《菱形的性质与判定》学情分析及教学设计
菱形的性质和判定

《菱形的性质和判定》教学设计银川市第十五中学郑少萍一、教学目标:1.理解菱形的概念,了解它与平行四边形之间的关系。
2.探索并证明菱形的性质定理。
3.利用菱形的性质定理解决实际问题。
二、学情分析:九年级的学生有一定的逻辑推理能力和探究新知识的能力,在八年级下册学生已经学习了平行四边形的性质和定理,为学生从边、角、对角线三个方面展开探究提供了方法和思路。
所以本节课采用学生折纸等活动让学生体会“实验—猜想—证明—应用”的科学探索过程,培养学生数学学习兴趣和善于思考的学习习惯。
因此本节课的教学重点定为:菱形性质的探究与证明。
教学难点:利用菱形性质解决实际问题。
三、教学准备:菱形卡纸、教具、白板课件等。
四、教学过程:环节一:用白板出示学习目标,学生齐读学习目标。
教师强调重难点。
环节二:明确定义,认识菱形1.回忆什么是平行四边形?平行四边形有什么性质?(学生口答,教师填入对应的表格)2.形的性质为研究菱形的性质提供了思路。
2.菱形是特殊的平行四边形,展示几何画板,让学生总结菱形的定义,教师板书。
设计意图:通过几何画板的展示能让学生更直观的看出平行四边形改变边的长度可以变成菱形,达成学习目标1。
3.请学生说出生活常见的菱形?教师展示微课。
设计意图:根据定义,学生说出常见的菱形,增强课堂氛围和学生学习菱形的热情;微课的设计拓宽了学生认识菱形的眼界,激发了学生探究菱形性质的兴趣。
环节三:探究菱形,证明性质1.折菱形纸,提出猜想学生拿出菱形纸片,沿对角线折叠。
回答下列问题:(1)菱形是轴对称图形吗?有几条对称轴?对称轴有什么样的位置关系?(2)有哪些相等的线段?有哪些相等的角?(3)请同学们尝试着归猜想菱形边、角、对角线的特征。
设计意图:学生动手折,体验新知的发生过程。
程,效果好。
2.严谨证明,验证猜想已知:如图,在菱形ABCD中,AB=AD,对角线AC、BD交于点O。
求证:(1)AB=BC=CD=AD(2)AC⊥BD设计意图:文字性证明对学生来说有一定难度,师生分析问题,共同写出已知和求证。
《菱形的性质与判定(2)》优教教案

