菱形的性质与判定的应用
《菱形》 知识清单

《菱形》知识清单一、菱形的定义菱形是一种特殊的平行四边形,它具有平行四边形的所有性质,同时还具有一些独特的性质。
在一个平面内,一组邻边相等的平行四边形是菱形。
需要注意的是,仅仅是邻边相等的四边形不一定是菱形,必须是平行四边形的前提下,邻边相等才是菱形。
二、菱形的性质1、边的性质菱形的四条边都相等。
这是菱形区别于一般平行四边形的最显著特征之一。
因为平行四边形的对边相等,而菱形在此基础上,邻边也相等,所以四条边长度均相等。
2、角的性质菱形的对角相等,邻角互补。
这与平行四边形的角的性质是相同的。
3、对角线的性质(1)菱形的对角线互相垂直且平分。
对角线的互相垂直是菱形的一个重要性质,这使得菱形的对角线将菱形分成了四个全等的直角三角形。
(2)每条对角线平分一组对角。
这意味着菱形的对角线不仅将角平分,而且还将菱形分成了对称的两部分。
4、对称性菱形是轴对称图形,它的两条对角线所在的直线就是其对称轴。
同时,菱形也是中心对称图形,其对称中心是两条对角线的交点。
5、面积菱形的面积可以用多种方法计算。
(1)可以用底乘以高来计算,就像计算平行四边形的面积一样。
(2)由于菱形的对角线互相垂直,所以其面积还可以用对角线乘积的一半来计算。
即 S = 1/2 ×对角线 1 ×对角线 2 。
三、菱形的判定1、一组邻边相等的平行四边形是菱形。
这是菱形的基本判定方法,从定义出发,强调了在平行四边形的基础上,只要有一组邻边相等即可。
2、对角线互相垂直的平行四边形是菱形。
通过对角线的特殊性质来判定,如果一个平行四边形的对角线互相垂直,那么它就是菱形。
3、四条边都相等的四边形是菱形。
直接从边的长度来判定,当一个四边形的四条边长度都相等时,它必然是菱形。
四、菱形性质与判定的应用1、在几何证明中的应用在证明几何问题时,如果已知条件中涉及到菱形,就可以利用菱形的性质来得出相关的结论。
例如,如果已知一个四边形是菱形,那么可以得出它的对角线互相垂直、四条边相等等结论,从而为进一步的证明提供依据。
《菱形的判定》教案

《菱形的判定》教案教案:菱形的判定一、教学目标1.理解菱形的定义和性质。
2.能够判断一个四边形是否为菱形。
3.能够根据菱形的性质解决一些几何问题。
二、教学重难点1.菱形的定义和性质。
2.如何判断四边形是否为菱形。
3.如何应用菱形的性质解决几何问题。
三、教学方法1.理论授课相结合的方法。
2.案例分析法和讨论法,培养学生的分析和解决问题的能力。
四、教学步骤1.导入(5分钟)通过展示一些几何图形,让学生回答这些图形是否为菱形,引起学生对菱形的兴趣和思考。
2.理论讲解(20分钟)a)定义:什么是菱形?菱形是指四条边相等的四边形。
b)性质:-对角线的长度相等。
-对角线相互垂直。
-相邻角的和为180度。
-具有对称性。
-内角均是直角。
-具有平移不变性。
3.判断菱形的方法(15分钟)a)根据定义:判断四边形的四条边是否相等。
b)根据性质:判断四边形的对角线是否相等,是否互相垂直。
4.案例分析(20分钟)给出一些几何图形,让学生判断是否为菱形,并解释判断的过程和原因。
5.拓展应用(20分钟)a)设计一些菱形的几何问题,让学生应用菱形的性质解决。
b)分组讨论,学生互相出题并进行解答。
五、教学反思本节课通过对菱形的定义和性质的讲解,让学生对菱形有了初步的了解。
通过判断菱形的方法和解决菱形相关问题的练习,培养了学生的观察能力、分析和解决问题的能力。
此外,通过案例分析和拓展应用,提高了学生的思维能力和创造能力。
总之,本节课通过理论讲解和实际应用相结合的方法,使学生对菱形的理解更加深入,能够灵活运用菱形的性质解决几何问题。
菱形的性质及判定

1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线. 以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中 位线,再用中位线的性质.中点中点中点平行定理:三角形的中位线平行第三边且长度等于第三边的一半.板块一、菱形的性质【例1】 菱形的两条对角线将菱形分成全等三角形的对数为【例2】 在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例3】 如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.菱形的性质及判定图21CBA【例4】 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.【例5】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.P HFE DCBA【例6】 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .