多元正态分布的参数估计

合集下载

多元正态分布参数的估计与假设检验-判别分析

多元正态分布参数的估计与假设检验-判别分析
分布h(θ | x ) ∈ F * , 则称F *是关于分布密度p( x | θ ) 的共轭先验分布族,简称共轭分布族.
注 共轭分布族总是针对分布中的某个参数而言的 共轭分布族总是针对分布中的某个参数而言的.
三、贝叶斯风险
1、贝叶斯风险的定义 由第一小节内容可知,给定损失函数以后, 由第一小节内容可知,给定损失函数以后,风 险函数定义为
R(d ) = inf R(d ),
* d ∈D
∀d ∈ D
则称d * ( X )为参数θ的贝叶斯估计量
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 、 函数. 函数 2、不同的先验分布,对应不同的贝叶斯估计 、不同的先验分布, 2、贝叶斯点估计的计算 平方损失下的贝叶斯估计 定理4.2 定理 设θ的先验分布为π(θ)和损失函数为 的先验分布为π θ 和损失函数为
Θ
=∫
Θ

Χ
L(θ , d ( x ))q( x | θ )π(θ )dxdθ
=∫
Θ
∫θ | x )g(x )dxdθ
Θ
= ∫ g(x ){ ∫ L(θ , d ( x ))h(θ | x )dθ }dx
Χ
四 、贝叶斯估计
1、贝叶斯点估计 定义4.6 若总体 的分布函数F(x,θ)中参数θ为随机 定义 若总体X的分布函数 中参数θ 的分布函数 θ 中参数 变量, θ 为 的先验分布,若决策函数类D中存在 变量,π(θ)为θ的先验分布,若决策函数类 中存在 一个决策函数使得对决策函数类中的任一决策函数 均有
第8.2节 节
判别分析
一、先验分布和后验分布 二、共轭先验分布 三、贝叶斯风险 四、贝叶斯估计
一、先验分布与后验分布
上一章提出用风险函数衡量决策函数的好坏, 上一章提出用风险函数衡量决策函数的好坏,但 是由于风险函数为二元函数,很难进行全面比较。 是由于风险函数为二元函数,很难进行全面比较。 贝叶斯通过引入先验分布, 的指标. 贝叶斯通过引入先验分布,给出了整体比较 的指标 1、先验信息 在抽取样本之前, 在抽取样本之前,人们对所要估计的未知参数 先验信息. 所了解的信息,通常称为先验信息 所了解的信息,通常称为先验信息 例1(p121例4.6) 某学生通过物理试验来确定当地 1(p121例 的重力加速度,测得的数据为(m/s²): 的重力加速度,测得的数据为 9.80, 9.79, 9.78, 6.81, 6.80 试求当地的重力加速度. 试求当地的重力加速度

多元正态分布下贝叶斯估计法

多元正态分布下贝叶斯估计法

多元正态分布下贝叶斯估计法贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,可以用于在已有数据的情况下估计未知参数的分布。

在统计学中,多元正态分布是一种常见的概率分布,描述了多个变量之间的关系。

本文将介绍多元正态分布下的贝叶斯估计法,并详细讨论其原理、应用和计算方法。

一、多元正态分布及其性质多元正态分布是一种连续型概率分布,用于描述多个随机变量之间的关系。

假设有一个d维随机向量x=(x₁, x₂, ..., x d)服从多元正态分布x(x, Σ),其中x是一个d维均值向量,Σ是一个d×d的协方差矩阵。

多元正态分布的概率密度函数可以表示为:x(x; x, Σ)=(2x)⁻ᵈ/²|Σ|⁻¹/²exp⁡[−½(x−x)ᵀΣ⁻¹(x−x)] 其中x表示向量的转置,|Σ|表示协方差矩阵Σ的行列式。

多元正态分布具有许多重要的性质,例如,线性组合仍然服从多元正态分布,条件分布也是多元正态分布等。

这些性质使得多元正态分布在实际问题中的应用非常广泛。

二、贝叶斯估计法的原理贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,通过引入先验分布和后验分布来估计未知参数的分布。

其基本思想是将参数视为随机变量,并基于已有数据对参数进行推断。

在多元正态分布中,我们通常需要估计的参数包括均值向量x和协方差矩阵Σ。

贝叶斯估计法假设这些参数服从先验分布,然后通过观测数据来更新先验分布,得到后验分布,进而对参数进行估计。

具体而言,假设我们有n个样本x₁, x₂, ..., x n,那么贝叶斯估计法的步骤如下:1.选择参数的先验分布。

通常先验分布会根据领域知识或经验进行选择,常见的先验分布包括共轭先验、非信息先验等。

2.根据先验分布和样本数据,计算参数的后验分布。

根据贝叶斯定理,后验分布可以表示为:x(x, Σ | x₁, x₂, ..., xn)∝x(x₁, x₂, ..., x n|x, Σ)x(x, Σ)其中x(x₁, x₂, ..., x n|x, Σ)表示给定参数x和Σ的情况下样本数据的似然函数。

