1, x 2 , , x p ), 1, 2, , n
3.样本资料矩阵:
x11 x12
X
x21
x22
xn1
xn 2
x1q
x2q
(
X1,
X
2
,
xnq
,
X
q
)
X' (1)
X' (2)
X
' (n
)
定义:设 x1, x2 , , xp为p个随机变量,则由它们
设X =(X1,X2)'遵从二元正态分布,则
11 11
12 12
=
2 1
1
1 2r
2r
2 2
,
r
1,
=
12
2 2
(1
r2 ),
1
1
12
2 2
(1
r2)
2 2
1 2r
1 2r
2 1
故X1与X2的密度函数为
f
( x1 ,
x2
)
2π1
2
1 (1
r2
)1/2
exp
1 2(1
r2
)
(
x1
1)2 12
2r
( x1
1 )( x2 1 2
2
)
( x2
2
2 2
)2
思考:r=0,r>0,r<0分别意味着什么?
二、多元正态分布的性质
1、如果正态随机向量X =(x1, x2, , xp ) '的协方差阵 是 对角阵,则X的各分量是相互独立的随机变量。
2、多元正态分布随机向量X的边际分布仍然遵从正态
第一章 多元正态分布
主要内容
§1 一元分布 §2 多元分布的基本概念 §3 随机向量的数字特征 §4 多元正态分布 §5 样本分布
§2 多元分布的基本概念
一、随机向量 二、多元概率分布函数 三、多元概率密度函数 四、边际分布 五、条件分布 六、独立性
§2 多元分布的基本概念
一、随机向量
1.对同一个体观测的p个变量:
x1 (x11, x12 ,, x1p )
x2 (x21, x22 ,, x2 p )
xn (xn1, xn2 ,, xnp )
令
1 n
n i 1
i
,
S
n
i1(Xi
X)(Xi
X)
则有
S
n
X
i1
j Xj
nXX
1、
~
N
p
(,
1ห้องสมุดไป่ตู้n
)
2、和S相互独立
3、S ~ Wp (n 1,)
f(1) (x1,, xq )
f (x1, x2 , xp )dxq1dxp
F(1) ()称为F ()的边际分布函数, f(1) ()称为f ()的边际分布密度函数。
§3 随机向量的数字特征
一、数学期望:均值 二、协方差矩阵 三、相关系数矩阵
§3 随机向量的数字特征
一、数学期望:均值
x11
Var
(x)
cov(
x2
,
x1
)
cov( x1, x2 )
var( x2 )
cov( x1, xp ) cov( x2, xp )
cov( xp , x1) cov( xp , x2 ) var( xp )
2、协方差矩阵的性质
1)若x=(x1,x2,…,xp)’ 和y=(y1,y2,…,yp)'不 相关,则
在多元正态随机变量也有类似的样本分布,即维希特 分布。
当 1 ,p 1 时,由卡方分布的定义可知
n
A xi2 ~ 2 (n) i 1
可见维希特分布是卡方分布在多元下的推广。
3、维希特(Wishart)分布的密度函数
定理1:若 ~ Wp (n,) ,且 0 ,n p ,则 的分布密度
为
r(x1, xp )
r ( x2
,
xp
)
(rij
)
p×p
r(xp , xp )
§4 多元正态分布
一、多元正态分布的定义 二、多元正态分布的性质 三、多元正态分布的条件分布和独立性 四、均值向量和协方差阵的点估计
§4 多元正态分布
一、多元正态分布的定义
定义 : 若p元随机变量X =(x1, x2, , xp ) '的概率密度函数为:
f (x1, x2 ,
, xp)
(2 ) p
2
1 2
exp[
1 (x )1(x
2
)]
( 0)
则称X =(x1, x2, , xp ) '遵从p元正态分布,也称X为p元正态变量。
记为 : X ~ N p (, ).
定理 : 设X ~ N p (, ),则 E(X ) ,D(X ) .
❖ 例:二元正态分布的密度公式
X' (2)
X
' (n
)
设样品X(1) , , X(n)相互独立,同遵从于p元正态分布N p (, ),
且n > p, 0,则
1、总体均值的估计值为样本均值向量
n
xi1
i=1 n
X
1
ˆ
X
1 n
n i 1
X (i)
1 n
i=1
xi2
X2
n X p
i=1
xip
是的无偏估计。
2、总体协方差阵的极大似然估计为:
ˆ m
1 n
S
1 n
n i 1
( X(i)
X )( X (i)
X )
n
(xi1 X1)2
i1
1 n
n
(xi1 X1)(xi2 X 2 )
i 1
n
(xi2 X 2 )2
i1
n
( xi1
X 1 )( xip
X
p
)
i 1
n
(xi2 X 2 )(xip X p )
矩阵 除主对角线上的元素外均为零,即
var( x1)
Var
(x)
0
0
var( x2 )
0 0
0
0
var( xp )
2)随机向量X的协方差矩阵是非负定矩阵。 证:设a为任意与X有相同维数的常数向量,则
aa a[E(x )(x )]a
E[a(x )(x )a] E[a(x )]2 0
3)设A是常数矩阵,b为常数向量,则 V(AX+b)=AV(X)A’ ;
V (AX b)
E[(AX b) (A b)] [(AX b) (A b)]
AE[(x )(x )]A AV (x)A
4)若x=(x1,x2,…,xp)’ 和y=(y1,y2,…,yq)分别 是p和q维随机向量,A和B为常数矩阵,则
,则随机矩阵
n
i
i
i1
A X X
x11 x21
x12
x22
x1
p
x2 p
xn1 x11 x12
xn
2
x21
x22
xnp
xn1
xn2
x1p
x2
p
xnp
n
X il X lj
l 1
服从自由度为 n 的非中心维斯特分布,记为 ~ Wp (n,,。μ)
在一元正态随机变量中,我们曾经讨论了分2 布,
4、若 X ~ NP (, ) ,则 d 2 (X )'1(X ) ~ 2 ( p).
三、多元正态分布的条件分布和独立性
定理:
四、均值向量和协方差阵的点估计
若样本资料阵为:
x11 x12
X
x21
x22
xn1
xn 2
x1p
x2
p
(
X1,
X
2
,
xnp
,
X
p
)
X' (1)
Cov(Ax,By) ACov(x, y)B
证 Cov(Ax,By) E{[(Ax AE(x)][(Bx BE(x)]}
AE[(x )(x )]B 5)若k1,k2,…,kn是n个不全为零的常数, x1,x2,…,xn是相互独立的p维随机向量,则
V (k1x1 k2x2 knxn ) k12V (x1) k22V (x2 ) kn2V (xn )
1、定义:X
x21
x12 x1q
x22
x2
q
x
p1
xp2
x
pq
是由随机变量构成的随机矩阵,定义X的数学 期望为
E(x11)