图1HO DC BA【例7】 如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例8】 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .【例9】 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为E FDBCA【例10】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8图2DCBA【例11】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例12】 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒【例13】 菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ⊥,AF CD ⊥,那么EAF ∠等于 .【例14】 已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________.【例15】 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm图1DCBA【例16】已知菱形ABCD的两条对角线AC BD,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例17】如图,菱形花坛ABCD的周长为20m,60ABC∠=︒,•沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积.图2【例18】如图,在菱形ABCD中,4AB a E=,在BC上,2120BE a BAD P=∠=︒,,点在BD上,则PE PC+的最小值为DB【例19】已知,菱形ABCD中,E、F分别是BC、CD上的点,若AE AF EF AB===,求C∠的度数.FEDCBA【例20】已知,菱形ABCD中,E、F分别是BC、CD上的点,且60B EAF∠=∠=︒,18BAE∠=︒.求:CEF∠的度数.FEDCBA板块二、菱形的判定【例21】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【例22】 如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA【例23】 如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.EDCB A【例24】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例25】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例26】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分AB CDEF P PF EDC B A【例27】 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA【例28】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DMEP 是菱形.PMF E DG CBA【例29】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.H F DECBA【例30】 如图,M 是矩形ABCD 内的任意一点,将MAB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形; ⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?M'MDC BA【例31】 如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.FEDCBA三、与菱形相关的几何综合题【例32】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?MPFABCDE【例33】 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题:⑴ 写出上面问题中线段PG 与PC 的位置关系及PGPC的值;⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明.⑶ 若图1中()2090ABC BEF αα∠=∠=︒<<︒,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,求PGPC的值(用含α的式子表示). 