第三讲多元正态分布

第三讲多元正态分布

二元正态分布的密度曲面图
2 2 下图是当 1 2 , 0.75 时二元正态分布的钟形密
度曲面图。
多元正态分布性质
(1)、若 X ( X1, X 2 , X p )T ~ N p (, ), 是对角阵, 则 X1, X 2 , X p 相互独立。 (2)、若 X ~ N p (, ) , A 为 s p 阶常数阵,则
•有些现象服从多元正态分布
•许多多元统计分布的抽样分布是近似正态分布
23
多元正态分布
它是一元正态分布的推广
X ~ N p ,
设随机向量 X ( x1 , x2 ,, x p )' 服从P维正态分布,则有,
f ( X ) 2
p 2

1 2
1 1 exp x x 2

12
随机向量的数字特性
随机向量的均值
E ( X 1 ) 1 E( X 2 ) 2 E( X ) E( X ) p p
性质
E ( AX ) AE( X ) E ( AXB) AE( X ) B E ( AX BY ) AE( X ) BE(Y )
15
性质
1)若(x1,x2,…,xp)’ 和(y1,y2,…,yq)’不相关。则
cov(x1 , y1 ) cov(x1 , y2 ) cov(x1 , yq ) cov(x2 , y1 ) cov(x2 , y2 ) cov(x2 , yq ) 0 cov(x , y ) cov(x , y ) cov(x , y ) p 1 p 2 p q
(1) q

多元正态分布

多元正态分布


(
xi1

x1)(xip

x
p
)

n (xi2 x1)(xi1 x2)


i1
(
xip

xp )(xi1

x1)
(xi2 x2)2
(xip xp )(x2 x2)

(xi2 x1)(xip xp )


(xip xp )2
组内组间水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响如果原假设成立
第一章多元正态分布及其参数估计
多元正态分布的重要性: (1)多元统计分析中很多重要的理论和方法都是直接或间接
地建立在正态分布 基础上的,许多统计量的极限分布往往和 正态分布有关。 (2)许多实际问题涉及的随机向量服从多元正态分布或近似 服从正态分布。因此多元正态分布是多元统计分析的基础。
一、多元正态分布的定义 定义1:若p维随机向量 X (X1,X p) 的密度函数为:
(1 0,2 0, 1)
为X1和X2的相关系数。
当 0 时X1与X2不相关,对于正态分布来说不相关和独立
等价。因为:
X1, X 2

第1章多元正态分布的参数估计(精)

第1章多元正态分布的参数估计(精)

第一章 多元正态分布的参数估计一、填空题1.设X 、Y 为两个随机向量,对一切的u 、v ,有)v (p )u (p )uv (p =,则称X 与Y 相互独立。

2.多元分析处理的数据一般都属于 横截面 数据。

3.多元正态向量()'=X X X p ,,1 的协方差阵∑是 对角阵 ,则X 的各分量是相互独立的随机变量。

4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条 件是 p 'p 21p 21R )x ,,x ,x (,0)x ,,x ,x (f ∈∀≥和1dx dx dx )x ,,x ,x (f p 21-p 21-=⎰⎰+∞∞+∞∞ 。

5.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= ),n (W k1i i p ∑∑=。

二、判断题1.多元分布函数()x F 是单调不减函数,而且是右连续的。

正确2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。

错误3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B 正确4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。

正确5.一般情况下,对任何随机向量()'=X X X p ,,1 ,协差阵∑是对称阵,也是正定阵。

错误6.多元正态向量()'=X X X p ,,1 的任意线性变换仍然服从多元正态分布。

正确7.多元正态分布的任何边缘分布为正态分布,反之一样。

错误8.多元样本中,不同样品之间的观测值一定是相互独立的。

正确9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。

第二章 多元正态分布及参数的估计

第二章   多元正态分布及参数的估计

27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB


0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0



1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e

1 2
(
x12

x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6

厦门大学《应用多元统计分析》第02章_多元正态分布的参数估计

厦门大学《应用多元统计分析》第02章_多元正态分布的参数估计
• 表示对同一个体观测的p个变量。这里我们应该强调,在多元统计分析中,仍 然将所研究对象的全体称为总体,它是由许多(有限和无限)的个体构成的 集合,如果构成总体的个体是具有p个需要观测指标的个体,我们称这样的总 体为p维总体(或p元总体)。上面的表示便于人们用数学方法去研究p维总体 的特性。这里“维”(或“元”)的概念,表示共有几个分量。若观测了n个 个体,则可得到如表2.1的数据,称每一个个体的p个变量为一个样品,而全 体n个样品组成一个样本。

