菱形的性质与判定教学设计
鲁教版(五四制)数学八年级下册6.1.3菱形的性质与判定教学设计

5.小组合作:布置一道小组合作的探究题,要求学生通过讨论、分析,共同探究以下问题:如何利用菱形的性质设计一幅美丽的图案?并在下一节课上分享探究成果,培养学生的团队协作能力和创造力。
此外,学生在之前的学习中,已经积累了观察、猜想、验证等探究方法的经验,具备了一定的自主学习能力。但在团队合作、交流讨论方面,部分学生仍显得不够积极主动。因此,在本章节的教学中,教师应注重引导学生积极参与课堂活动,培养他们的团队协作能力和表达能力。
此外,考虑到学生的年龄特点,他们对新奇、有趣的事物充满好奇心,教师可以通过设置有趣的情境和问题,激发学生的学习兴趣,使他们更加投入到菱形性质与判定的学习中。总之,教师要充分了解学生的实际情况,有的放矢地进行教学设计,使学生在轻松愉快的氛围中掌握本章节的知识。
(3)邻边法:有一组邻边相等的平行四边形是菱形。
4.例题讲解:教师通过例题,讲解如何运用菱形的性质和判定方法解决实际问题。
(三)学生小组讨论
1.教学活动:学生分小组,讨论以下问题:
(1)菱形与矩形、正方形有什么关系?
(2)如何利用菱形的性质解决实际问题?
(3)如何判定一个四边形是菱形?
2.小组代表分享:各小组代表分享讨论成果,其他同学补充。
(2)探究性质:组织学生观察、猜想、验证菱形的性质,总结出菱形的特征;
(3)学习判定:引导学生运用已知的几何知识,探讨菱形的判定方法,并举例说明;
(4)巩固练习:设计不同难度的练习题,让学生独立或合作完成,巩固所学知识;
(5)拓展应用:将菱形的性质和判定方法运用到实际问题中,提高学生解决问题的能力;
菱形的性质和判定教案

菱形的性质和判定教案一、教学目标:1. 知识与技能:(1)能说出菱形的定义及性质;(2)学会菱形的判定方法;(3)能运用菱形的性质和判定解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等过程,发现菱形的性质;(2)运用菱形的判定方法,解决相关问题。
3. 情感态度与价值观:培养学生对几何图形的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)菱形的性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的证明;(2)菱形判定方法的运用。
三、教学准备:1. 教师准备:(1)多媒体课件;(2)几何模型;(3)练习题。
2. 学生准备:(1)预习菱形的定义及性质;(2)了解判定方法的基本概念。
四、教学过程:1. 导入新课:(1)复习矩形、正方形的性质;(2)提问:矩形、正方形有什么特殊的几何性质?(3)引导学生思考:是否存在一种四边形,它的对角线互相垂直且平分对方?2. 探究菱形的性质:(1)分发几何模型,让学生实际操作;(2)引导学生观察、发现菱形的性质;(3)师生共同总结菱形的性质。
3. 证明菱形性质:(1)引导学生运用已知性质证明菱形性质;(2)分组讨论,分享证明方法;(3)教师点评,完善证明过程。
4. 学习菱形的判定方法:(1)介绍菱形判定方法;(2)让学生举例说明判定方法的应用;(3)师生共同总结判定方法。
5. 练习与拓展:(1)分发练习题,让学生独立完成;(2)讲解练习题,巩固所学知识;(3)拓展思考:菱形在实际生活中有哪些应用?五、课后作业:1. 复习本节课所学内容,总结菱形的性质和判定方法;2. 完成课后练习题;3. 探索菱形在实际生活中的应用。
六、教学评价:1. 知识与技能:(1)学生能准确地描述菱形的性质;(2)学生能运用菱形的判定方法解决问题。
2. 过程与方法:(1)学生能通过观察、操作、推理等过程,发现菱形的性质;(2)学生能运用菱形的判定方法,解决相关问题。
菱形的性质和判定教案