第一章特殊平行四边形1. 菱形的性质与判定(2)一、学情与教材分析1.学情分析上节课,学生已经经历了独立探索发现菱形性质的过程,通过折纸等活动学生体会了“实验—猜想—证明—应用”的科学探索过程,认识了菱形与平行四边形的关系,这些都为本节课进一步探索和发现菱形的判定定理提供了较好的知识基础和活动经验基础。
2.教材分析本节课,学生将探究菱形的判定定理,应该说,有了上节课的铺垫,本节课可以更多地让学生自主探索。
第一个定理的证明中,需要首先明确判定定理与性质定理的关系,这样为后面一系列定理的证明打下基础;第二个定理教科书中是通过设置一个尺规作图的问题引入的,在学生自行完成尺规作图并明确了作法的可行性后,引导学生自主完成证明过程。
本节课中将通过学生的自主证明过程,提升学生的逻辑推理能力,通过经历尺规作菱形提升学生的动手操作能力和规范的语言表达能力.二、教学目标1.经历菱形的判定定理的探究及证明过程及其运用;2.掌握用尺规作菱形的方法;3.经历“探索——猜想——证明”的学习过程,进一步提高推理论证的能力.三、教学重难点重点:菱形判定定理的证明和应用.难点:通过尺规作图法作菱形.四、教法建议采用“展示交流——合作论证——知识运用(训练提升)”的教学模式,引导学生观察、思考、讨论、总结并形成结论,让学生在探究中体会所学知识.五、教学过程(一)课前设计1.预习任务:任务1:制作菱形①在一张纸上用尺规作图做出边长为10cm的菱形;②想办法用一张长方形纸剪折出一个菱形.③利用长方形纸你还能想到哪些制作菱形的方法.任务2:怎样去判定一个四边形是菱形呢菱形性质定理的逆命题是不是可以作为判定定理呢请回答下列问题:①:菱形的四条边相等的逆命题是什么②:①中的两个逆命题是否正确请尝试证明!对于不正确的命题请添加适当的条件,使它成立.2.预习自测:一、填空题1.如图,如果要是平行四边形是一个菱形,需要添加一个条件,那么你添加的条件是________________.B答案:AB=BC,或AC⊥BD(答案不唯一)解析:由定义知,当AB=BC时,平行四边形ABCD是一个菱形;由判定定理知道,当AC⊥BD时,平行四边形ABCD是一个菱形,所以两个答案都可以.点拨:熟练掌握菱形的判定方法即可解答此题.2.如图,等边△ABC中,点D,E,F分别是AB,BC,AC边上的中点,则图中有________个菱形.CB答案:3解析:∵△ABC是等边三角形,∴AB=AC=BC ,∵D 、E 、F 分别是AB 、BC 、CA 边上的中点,∴DF=12BC ,DE=12AC ,EF=12AB , ∴DF=EF=ED=AD=AF=CF=CE=BE=BD ,∴有3个菱形:菱形ADEF ,菱形BDFE ,菱形CFDE .故答案为3.B点拨:根据等边三角形和中位线的性质可得DF=EF=ED=AD=AF=CF=CE=BE=BD . 再根据菱形的判定定理即可解答此题3.如图,在等腰梯形ABCD 中,AB 添加一个你认为合适的条件_______________,使四边形AECD 为菱形.E A 答案:AD ∵AD=CD ,∴四边形AECD 为菱形.当AD=AE ,∵AD=CD ,∴AE=CD. 又∵AB ∴四边形AECD 为菱形.当∠CEB=∠B ; ∵等腰梯形中,∠A=∠B ,∴∠A=∠CEB.∴AD 又∵AB ∴四边形AECD 为菱形.点拨:利用平行四边形和菱形的判定定理,先证平行四边形,再证菱形.(二)课堂设计1、知识回顾C 图1—1内容:通过练习复习上节课所探究的菱形的性质.1)菱形ABCD中,AC=8,BD=6,则菱形的周长是______2)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC与点F,垂足为点E,连接DF,则∠CDF等于________设计意图:通过课件中的问题回顾上节课探究过的菱形的性质定理,从而为本节课的继续探究,尤其是理论证明做铺垫。
初中数学_【课堂实录】菱形的性质与判定教学设计学情分析教材分析课后反思

菱形的性质与判定(第三课时)教学设计课题菱形的性质与判定(第三课时)教学目标:(一)知识与技能:能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法。
(二)过程与方法:经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法。
(三)情感态度价值观:在学习过程中感受数学与生活的联系,增强学生的数学应用意识;在学习过程中通过小组合作交流,培养学生的合作交流能力与数学表达能力。
教学重点:能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法。
教学难点:推导出菱形面积公式及灵活运用。
教学过程教学环节教师活动学生活动设计意图一、知识回顾多媒体显示:(1)如图四边形ABCD是菱形,AC,BD分别是菱形的对角线,则AC与BD有怎样的关系?(2)如图四边形ABCD是平行四边形,AC,BD分别是平行四边形的对角线,请你添加一个条件使其成学生独立思考片刻两名学生回答问题当有学生回答不全面时,可以再找同学起来补充。
设计这两个问题的目的主要是帮学生复习菱形的性质定理与判定定理,为本节课打好基础。
为菱形。
二、知识应用(一)典型例题:如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求:(1)对角线AC的长度(2)菱形ABCD的面积想一想:如果设AC的长为a,BD的长为b,那么你能用a与b表示出菱形的面积吗?教师巡视各小组活动,参与讨论,适时提出指导性问题及指导。
(二)班内交流1、小组展示讨论结果,多种转化方法。
2、师生一起总结菱形的面积公式,并板书。
(三)变式训练如图,四边形ABCD是边长为5cm的菱形,其中对角线BD长6cm,求菱形一边上的高。
学生独立思考独立完成通过对(1)(2)具体数字的探讨,学生对“想一想”的探究更容易得到结论,并用语言进行表述。
学生独立思考小组内交流学生起来讲解思路学生独立完成做题过程本环节让学生亲自经历知识的形成过程。
通过此题让学生对菱形的相关性质进行灵活应用,同时学生对于具体问题通过自主思考,独立完成,再小组交流,教师点拨后基本能形成比较好的解题思路,同时给学生渗透“转化思想”。
《菱形的性质与判定+第3课时》精品教学方案