图2AB CDEFG P四、中位线与平行四边形【例34】 顺次连结面积为20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一个 ,其面积为 .【例35】 如图,在四边形ABCD 中,AB CD ≠,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还满足的一个条件是 ,并说明理由.HGFE D CBA【例36】 在四边形ABCD 中,AB CD =,P ,Q 分别是AD 、BC 的中点,M ,N 分别是对角线AC ,BD中点,证明:PQ 与MN 互相垂直.Q PMNB D A【例37】 四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小 C .线段EF 的长不变D .线段EF 的长与点P 的位置有关P FREDCBA【例38】 如图,ABC ∆中,AD 是BAC ∠的平分线,CE AD ⊥于E ,M 为BC 的中点,14cm AB =,10cm AC =,则ME 的长为 .M EDCBA【例39】 如图,四边形ABCD 中,AB CD =,E F ,分别是BC AD ,的中点,连结EF 并延长,分别交BA CD,的延长线于点G H ,,求证:BGE CHE ∠=∠ABH G FEDC BA【例40】 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA【例41】 如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤ADFEDCBA【例42】 已知如图所示,E 、F 、G 、H 分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.HGFDC BA【例43】 如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.QEP NMDCBA【例44】 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH,相互垂直平分ABGHGFEDCBA【例45】 ABC ∆的三条中线分别为AD 、BE 、CF ,H 为BC 边外一点,且BHCF 为平行四边形,求证:AD EH ∥.ABCDE FH【例46】 在平行四边形ABCD 的对角线BD 上取一点E ,使13BE DE =,连接AE 并延长与DC 的延长线交于F ,则2CF AB =.图1CAEDBF【例47】 如图,ABC ∆中,E 、F 分别是AB 、BC 的中点,G 、H 是AC 的三等分点,连结并延长EG 、FH 交于点D .求证:四边形ABCD 是平行四边形.HGFEDCBA【例48】 如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC =,BD 和AC 相交于点O ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF =.FE ONM D CBA【例49】 如图,线段AB CD ,相交于点O ,且AB CD =,连结AD BC ,,E F ,分别是AD BC ,的中点,EF分别交AB CD ,于M N ,,求证:OM ON =A CFEO N M DCBA【例50】 如图,梯形ABCD 中,AD BC AB CD =∥,,对角线AC BD ,相交于点O ,60AOD ∠=︒,E F G,,分别是OA OB CD ,,的中点,求证:EFG ∆是等边三角形A BEFO G FE DC BA【例51】 如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.OE FLHNMDCB A【例52】 如图,O 是平行四边形ABCD 内任意一点,E F G H ,,,分别是OA OB OC OD ,,,的中点.若DE ,CF 交于P ,DG ,AF 交于Q ,AH ,BG 交于R ,BE ,CH 交于S ,求证:PQ SR =.SR QPH GOEFDCB A。
中考数学总复习知识点专题讲解14---菱形的性质与证明的综合应用

中考数学总复习知识点专题讲解 专题 14 正方形的性质与证明的综合应用一、知识点综述 1. 菱形性质(“三板斧”) ①边——两组对边分别平行且相等,邻边相等; ②角——两组对角分别相等; ③对角线——两条对角线垂直且互相平分,每条对角线平分一组对角.2. 菱形判定(“菱形三兄弟”) ①一组邻边相等的平行四边形是菱形; ②对角线垂直的平行四边形是菱形; ③四条边相等的四边形是菱形. ☆这“三兄弟”在证明菱形的过程中是互通的,“你中有我,我中有你”,要熟记.3. 对角线垂直的四边形的面积等于对角线乘积的一半. (面积法)二、基本图形图形条件结论四边形 ABCD 对角线 AC⊥BD1S四边形ABCD = 2 × AC × BDAD2 + BC2 = AB2 + CD21 / 14∠A=30°,∠C=90°c = 2a b = 3a a= 3b3边长为 a 的菱形,一个 内角为 60°对角线长分别为a和 3a S = 3 a2 2三、典型例题选讲题 1. 