菱形的性质和判定教案第一章:菱形的定义和性质1.1 菱形的定义引导学生回顾四边形的定义,引入菱形的概念。
通过图形展示,让学生理解菱形是由四条边相等的四边形。
1.2 菱形的性质介绍菱形的四条边相等的性质。
引导学生观察菱形的对角线性质,得出对角线互相垂直且平分的性质。
引导学生探索菱形的对角线与边的夹角,得出均为直角的性质。
第二章:菱形的判定2.1 判定一个四边形为菱形的条件引导学生运用菱形的性质,判断一个四边形是否为菱形。
强调四条边相等是判定的关键条件。
2.2 对角线互相垂直且平分的四边形为菱形通过图形展示,让学生理解对角线互相垂直且平分的四边形必定是菱形。
引导学生运用这个判定条件,解决相关问题。
第三章:菱形的面积3.1 菱形的面积计算公式引导学生回顾三角形和矩形的面积计算公式。
引入菱形的面积计算公式,即对角线乘积的一半。
3.2 应用菱形的面积公式解决问题通过例题,让学生运用菱形的面积公式解决问题。
引导学生注意对角线长度和角度的关系,以便准确计算面积。
第四章:菱形的对角线4.1 菱形的对角线长度引导学生观察菱形的对角线长度,得出对角线长度相等的性质。
通过几何证明,引导学生理解对角线长度相等的证明方法。
4.2 菱形的对角线与边的夹角引导学生观察菱形的对角线与边的夹角,得出均为直角的性质。
通过几何证明,引导学生理解对角线与边的夹角为直角的证明方法。
第五章:菱形的对称性5.1 菱形的轴对称性引导学生观察菱形的对称性,得出菱形具有轴对称性的性质。
通过图形展示,让学生理解菱形有两组对称轴。
5.2 菱形的中心对称性引导学生观察菱形的对称性,得出菱形具有中心对称性的性质。
通过图形展示,让学生理解菱形的中心对称性。
第六章:菱形的画法6.1 菱形的画法步骤介绍菱形的画法步骤,包括确定边长、画对角线、分割四边形等。
通过示例,引导学生逐步完成菱形的绘制。
6.2 应用菱形的画法解决问题通过例题,让学生运用菱形的画法解决问题,如绘制特定的菱形图案。
菱形的性质与判定教学设计与导学案

1.1菱形的性质与判定1.1.1《菱形的性质与判定》教学设计教材分析:本节课是菱形的第1课时,主要内容是菱形的性质,为了体现新课标的要求,在性质的教学方面,采用直观操作和几何论证相结合的探究式的教学方法,即关注学生学习的结果,更关注他们学习的过程,进一步培养学生的形象思维和逻辑推理能力.在学生的学习方式上,采用动手实验、自主探索与合作交流相结合的方式,使学习过程直观化、形象化。
此外,生活中菱形的广泛应用反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
一、教学目标:1. 了解菱形的概念及其与平行四边形的关系,体会菱形的轴对称性,掌握菱形的性质;2. 经历利用折纸等活动探索菱形的性质的过程,发展合情推理的能力。
3.进一步体会证明的必要性以及计算与证明在解决问题中的作用。
教学重点:掌握菱形的性质和定理,以及证明方法。
教学难点:运用综合法证明菱形的性质定理。
二、温故知新:1. 平行四边形的定义:。
2. 平行四边形的性质?3. 什么是轴对称图形?三、自主探究:阅读课本p2—41、菱形的定义:叫做菱形。
菱形是_的平行四边形。
2、菱形的性质(1) 菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?(2) 请同学们用菱形纸片折一折,回答下列问题:① 菱形是轴对称图形吗?A② 如果是,它有几条对称轴?③ 对称轴之间有什么位置关系?④ 菱形中有哪些相等的线段?【归纳】:菱形与平行四边形比较,又有其特殊的性质:特殊在“边”上的性质是 特殊在“对角线”上的性质是:四、合作探究:请独立证明菱形的性质定理: 教学设计C D1.菱形的四条边都相等已知:求证:证明:2.菱形的对角线互相垂直,并且每条对角线平分一组对角.已知:求证:证明:五、例题解析【例1】如图1-2,在菱形ABCD中,对角线AC与BD相交于点O,ZBAD=60°,BD=6,求菱形的边长AB和对角线AC的长。