设 X ~ F ( x)F (x1, x2 , , xp ) , 若 存 在 一 个 非 负 函 数
f (x1, x2 ,, x p ) , 使 得 对 一 切 x (x1, x2, , xp ) Rp 有
x1
xp
F(x)F(x1, x2, , xp )
f (t1,t2, ,t p )dt1 dt p (2.3)
矩阵。
• 定义 2.7 设 X ( X1, X 2 , , X p ) ,Y (Y1,Y2 , ,Yp ) , 称 D( X )E( X E( X ))( X E( X ))
Cov( X1, X1) Cov( X 2, X1)
Cov( X p , X1)
Cov( X1, X 2 ) Cov( X 2, X 2 )
阵为
Cov( X ,Y )E( X E( X ))(Y E(Y ))
Cov( X1,Y1)
Cov(
X
2
,
Y1
)
Cov( X1,Y2 ) Cov( X 2,Y2 )

Cov( X p ,Y1) Cov( X p ,Y2 )
当 X = Y 时,即为 D( X ) 。
Cov( X1,Yp )

应用多元统计分析课后习题答案高惠璇第二章部分习题解答

应用多元统计分析课后习题答案高惠璇第二章部分习题解答

22 14
12
2 2
22
2 1
21 212
65
2
4211
22 22
22 14
12
4 3
13
第二章 多元正态分布及参数的估计
故X=(X1,X2)′为二元正态随机向量.且
E(
X
)
4 3
,
D(
X
)
1 1
21
解三:两次配方法
(1)第一次配方: 2x12 2x1x2 x22 (x1 x2 )2 x12
2
]
g( y1, y2 )
设函数 g( y1, y2 ) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
Y
YY12
~
N2
7 4
,
I2
(4) 由于
X
X X
1 2
0 1
11
Y1 Y2
CY
0 1
11 74
34
,
0 1
11
I
2
0 1
11
1 1
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 2 若 X ( X1, X2 , X3 ) ~ N3 ( μ, Σ )
其中,
1
2
3
11 12 21 22
31 32

a (0,1,0)

A
1 0
0 0
0 1
,则
13
23
33
( 1) 其中
X1
aX
(0,1,
0)
X
2
X2
~
N (aμ, aΣa)
l
X
间的最大相关系数称为
2
X1和X2
间的复(或多重)相关系数(multiple correlation
coefficient),记作ρ1∙2,⋯,p, 它度量了一个变量X1与一组
变量X2, ⋯,Xp间的相关程度。
可推导出
12,
,p
max l0
X1, lX 2
σ21
Σ
σ 1
22 21
11
1
k p
, k
Σ
Σ11 Σ 21
Σ12 k
Σ22
p
k
k pk

Σ11
2
Σ11
Σ12
Σ 1 22
Σ21
为给定X2时X1的偏协方差矩
阵。记 Σ11 2 ij k1, , p ,称 ij k1, , p 为偏协方差,
它是剔除了 X2 Xk1, , X p 的(线性)影响之后,
Xi和Xj之间的协方差。
给定X2时Xi 和Xj的偏相关系数(partial correlation
coefficient)定义为: ij k1, , p
ij k1, , p ii k1, , p jj k1,
,
,p
其中 Σ11 2 ij k1, , p 。
1 i, j k
ρij∙k+1,⋯,p度量了剔除Xk+1, ⋯,Xp的(线性)影响之后,Xi
X
4
4
41
42
43
44
则(i)
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
c2