如图 1-1,边长为 2 菱形 ABCD 中,∠DAB=60°,连接对角线 AC,以 AC 为边作第二个菱形 ACC1D1,使∠D1AC=60°;连接 AC1,再以 AC1 为边作第三个菱形 AC1C2D2,使∠D2AC1=60°;…,按此 规律所作的第 n 个菱形的边长为.( )n+1【 答案】 2 × 3 .图 1-1【解析】解:∵四边形 ABCD 是菱形,∠DAB=60°,∴AD=AB.∠DAC=∠DCA=30°根据基本图形,可得:∴AC= 3AB = 2 3 .( ) ( ) ( ) 2n +1n +1同理可得 AC1=3AC ,AC2=3AC 1=3 AC ……,ACn+1=3AC = 2 × 32 / 14( )n+1故答案为: 2 × 3 . 题 2. 如 图 2-1 所示,四边形 ABCD 是菱形,AC=24,BD=10,DH⊥AB 于点 H,则 线段 BH 的长为________.图 2-1 50 【答案】 13 . 【解析】解:由菱形性质知:AO=12,BO=5, 在 Rt△AOB 中,由勾股定理得:AB=13.1所以 S菱形ABCD =AB ⋅ DH = 2 × AC ⋅ BD120 即 BH= .13 50在 Rt△BDO 中,由勾股定理得:BH= 13 50故答案为: 13 . 题 3. 如图 3-1 所示,在边长为 2 的菱形 ABCD 中,∠DAB=60°,E 为 AB 的中点,F 是 AC 上一动点,则 EF+BF 的最小值为________.图 3-1 【答案】 3 . 【解析】解:由菱形性质知:点 B 与点 D 关于 AC 对称,连接 DE, 线段 DE 长即为 EF+BF 的最小值,连接 BD,如图 3-2 所示.3 / 14图 3-2 因为∠DAB=60°, 所以△ABD 为等边三角形. 又 E 是 AB 的中点, 所以 DE⊥AB. 在△ADE 中,∠ADE=30°,A D=2,所以 AE=1,DE= 3 . 故答案为: 3 . 题 4. 如图 4-1 在菱形 ABCD 中,∠ABC=60°,E 是对角线 AC 上任意一点,F 是线段 BC 延长线上一点,且 CF=AE,连接 BE,EF. (1)如图 4-1,当 E 是线段 AC 的中点时,求证:BE=EF. (2)如图 4-2,当 E 不是线段 AC 的中点,其他条件不变时,请你判断(1)中的结论: ________(填“成立”或“不成立”). (3)如图 4-3,当 E 是线段 AC 延长线上的任意一点,其他条件不变时,(1)中的结论是否 成立?若成立,请给予证明;若不成立,请说明理由.图 4-1图 4-2【答案】(1)见解析;(2)成立;(3)见解析.4 / 14图 4-3【解析】(1)证明:∵四边形 ABCD 是菱形, ∴AB=BC. 又∵∠ABC=60°, ∴△ABC 是等边三角形, ∴∠BCA=60°. ∵E 是线段 AC 的中点, ∴∠CBE=∠ABE=30°,AE=CE. ∵CF=AE, ∴CE=CF,1 ∴∠F=∠CEF=2∠BCA=30°, ∴∠CBE=∠F=30°, ∴BE=EF. (2)成立. 可过 E 作 EG∥BC 交 AB 于点 G. (3)成立.理由如下: 过点 E 作 EG∥BC 交 AB 的延长线于点 G,如图 4-4 所示.图 4-4 ∵四边形 ABCD 为菱形,∴AB=BC. 又∵∠ABC=60°,∴△ABC 是等边三角形, ∴AB=AC,∠ACB=60°,∴∠ECF=60°. ∵EG∥BC,5 / 14∴∠AGE=∠ABC=60°. 又∵∠BAC=60°,∴△AGE 是等边三角形, ∴AG=AE=GE, ∴BG=CE,∠AGE=∠ECF. 又∵CF=AE, ∴GE=CF, ∴△BGE≌△ECF, ∴BE=EF. 题 5. 如图 5-1 所示,在菱形 ABCD 中,AB=10,对角线 AC 与 BD 相交于点 O,且 AC: BD=3:4,AE⊥CD 于点 E,则 AE 的长是图 5-1 【答案】9.6. 【解析】解:由菱形性质知:AO=OC,BO=DO,AC⊥BD, 设 AO=OC=3x,BO=DO=4x, 在 Rt△AOB 中,由勾股定理得:AB=5x=10. 所以,x=2,即 AC=6x=12,BD=8x=16.1所以 S菱形ABCD =CD ⋅ AE = 2 × AC ⋅ BD可得:AE=9.6. 故答案为:9.6. 题 6. 如图 6-1 所示,在菱形 ABCD 中,∠BAD=60°,M 为对角线 BD 延长线上一点,6 / 14连接 AM 和 CM,E 为 CM 上一点,且满足 CB=CE,连接 BE,交 CD 于点 F. (1)若∠AMB=30°,且 DM=3,求 BE 的长; (2)求证:AM=CF+DM.图 6-1 【答案】见解析. 