六、随堂练习如图,在菱形ABCD中,对角线AC与BD相交于点O.已知AB=5cm,A0=4cm,求BD的长.七、知识小结:1、菱形的定义:一组相等的平行四边形是菱形。
1.1.3菱形的性质与判定教学设计2023--2024学年北师大版九年级数学上册

2. 作业评价:
作业批改:在课后,我会认真批改学生的作业,对每个学生的作业进行详细的批改和点评。通过批改作业,我可以了解学生对菱形性质与判定的掌握情况,并及时发现学生存在的问题。
在教学手段上,我发现多媒体教学和教学软件辅助能够提供直观和生动的展示,提高学生的学习兴趣和理解能力。但有时多媒体资源和软件操作过于复杂,导致学生无法完全理解和掌握。因此,我需要简化多媒体资源和软件操作,确保学生能够理解和掌握。
在教学效果上,我发现学生对菱形的性质与判定有了较好的理解和掌握,但部分学生在实际应用和解决问题上还存在一定的困难。因此,我需要在今后的教学中加强实践环节的指导和训练,帮助学生更好地运用所学知识解决实际问题。
教学反思与总结
在《菱形的性质与判定》这节课的教学过程中,我采用了问题驱动法、合作学习法和实践操作法等多种教学方法,旨在激发学生的学习兴趣和主动性。通过多媒体教学和教学软件辅助,我努力提高教学效果和效率。然而,在教学过程中,我也发现了一些问题和不足之处,需要进行改进和调整。
在教学方法上,我发现问题驱动法能够有效地激发学生的思考和探究,但有时问题设置过难或过于复杂,导致部分学生无法理解或参与讨论。因此,我需要根据学生的实际水平和能力,调整问题的难度和复杂度,确保每个学生都能积极参与和思考。
在合作学习法中,我发现小组讨论能够培养学生的合作精神和沟通能力,但有时小组内部存在分工不均或讨论不够深入的情况。因此,我需要加强对小组讨论的指导,确保每个小组成员都能积极参与,并引导他们深入思考和交流。
在实践操作法中,我发现通过实际操作能够帮助学生更好地理解和掌握菱形的性质,但有时学生对操作工具或方法不熟悉,导致操作效果不佳。因此,我需要提前对学生的操作技能进行培训和指导,确保他们能够熟练地使用工具和操作方法。
菱形的性质及判定教学设计

菱形的性质及判定一、内容及其分析1、主要内容:菱形的性质和判别条件。
2、内容分析:本节课要学的内容是菱形的性质和判别条件,指的是利用平行四边形的学习思路了解菱形的特有性质的形成及判别其是菱形的条件,其核心是菱形的性质和判别条件,理解它关键就是要在实际问题中探究形成菱形的条件。
学生已经学过简单图形旋转的知识和平行四边形的知识,本节课的内容菱形的性质和判别条件,就是在此基础上的发展。
由于它还与等腰三角形有直接的联系,所以在本学科有重要的地位,并有对正方形的性质和判断起着承上起下的作用,是本学科的核心内容。
教学的重点是菱形的性质和判别条件的探究,解决重点的关键是从实际问题出发发现其性质。
二、目标及其解析1、目标定位:(1)理解菱形的定义。
(2)经历探索菱形的性质和判别条件的过程,进一步了解和体会说理的基本方法.(3)了解菱形的现实应用和常用判别条件.探索并掌握菱形的判定.2、目标解析:了解菱形的性质和判别条件,就是指能在实际应用菱形的性质及判定来解决这些问题。
三、问题诊断与分析在本节课的教学中,学生可能遇到的问题是对菱形的性质和判断分不清,产生这一问题的原因是不知何为性质、何为判定。
要解决这一问题,就要回顾平行四边形的相关知识,其中关键是用类比的方法探究出菱形的性质和判定。
四、教学支持条件分析五、教学过程设计:问题1观察一组图片:越王勾践剑、一个衣帽架以及其他学生熟悉的实物图片。
这些图片中有你熟悉的图形吗?(邻边相等的平行四边形.顺势给出菱形的定义,进而主题)我们把这样的平行四边形叫做菱形.这节课我们就来探讨一下菱形.设计意图:1、培养学生的观察能力。