(ii)
X1 X4
~
N2
1 4
,
11 41
14 44

(iii)
X4 X1
~
N
3
4 1
44
,
14
41 11
互不相关和相互独立是等价的。
(7)设X~N p (μ, Σ), Σ>0,则
X μ Σ 1 X μ ~ 2 p
例4 设X~N3(μ,Σ),其中
3 0 0
Σ
0 0
5 1
11
则X2和X3不独立,X1和(X2,X3)独立。
(8)设X~N p (μ, Σ), Σ>0,作如下剖分
X
X1 X2
一、X 的抽样分布
1.正态总体
设X~Np (μ, Σ), Σ>0 ,X1,X2, ⋯,Xn是从总体X中抽取的 一个样本,则
X
N
p
μ,
1 n
Σ
2.非正态总体(中心极限定理) 设X1,X2, ⋯,Xn是来自总体X的一个样本,μ和Σ存在,当 n很大且n相对于p也很大时,上式近似地成立。
设样本资料可用矩阵表示为
X(a) ( X a1, X a2 , , X ap ) , a 1, 2, , n 。
(1) 样本均值向量定义为
μˆ
X
1 n
n a 1
X (a)
(X1, X2,
, X p )
(2.10)
其中
X11 X 21
1
n
n a1
X(a)
1 n
X
12
X1
p
X
22
X
2
p
(3)样本协差阵定义为
V p p
1 n
S
1 n
n
(X(a)
a1
X )( X(a)
X n1
X
n2
X
np
X11 X 21
1
X12
X 22
n
X1
p
X2p
X n1
X
n2
X X
1 2
X
np
X p
(2)样本离差阵定义为
n
S p p ( X (a) X )( X (a) X ) (sij ) pp a 1 (2.11)
这里,
k p
, k
μ
μ1 μ2
k p
, k
Σ
Σ11 Σ 21
Σ12 k
Σ22
p
k
k pk
则给定X2时X1的条件分布为 N k μ12 , Σ112 ,其中
μ12
μ1
Σ12
Σ
1 22
x2 μ2
Σ112
Σ11
Σ12
Σ 1 22
Σ 21
μ1·2和Σ11·2分别是条件数学期望和条件协方差矩阵,
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22

X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 , , X p ) 服从 p
元正态分布,则它的每个分量必服从一元正态分布,因此
'
1 2
t
't
)
,
AA'.
(2)设X是一个p维随机向量,则X服从多元正态分布,
当且仅当它的任何线性函数 aX 均服从一元正态分布。
➢ 性质(2)常可用来证明随机向量服从多元正态分布。
(3)设X~N p (μ, Σ),Y=CX+b其中C为r×p 常数矩阵,

Y ~ Nr Cμ b,CΣC
➢该性质表明,(多元)正态变量的任何线性变换仍为
f ( x1, x2 ) 2 e 2 (1 sin x1 sin x2 ) x1, x2 R
§2.2 多元正态分布的性质
正态变量的线性组合未必就是正态变量。
证明: 反证法。若命题 “一元正态变量X1,X2, ⋯,Xn 的一切线性组合一定是一元正态变量” 成立,则由 性质(2)知,X1,X2, ⋯,Xn的联合分布必为多元正态 分布,于是命题“一元正态变量的联合分布必为多元 正态分布”成立,从而矛盾。
X
X1 X2
,
μ
1 2
,
Σ
2 1
1 2
1 2
2 2
易见,ρ是X1和 X2的相关系数。当|ρ|<1时,可得X的
概率密度函数为:
f
x1,
x2
1
21 2
1
2
exp 2
1
1 2
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
二元正态分布的密度曲面图
2
例4 随机变量X1,⋯,Xp的任一线性函数F=l1X1+⋯+ lp Xp
与X1,⋯,Xp的复相关系数为1。
证明:
F 1,
,p
max a0
F , a1X1
F , l1X1 lp X p 1
F 1, , p 1
ap X p
二、偏相关系数
将X, Σ(>0)剖分如下:
X
X1 X2
把某个分量的 n 个样品值作成直方图,如果断定不呈正态 分布,则就可以断定随机向量 X ( X1, X 2 , , X p ) 也不
可能服从 p 元正态分布。
例3 设X~N4(μ, Σ),这里
X1
1
11 12 13 14
X
X2
,
μ
2
,
Σ
21
22
23
24
X3
3
31 32 33 34
(由10000个二维随机数生成)
4
0
0
2
0
y
-2
|ρ|越-2 大,长0 轴越长2 ,短轴越短-2,即椭0 圆越扁2 平;4
x
x
|ρ|越小,长轴越短 ,短轴越长,即椭圆越圆;
|ρ|=1时椭圆退化为一条线段;|ρ|=0时即为圆。
§2.2 多元正态分布的性质
(1)多元正态分布的特征函数是:
X
(t
)
exp(it
n
( X (a) X )( X (a) X )
a 1
n
X a1 Xa2
X1 X2
(
X
a1
X1,
X
a2
X
2
,
a1
X ap X p
, X ap X p )
n
( X a1 X1)2
( X a2 X 2 )( X a1 X1)
a1
( X a1 X1)( X a2 X 2 ) (Xa2 X2)2
下图是当
2 1
2 2
,
0.75 时二元正态分布的钟形密
度曲面图。
二元正态分布等高线
等高(椭圆)线:
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
c2
上述等高线上的密度值
f
x1, x2
1
21 2
1
2
exp
2
相关文档
最新文档