【解析】解:(1)∵四边形 ABCD 是菱形,∠BAD=60°, ∴△ABD,△BCD 都是等边三角形,AB=BC, ∵∠AMB=30°,∠ADB=∠AMB+∠DAM, ∴∠DAM=∠AMB, ∴∠BAM=90°,DA=DM=AB=CB=CE=3. 在△BMA 和△BMC 中,∵BM=BM,∠MBA=∠MBC,AB=CB,∴△BMA≌△BMC, ∴∠BCM=∠BAM=90°. ∴在 Rt△BCE 中,由勾股定理得:BE= 3 2 . (2)证明:如图 6-2 所示,在 BD 上取一点 G,使得 BG=DF,连接 CG 交 BE 于点 O.7 / 14图 6-2 ∵BG=DF,∠CBG=∠BDF,CB=BD, ∴△GBC≌△FDB, ∴∠BGC=∠BFD,∠DBF=∠BCG, ∴∠MGC=∠BFC,∠COF=∠CBO+∠OCB=∠CBO+∠DBF=60°. 又∠ECO+∠COE+∠CEO=180°,∠BFC+∠CBE+∠BCF=180°, ∵∠CBE=∠CEO ∵∠BCF=∠COE=60°, ∴∠ECO=∠BFC=∠MGC, ∴MC=MG. 由(1)可知 AM=MC=MG. ∵MG=DG+DM,BD=CD,BG=DF, ∴DG=CF,∴AM=CF+DM. 题 7. 如图 7-1 所示,菱形 ABCD 中,点 E、F 分别为 AB、AD 的中点,连接 CE、CF. (1)求证:CE=CF; (2)如图 7-2,若 H 为 AB 上一点,连接 CH,使∠CHB=2∠ECB,求证:CH=AH+AB.【答案】见解析.图 7-1图 7-28 / 14【解析】(1)证明:∵四边形 ABCD 是菱形,∴∠B=∠D,AB=BC=CD=AD,∵点 E、F 分别为 AB、AD 的中点,11∴BE= AB,DF= AD,22∴BE=DF,∴△BCE≌△DCF,∴CE=CF;图 7-3 (2)证明:延长 BA、CF,交于点 G,如图 7-3 所示. 由菱形性质可知: ∠B=∠D ,AB=BC=CD=AD,AF∥BC,AB∥CD, ∴∠G=∠FCD, ∵点 F 分别为 AD 的中点,且 AG∥CD, ∴AG=AB, 由(1)知:∠ECB=∠DCF, ∵∠CHB=2∠ECB, ∴∠CHB=2∠G, ∵∠CHB=∠G+∠HCG, ∴∠G=∠HCG, ∴GH=CH,9 / 14∴CH=AH+AG=AH+AB. 题 8. 如图 8-1 所示,在菱形 ABCD 中,若边 AB 的长等于 4,∠BAD=120°,点 E,F 分别在菱形的边 BC,CD 上滑动,且△AE F 为等边三角形,点 E,F 不与点 B,C,D 重合. (1)求证:BE=CF. (2)当点 E,F 在滑动时,四边形 AECF 的面积是否会发生变化?如果不变,求出这个 定值;如果变化,请说明理由.图 8-1 【答案】见解析. 【解析】(1)证明:∵在菱形 ABCD 中,∠BAD=120°,1 由菱形性质,得:∠B=60°,∠BAC=2∠BAD=60°, ∴△ABC 为等边三角形,即 AB=BC=AC. ∵△AEF 为等边三角形,即 AE=AF,∠EAF=60°, ∴∠BAE=∠CAF,∴△BAE≌△CAF,∴BE=CF. (2)四边形 AECF 的面积不会发生变化.理由如下: 由(1)知:△BAE≌△CAF,∴S△ABE=S△ACF,△ △ △ ∴S 四边形 AECF=S△AEC+S△ACF=S AEC+S ABE=S ABC.∵∵ABC 的面积是定值, ∴四边形 AECF 的面积不会发生变化.10 / 14图8-2如图8-2所示,过点A 作AH ⊥BC 于点H .∵AB =4,∠BAH =30°,∴BH =12BC =2, 在Rt ∵ABH 中,由勾股定理得:AH =,∴S 四边形AECF =S △ABC =12BC ·AH =题9. 如图9-1所示,在正方形ABCD 中,以对角线BD 为边作菱形BDFE ,使B ,C ,E 三点在同一直线上,连接BF ,交CD 与点G .(1)求证:CG =CE ;(2)若正方形边长为4,求菱形BDFE 的面积.图9-1【答案】见解析.【解析】(1)证明:因为以正方形ABCD 的对角线BD 为边作菱形BDFE ,所以BD =BE ,∠BDG =45°图9-2连接GE ,如图9-2所示.AD F B CE G AD FB C E G因为BD=BE,BG=BG,∠DB 所以∵DBG≌∵EBG,所以∠GEB=∠BDG=45°,所以∠GEB=∠CGE=45°所以CG=CE.(2)因为正方形边长为4,所以BD= BE=,所以菱形BDFE的面积等于题10. 如图10-1所示,在Rt 的平分线AD交BC于点D,求证:四边形ADCF是菱形【答案】见解析.【解析】证明:∵AF∥CD,∴∠AFE=∠CDE,在∵AFE和∵CDE中,∠FAE ∴∵AEF≌∵CED.AF=CD∵AF∥CD,∴四边形ADCF是平行四边形,AC=2AB,∠BAC 于点F,连接FC.,由题意知,AE =AB ,∠EAD ∴∵AED ≌∵ABD .∴∠AED =∠B =90°,即DF ∴四边形ADCF 是菱形.