让学生观察图形,从直观上把握图形的性质和特点,从而给出菱形的定义。
2、因为菱形是特殊的平行四边形,所以在平行四边形性质的基础上,通过问题,具体的讨论菱形所具有的特殊性质。
3、从对称的角度,对菱形进行再认识,并通过折叠的方法,得到菱形的判别方法,将直观与推理相联系。
菱形的性质和判定教案
菱形的性质和判定教案一、教学目标知识与技能目标:使学生掌握菱形的定义、性质和判定方法,能够运用菱形的性质解决实际问题。
过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
情感态度与价值观目标:激发学生对几何图形的兴趣,培养学生的审美观念,提高学生解决问题的自信心。
二、教学内容1. 菱形的定义:菱形是四条边相等的四边形。
2. 菱形的性质:(1)菱形的对角线互相垂直,且平分对方。
(2)菱形的对边平行且相等。
(3)菱形的对角相等。
(4)菱形的四条边相等。
3. 菱形的判定方法:(1)四条边相等的四边形是菱形。
(2)对角线互相垂直,且平分对方的四边形是菱形。
三、教学重点与难点重点:掌握菱形的性质和判定方法。
难点:理解菱形性质之间的内在联系,以及如何运用判定方法判断一个四边形是否为菱形。
1. 教学PPT或黑板。
2. 几何画图工具。
3. 相关几何图形示例。
五、教学过程1. 导入:通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生观察并思考这些图形的共同特点。
2. 新课导入:介绍菱形的定义,引导学生通过观察、操作、推理等方法,发现菱形的性质。
3. 讲解与演示:利用PPT或黑板,展示菱形的性质,如对角线互相垂直、平分对方,对边平行且相等等。
通过几何画图工具,演示菱形的性质,帮助学生理解。
4. 练习与巩固:给出一些四边形,让学生判断它们是否为菱形,并说明理由。
引导学生运用菱形的性质和判定方法进行判断。
5. 拓展与应用:引导学生运用菱形的性质解决实际问题,如在设计图案、构造模型等方面应用菱形。
7. 布置作业:设计一些有关菱形的练习题,巩固学生对菱形性质和判定方法的理解。
六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、提问回答的正确性和完整性。
2. 练习与巩固:评价学生在练习中应用菱形性质和判定方法的正确性。
3. 拓展与应用:评价学生在实际问题中运用菱形性质的创造性和解决问题的能力。
1.1菱形的性质与判定2024-2025学年九年级数学上册同步教学设计(北师大版)河北专版
(1) 菱形的对角线互相垂直,且平分对方。
(2) 菱形的对角线将菱形分成的角为直角。
(3) 菱形的四条边相等。
3. 菱形的判定:
(1) 若一个四边形的四条边相等,则该四边形为菱形。
(2) 若一个四边形的对角线互相垂直,并且平分对方,则该四边形为菱形。
4. 菱形的面积计算:菱形的面积等于对角线乘积的一半。
四、教学资源
1. 软硬件资源:多媒体投影仪、白板、直尺、圆规、几何模型、教学卡片。
2. 课程平台:北师大版数学课程平台。
3. 信息化资源:菱形性质与判定的教学视频、在线练习题库。
4. 教学手段:讲解、示范、互动讨论、小组合作、实际操作、练习巩固。
五、教学过程设计
1. 导入环节(5分钟)
教师通过展示一组图形,包括正方形、矩形、平行四边形和菱形,引导学生观察这些图形的特征。然后提出问题:“你们能找出其中的特殊图形吗?它有什么特殊的性质?”让学生思考并回答。教师总结学生回答的结果,引出菱形的概念。
总计用时:40分钟。
六、拓展与延伸
1. 提供与本节课内容相关的拓展阅读材料:
- 《几何原本》中关于菱形的性质与判定方法的论述。
- 介绍菱形在建筑设计、艺术创作等领域的应用案例。
- 探究菱形与其他多边形的关系,如五边形、六边形等。
2. 鼓励学生进行课后自主学习和探究:
- 学生可以利用网络资源,搜索更多关于菱形的性质与判定方法的研究文章和案例。
3. 简洁明了:板书设计采用简洁的文字和图形,突出菱形的性质与判定方法的重点。
4. 艺术性和趣味性:板书设计采用颜色、字体和图形的搭配,使板书具有艺术性和趣味性,激发学生的学习兴趣。
板书设计示例:
菱形的性质与判定教学设计
§菱形的性质与判定邵爱平沈阳市博才中学菱形的性质与判定第一课时教学设计沈阳市博才中学邵爱平教学目标:1.理解菱形的概念,了解它与平行四边形之间的关系.2.探索并证明菱形的性质定理.3.应用菱形的性质定理解决相关问题.教学重点:菱形性质的探究与应用.教学难点:利用菱形的性质解决问题.教学环境: 一对一数字化教室,包括学生人手一个终端及教师一体机.教学过程:一、课前展示小组同学合作选题和全体同学共同复习平行四边形性质的相关习题 .1.平行四边形的性质有哪些?(利用终端全体答题)对称性:平行四边形是 ______ 对称图形边:平行四边形的______ 相等角:平行四边形的______ 相等对角线:平行四边形的对角线______2.已知平行四边形ABCD的周长为40m,△ABC的周长为25cm,则对角线AC的长为______cm.(利用终端全体抢答)3.在平行四边形ABCD中,AC、BD相交于O,AC=10,BD=8,则AD的长度的取值范围是().(全体答题统测)A.AD>1 B.1<AD<9 C.AD<9 D.AD>9设计意图:通过利用终端作答,能一目了然的了解学生对平行四边形相关知识的掌握情况,同时为本节课做铺垫.(利用一对一数字化评测系统进行测试.)二、激情引趣1.教师引导学生想一想:你在什么地方见过菱形?学生寻找身边的实例,并将在课前下载到终点的照片资源与同学们分享,同学分享后教师也利用用课件展示生活中的菱形图案,学生在欣赏的同时初步感知菱形的魅力,通过身边的事物引入,使学生感受到菱形为我们的衣食住行增添了色彩.2.在平行四边形的基础上进行动画演示,使之变成一个菱形,得菱形的定义:一组邻边相等的平行四边形是菱形.小结:由定义可知,菱形是强化了“边”的特殊性的平行四边形,那么菱形具有什么样的特殊性质呢?让我们带着这个问题进入菱形性质的探究之旅.设计意图:营造一种轻松愉快的学习氛围,拉进学生与数学的距离,学生在观察与实践后得出菱形的定义.三、合作探究1.教师介绍菱形性质的研究方向与平行四边形相同为:边、角、对角线、对称性. 做一做:将菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是有几条对称轴?对称轴之间有什么关系?(2)菱形中有哪些相等线段?通过折叠并引导学生类比平行四边形性质的探究方法来探究菱形的性质. 小组交流进行探究,得菱形的特殊性:(1)菱形是轴对称图形,有两条对称轴,分别是两对角线所在的直线;菱形是中心对称图形,对角线的交点是对称中心..(2)四条边都相等.(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.2.验证猜想:以上菱形的特殊性是通过观察、实验操作、猜想得到的,还需要进一步从数学的角度加以验证. 概括出两条性质之后,引导学生把两条性质作为命题加以演绎证明.菱形的性质1:菱形的四条边相等.已知:四边形ABCD 是菱形,AB=BC.求证:AB=BC=CD=AD.菱形的性质2:菱形的两条对角线互相垂直,每一条对角线平分一组对角.已知:四边形ABCD 是菱形对角线相交于O 点求证:(1)AC ⊥BD.(2)AC 平分∠DAB 和∠DCB ,BD 平分∠ADC 和∠ABC.(学生在讲解性质推理过程中利用一对一设备直接将讲解过程录制成微课,课下A B CD传给学生,学生根据需要来看视频讲解.)设计意图: 学生动手操作、合作交流,通过观察、实验、猜想、验证、推理、交流……并让学生明白这个过程也是以后我们研究几何图形的性质所要经历的一般过程.得出性质后,还要进一步会应用性质来解决一些相关的数学问题.