题11. 如图11-1所示,在菱形且与边AD 、BC 分别交于点(1)请你判断OM 和ON 的数(2)过点D 作DE ∥AC 【答案】见解析.【解析】解:(1)∵四边形∴AD ∥BC ,AO =OC ,∠∴∵AOM ≌∵CON∴OM =ON .(2)∵四边形ABCD 是菱形∴AC ⊥BD ,AD =BC =AB =3∴在Rt ∵AOB 中,由勾股定理∴BD=∵DE ∥AC ,AD ∥CE ,∴四边形ACED 是平行四边形∴DE =AC =6,AD =∠BAD ,AD =AD ,⊥AC .在菱形ABCD 中,对角线AC 与BD 相交于点于点M 和点N .的数量关系,并说明理由; 交BC 的延长线于点E ,当AB =3,AC =4时,边形ABCD 是菱形,AOM =∠CON ,∠MAO =∠NCO菱形,,股定理得:BO,四边形,于点O ,MN 过点O ,求∵BDE 的周长.∴∵BDE的周长为:BD+DE+BE=BD+AC+(BC+CE)=(3+3)=10+即∵BDE的周长是10+.。
菱形的定义和性质

菱形的定义和性质
一、菱形的定义:一组邻边相等的平行四边形叫做菱形。
二、菱形的性质:
1、对角线互相垂直且平分;
2、四条边都相等;
3、对角相等,邻角互补;
4、每条对角线平分一组对角;
5、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形;
6、在60度的菱形中,短对角线等于边长,长对角线是短对角线的根号3倍;
7、菱形具备平行四边形的一切性质。
三、菱形的判定:
1、一组邻边相等的平行四边形是菱形;
2、四边相等的四边形是菱形;
3、关于两条对角线都成轴对称的四边形是菱形;
4、对角线互相垂直且平分的四边形是菱形。
菱形定义、性质及判定

菱形
1.
2.
菱形是特殊的平行四边形,它具有平行四边形的所有性质,
还具有自己独特的性质:
①边的性质:对边平行且四边相等
②角的性质:邻角互补,对角相等
③对角线性质:对角线互相垂直平分且每条对角线平分组对角
④对称性:菱形是中心对称图形,也是轴对称图形。
菱形的面积等于底乘以高,等于对角线乘积的一半。
【点评】:只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.
3.
① 一组邻边相等的平行四边形是菱形;
② 对角线互相垂直的平行四边形是菱形;
③ 四边相等的四边形是菱形。
菱形的性质和判定教案

菱形的性质和判定教案一、教学目标1. 知识与技能:(1)理解菱形的定义和性质;(2)学会菱形的判定方法;(3)能够运用菱形的性质和判定方法解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等过程,发现菱形的性质;(2)利用菱形的性质和判定方法,解决几何问题。
3. 情感态度与价值观:(1)培养学生的观察能力、推理能力;(2)激发学生对几何图形的兴趣,培养学生的审美观念。
二、教学重点与难点1. 教学重点:(1)菱形的性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的推导;(2)菱形判定方法的灵活运用。
三、教学准备1. 教具:菱形模型、直尺、量角器、多媒体设备。
2. 学具:菱形纸片、彩笔、剪刀、胶水。
1. 导入新课(1)利用多媒体展示各种菱形图案,引导学生观察菱形的特征;(2)提问:什么是菱形?请大家尝试画出一个菱形。
2. 探究菱形的性质(1)学生分组讨论,总结菱形的性质;(2)教师引导学生得出菱形的性质:四条边相等,对角线互相垂直平分。
3. 推导菱形性质(1)利用菱形模型,引导学生观察、操作,推导菱形的性质;(2)学生动手操作,验证菱形性质。
4. 学习菱形的判定方法(1)引导学生思考:如何判断一个四边形是菱形?;(2)学生分组讨论,总结菱形的判定方法:四条边相等或对角线互相垂直平分。
5. 练习与应用(1)教师出示练习题,学生独立完成;(2)利用菱形的性质和判定方法,解决实际问题。
五、课堂小结1. 师生共同总结本节课所学的菱形的性质和判定方法;2. 强调菱形性质和判定方法在几何中的应用。
六、课后作业1. 完成练习册的相关题目;2. 收集生活中的菱形图案,下节课分享。
1. 对比正方形和菱形,分析它们的异同点;2. 引导学生思考:还有其他判定菱形的方法吗?七、课堂练习1. 教师出示练习题,学生独立完成;2. 学生之间互相讲解,交流解题思路。
八、教学反思1. 教师总结本节课的教学效果;2. 学生反馈学习过程中的困惑和问题;3. 针对问题,教师进行教学调整。
菱形的性质与判定

1.1 菱形的判定和性质
一、菱形的定义:
有一组邻边相等的平行四边形是菱形。
二、菱形的性质:菱形是特殊的平行四边形,菱形具有平行四边形的所有性质。
1、边——四条边都相等;
2、角——对角相等,邻角互补;
3、对角线———对角线互相垂直且平分;
4、对角线与对角——每条对角线平分一组对角.