四、新知应用例1.菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD =60度,BD =6,求菱形的边长AB 和对角线AC 的长.(此题是学生的课前作业,课上学生通过进一步小组交流后将答案以照片的形式上传,教师进行板书推送,缩小学生的个体差异.)(利用一对一教学终端进行讲解)设计意图:例题是学习菱形性质的应用,通过例题的分析,学生之间的分享,使学生进一步体会菱形的相关问题要进行转化,转化到直角三角形和等腰三角形中. 五、巩固提升1.下列说法错误的是( )A.菱形的对角线相等B.菱形的对角线互相垂直C.菱形的一条对角线平分一组对角D.菱形的四条边相等2.如上图,菱形ABCD 中,AB=5,AO=4, 则AC= _______,BD=_______,菱形周长是_______.3.菱形ABCD 两条对角线BD 、AC 长分别是6cm 和8cm ,求菱形的面积.第二题:引导学生理清思路,明白题中用到了菱形的哪些性质,并且探究出不同的方法,例如可把∠ABD 放在△ABD 中求,也可放在△ABO 中求,还可放在△ABC 中求,不只让学生理解一题多解的思路,还应该让学生初步体会菱形的相关知识可转化为直角三角形或等腰三角形的问题来解决.第三题:引导学生回顾平行四边形面积公式:S =底×高.在这个题中没有边长和对应的高,该如何解决呢?引导学生思考,体会把一个图形的面积转化为几个图形的面积之和的解题思路,进而引导学生探索不同的分割方法.在学生探究的基础之上,课件展示几种不同的分割方法:A B CD通过探究,让学生明白割补法是求图形面积常用的方法,尤其是一些特殊图形和不规则的图形,让学生在本节课学习过程中学到一些新的数学思想和方法.之后引导学生得菱形的面积公式:S 菱形=底×高=对角线乘积的一半.小结:菱形的问题可以转化为直角三角形或等腰三角形的问题来解决.六、知识小结引导学生尝试理一理:到目前为止,我们学到了哪些知识,并以思维导图的形式呈现. 学生梳理本节重点知识:一个定义:有一组邻边相等的平行四边形是菱形.两个公式:S 菱形=底×高=对角线乘积的一半三个特性:特在“边、对角线、对称性”七、布置作业完成本节课的测试题(分为)两个等级,将完成后的作业上传到教师终端.设计意图:等级作业满足了不同层次学生的需要,使各层次同学得到不同的发展.八、教学反思本节课的教学流程体现了知识发生,形成和发展过程,让学生体会到观察,猜想,归纳,验证的思想.本节课最大的亮点是:始终把学生的探索与验证活动放在首位,整个教学过程我通过一对一数字化教学环境,师生、生生利用一对一终端进行互动,通过网络查找并下载菱形的图片,利用教师一体机的照相功能、评测功能、抢答功能、推送笔记、实时点评等多种互动功能形式引导学生主动参与课堂活动,以丰富学生的感性认识,增强直观效果,提高课堂教学效率,建立平等、民主、和谐的师生关系,意在创设一种学生乐学的课堂气氛,让学生真正成为课堂的主体,最终实现知识的建构。
八年级数学下册《菱形的性质和判定定理》教案、教学设计
(一)教学重难点
1.重点:菱形的性质和判定定理的理解与应用。
难点:如何引导学生运用判定定理判断一个四边形是否为菱形,以及在实际问题中灵活运用菱形的性质。
2.重点:培养学生观察、猜想、验证的能力。
难点:如何激发学生的探究兴趣,引导学生主动参与学习过程,培养其几何思维。
3.重点:菱形与平行四边形、矩形、三角形等几何图形的联系与区别。
3.演示与讲解:教师通过直观的演示和详细的讲解,帮助学生理解菱形的性质和判定定理。
4.练习巩固:设计不同难度的练习题,让学生在实际操作中运用所学知识,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生的观察能力和空间想象力,激发学生对几何学习的兴趣。
2.培养学生合作交流、积极参与的学习态度,提高学生的团队协作能力。
2.提出问题
提问:“我们已经学过很多四边形,如矩形、平行四边形等,那么菱形与这些四边形有什么联系和区别呢?”通过这个问题,激发学生对菱形的探究欲望,为新课的学习打下基础。
3.导入新课
在学生初步感知菱形的特点后,顺势导入新课:“今天我们将学习一种新的四边形——菱形,了解它的性质和判定定理。”
(二)讲授新知,500字
难点:帮助学生建立几何图形之间的联系,提高学生的综合运用能力。
(二)教学设想
1.创设情境,引入新课
通过展示生活中的菱形实例,如菱形装饰、建筑图案等,激发学生对菱形的兴趣,为新课的学习打下基础。
2.自主探究,发现性质
将学生分成小组,引导他们运用手中学具,观察、猜想、验证菱形的性质。在此过程中,教师适时给予指导,帮助学生总结出菱形的性质。
4.能够运用菱形的性质和判定定理解决实际问题,如求菱形的面积、周长等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§菱形的性质与判定
邵爱平
沈阳市博才中学
菱形的性质与判定第一课时
教学设计
沈阳市博才中学邵爱平
教学目标:
1.理解菱形的概念,了解它与平行四边形之间的关系.
2.探索并证明菱形的性质定理.
3.应用菱形的性质定理解决相关问题.
教学重点:菱形性质的探究与应用.
教学难点:利用菱形的性质解决问题.
教学环境: 一对一数字化教室,包括学生人手一个终端及教师一体机.
教学过程:
一、课前展示
小组同学合作选题和全体同学共同复习平行四边形性质的相关习题 .
1.平行四边形的性质有哪些?(利用终端全体答题)
对称性:平行四边形是 ______ 对称图形
边:平行四边形的______ 相等
角:平行四边形的______ 相等
对角线:平行四边形的对角线______
2.已知平行四边形ABCD的周长为40m,△ABC的周长为25cm,则对角线AC的长为______cm.(利用终端全体抢答)
3.在平行四边形ABCD中,AC、BD相交于O,AC=10,BD=8,则AD的长度的取值范围是().(全体答题统测)
A.AD>1 B.1<AD<9 C.AD<9 D.AD>9
设计意图:通过利用终端作答,能一目了然的了解学生对平行四边形相关知识的掌握情况,同时为本节课做铺垫.(利用一对一数字化评测系统进行测试.)
二、激情引趣
1.教师引导学生想一想:你在什么地方见过菱形?学生寻找身边的实例,并将在课前下载到终点的照片资源与同学们分享,同学分享后教师也利用用课件展示生活中的菱形
图案,学生在欣赏的同时初步感知菱形的魅力,通过身边的事物引入,使学生感受到菱形为我们的衣食住行增添了色彩.
2.在平行四边形的基础上进行动画演示,使之变成一个菱形,得菱形的定义:一组邻边相等的平行四边形是菱形.
小结:由定义可知,菱形是强化了“边”的特殊性的平行四边形,那么菱形具有什么样的特殊性质呢?让我们带着这个问题进入菱形性质的探究之旅.
设计意图:营造一种轻松愉快的学习氛围,拉进学生与数学的距离,学生在观察与实践后得出菱形的定义.
三、合作探究
1.教师介绍菱形性质的研究方向与平行四边形相同为:边、角、对角线、对称性. 做一做:将菱形纸片折一折,回答下列问题:
(1)菱形是轴对称图形吗?如果是有几条对称轴?对称轴之间有什么关系?
(2)菱形中有哪些相等线段?
通过折叠并引导学生类比平行四边形性质的探究方法来探究菱形的性质. 小组交流进行探究,得菱形的特殊性:(1)菱形是轴对称图形,有两条对称轴,分别是两对角线所在的直线;菱形是中心对称图形,对角线的交点是对称中心..(2)四条边都相等.(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.
2.验证猜想:以上菱形的特殊性是通过观察、实验操作、猜想得到的,还需要进一步从数学的角度加以验证. 概括出两条性质之后,引导学生把两条性质作为命题加以演绎证明.