5、对称性:菱形是轴对称图形,对称轴是两条对角线所在的直线,也是中心对称图形。
6、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
三、菱形的判定:
1、一组邻边相等的平行四边形是菱形。
2、对角线互相垂直平分的四边形是菱形。
3、四边相等的四边形是菱形。
4、关于两条对角线都成轴对称的四边形是菱形。
四、菱形面积:
1.对角线乘积的一半(只要是对角线互相垂直的四边形都可用)
2.底乘高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生先独立思考后一认识: 得到的四边形 ABCD 是菱形。 理由是: 这个四边形的两组对边分别在纸条的边缘上,它们彼此平 行,它是平行四边形;分别以一组邻边为底写出这个平行 四边形的面积(都是底乘高),再由纸条等宽即它们的高相 等,立即得到这组邻边相等. 四、巩固新知,随堂练习 1、如图,在菱形 ABCD 中, BAD 120, AC 6cm , 求此菱形的周长和面积。 教 学 过 程
B C A D
2、课本 P6 随堂练习 1、2 题。 3、习题 1.3 第 5 题。 五、课堂小结 菱形面积的计算方法: 菱形的面积等于两条对角线长的乘积的一半。 六、布置作业 习题 1.3 第 1,3,4 题。
教 学 反 思
3
1
C
Rt AOB Rt BOC Rt COD Rt AOD 1 1 1 1 ∴ S 菱形ABCD 4S RtAOB 4 AC BD AC BD 2 2 2 2
即菱形的面积等于两条对角线长的乘积的一半。 2、菱形面积计算公式的应用 例 如图,四边形 ABCD 是边长为 13cm 的菱形,其中 对角线 BD 长为 10cm,求: (1)对角线 AC 长, (2)菱形 ABCD 的面积。 学生先独立思考后,再小组内讨论、 交流,达成共识后,书写过程。 解(1)∵四边形 ABCD 是菱形,
九年级(上)数学科集体备课教案
课 题 §1.1 菱形的性质与判定(3) 课 型 新授 课时 1 主备人 备课时间 执 教 上课时间
知识与能力: 1、探索菱形的面积计算公式,并运用其进行有关计算。 2、能够综合应用菱形的性质定理与判定定理进行相关的证明 教学 目标 和计算。 过程与方法:通过相关证明和计算,进一步发展逻辑思维能力与推理论证 能力。 情感态度与价值观:在操作活动过程中,培养学生的观察、思维能力,并 提高学生的学习兴趣。 重点 难点 教法 1、利用菱形的面积计算公式进行有关计算和证明。 2、菱形性质定理和判定定理的综合应用。 菱形面积计算公式的推导 引导、探究、合作、交流, 集 体 备 课 个 案 修 改 一、复习回顾,引入新课。 1、复习菱形的性质定理和判定方法。 菱形的性质定理: 1 菱形的四条边相等。 ○ 2 菱形的对角线互相垂直。 ○ 菱形的判定方法: 教 学 过 程 1 定义:有一组邻边相等的平行四边形是菱形。 ○ 2 判定定理 1: 对角线互相垂直的平行四边形是菱形。 ○ 3 判定定理 2:四边相等的四边形是菱形。 ○ 2、菱形是特殊的平行四边形,那么你知道菱形面积的 一般计算方法是什么吗?(引入菱形面积计算公式) 二、合作探究,学习新知。 1、菱形面积计算公式 由菱形的性质可知,菱形的对角线互相垂直平分。想 一想,图中的四个直角三角形有怎样的关系? B A 学生很容易得到: O D
AC 与 BD 相较于点 E ,
A
B
E
D
∴ AED 90 ,
DE 1 1 BD 10 5cm 2 2
C
教 学 过 程
∴ AE AD2 DE 2 132 52 12 ∴
AC 2 AE 2 12 24
(2) 菱形 ABCD 的面积 1 = AC BD 2 1 = 24 10 2 =120( cm2 ) 3.做一做 如图,两张等宽的纸条交叉重叠在一起,重叠的部分 四边形 ABCD 是菱形吗?为什么?