菱形的性质1:菱形的四条边相等.
已知:四边形ABCD 是菱形,AB=BC.
求证:AB=BC=CD=AD.
菱形的性质2:菱形的两条对角线互相垂直,每一条对角线平分一组对角.
已知:四边形ABCD 是菱形对角线相交于O 点
求证:(1)AC ⊥BD.
(2)AC 平分∠DAB 和∠DCB ,BD 平分∠ADC 和∠ABC.
(学生在讲解性质推理过程中利用一对一设备直接将讲解过程录制成微课,
课下A B C
D
传给学生,学生根据需要来看视频讲解.)
设计意图: 学生动手操作、合作交流,通过观察、实验、猜想、验证、推理、交流……并让学生明白这个过程也是以后我们研究几何图形的性质所要经历的一般过程.得出性质后,还要进一步会应用性质来解决一些相关的数学问题.
四、新知应用
例1.菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD =60度,BD =6,
求菱形的边长AB 和对角线AC 的长.
(此题是学生的课前作业,课上学生通过进一步小组交流后将答案以照片的形式上传,教
师进行板书推送,缩小学生的个体差异.)
(利用一对一教学终端进行讲解)
设计意图:例题是学习菱形性质的应用,通过例题的分析,学生之间的分享,使学生进一步体会菱形的相关问题要进行转化,转化到直角三角形和等腰三角形中. 五、巩固提升
1.下列说法错误的是( )
A.菱形的对角线相等
B.菱形的对角线互相垂直
C.菱形的一条对角线平分一组对角
D.菱形的四条边相等
2.如上图,菱形ABCD 中,AB=5,AO=4, 则AC= _______,BD=_______,
菱形周长是_______.
3.菱形ABCD 两条对角线BD 、AC 长分别是6cm 和8cm ,求菱形的面积.
第二题:引导学生理清思路,明白题中用到了菱形的哪些性质,并且探究出不同的方法,例如可把∠ABD 放在△ABD 中求,也可放在△ABO 中求,还可放在△ABC 中求,不只让学生理解一题多解的思路,还应该让学生初步体会菱形的相关知识可转化为直角三角形或等腰三角形的问题来解决.
第三题:引导学生回顾平行四边形面积公式:S =底×高.在这个题中没有边长和对应的高,该如何解决呢?引导学生思考,体会把一个图形的面积转化为几个图形的面积之和的解题思路,进而引导学生探索不同的分割方法.在学生探究的基础之上,课件展示几种不同的分割方法:
A B C
D
通过探究,让学生明白割补法是求图形面积常用的方法,尤其是一些特殊图形和不规则的图形,让学生在本节课学习过程中学到一些新的数学思想和方法.之后引导学生得菱形的面积公式:S 菱形=底×高=对角线乘积的一半.
小结:菱形的问题可以转化为直角三角形或等腰三角形的问题来解决.
六、知识小结
引导学生尝试理一理:到目前为止,我们学到了哪些知识,并以思维导图的形式呈现. 学生梳理本节重点知识:一个定义:有一组邻边相等的平行四边形是菱形.
两个公式:S 菱形=底×高=对角线乘积的一半
三个特性:特在“边、对角线、对称性”
七、布置作业
完成本节课的测试题(分为)两个等级,将完成后的作业上传到教师终端.
设计意图:等级作业满足了不同层次学生的需要,使各层次同学得到不同的发展.
八、教学反思
本节课的教学流程体现了知识发生,形成和发展过程,让学生体会到观察,猜想,归纳,验证的思想.本节课最大的亮点是:始终把学生的探索与验证活动放在首位,整个教学过程我通过一对一数字化教学环境,师生、生生利用一对一终端进行互动,通过网络查找并下载菱形的图片,利用教师一体机的照相功能、评测功能、抢答功能、推送笔记、实时点评等多种互动功能形式引导学生主动参与课堂活动,以丰富学生的感性认识,增强直观效果,提高课堂教学效率,建立平等、民主、和谐的师生关系,意在创设一种学生乐学的课堂气氛,让学生真正成为课堂的主体,最终实现知识的建构。
A B
D A B C
A B C A B
C。