1 菱形的性质与判定第3课时配套北师大版【教学方案】第一章特殊的平行四边形1 菱形的性质与判定第3课时一、教学目标1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.运用菱形知识解决具体问题,培养逻辑推理能力和演绎能力.3.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.4.体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣.二、教学重难点重点:理解并掌握菱形的面积公式.难点:运用菱形的性质定理与判定定理解决具体问题..三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:先提出问题让学生自由说一说,并填写表格,动画出示图形和符号语言.问题1:什么是菱形,菱形的性质有哪些?预设答案:菱形的定义:一组邻边相等的平行四边形叫做菱形.菱形的性质:①具有平行四边形的所有性质,是轴对称图形②菱形的四条边都相等③菱形的对角线互相垂直且平分追问:菱形的判定方法有哪些?预设答案:菱形的判定:①一组邻边相等的平行四边形是菱形②四边都相等的四边形是菱形③对角线互相垂直的平行四边形是菱形【试一试】如图所示:在 ABCD中添加一个条件使其成为菱形:添加方式1:_________________ .添加方式2:_________________ .预设答案:方式1:一组邻边相等;方式2:AC⊥BD【合作探究】预设答案:求菜地的面积实际上是求菱形的面积.想一想:菱形的面积怎么求?预设答案:菱形是特殊的平行四边形,可以根据求平行四边形的面积方法来求.教师引导学生作出菱形另一边上的高,并交流反馈.预设答案:过点A作AE⊥BC于点ES菱形ABCD=底×高=BC·AE追问:你还有别的方法吗?教师提示学生,菱形的对角线具有什么样的关系,能否从对角线的角度进行探究.【思考】菱形的对角线互相垂直,能否利用对角线来计算菱形的面积呢?预设答案:每一条对角线将菱形分成两个全等的三角形.解:∵四边形ABCD是菱形,∴AC⊥BD,∴S菱形ABCD=S△ABC+S△ADC=1122AC BO AC DO ⋅+⋅()1=21=2AC BO DO AC BD +⋅追问:你发现了什么? 【归纳】求菱形面积的方法:菱形的面积=底×高菱形的面积=对角线乘积的一半.【典型例题】预设答案:重叠的部分ABCD是菱形.思考:说一说你的理由?预设答案:根据纸条的两长边互相平行得ABCD是平行四边形;再由纸条等宽得两条邻边上的高相等,进而利用平行四边形的面积得两邻边相等;从而可证ABCD是菱形.教师给出练习,随时观察学生完成情况并相应思维导图的形式呈现本节课的主要内容:教科书第9页。
菱形的性质与判定讲学案2

菱形的性质与判定(二)学情分析:学生在学习了平行四边的判定和性质及菱形的性质第一课时基础上来学习本节内容。
学习目标:1.理解并掌握菱形的判定方法,以及符号语言的应用;2.灵活运用判定方法进行有关的证明和计算.重点:掌握并会应用菱形的判定方法. 教法:启发式,讲授法、讨论、合作探究难点:菱形判定方法的应用. 学法:合作交流、领悟、理解、运用学习过程:一、导学问题1:什么叫菱形?菱形有哪些性质?问题2:你能用一张长方形纸剪折出一个菱形吗?二、自学问题3:除了菱形的定义,还有什么方法可以判断一个平行四边形是菱形?如图,在平行四边形ABCD中,对角线AC和BD相交于点O,AC⊥BD.求证:平行四边形ABCD是菱形总结菱形的判定方法:三、互学问题4:已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?问题5:通过问题4,你发现了什么?例1、已知:如图1-5,四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形例2、已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点0,AB=5,OA=2,OB=1. 求证:平行四边形ABCD是菱形。
四、测学1、随堂练习2、在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F. 求证:四边形AECF是菱形3、已知:AD是△ABC的角平分线,DE∥AC,DF∥AB,交AB、AC分别为E , F。
求证:①试判断四边形AFDE是怎样的四边形,证明你的结论。
②当△ABC满足什么条件时,四边形AFDE是正方形。
五、思学问题6:在下面的位置写出判定一个四边形是菱形的方法?CA C。
青岛版数学八年级下册6.3.3菱形的性质与判定说课稿

5.总结提炼:在讲解完所有知识点后,我会引导学生总结归纳菱形的性质和判定方法,形成系统的知识结构。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.填空题:设计一些填空题,让学生填写菱形的性质或判定方法的空白,检验学生对基础知识的掌握。
1.练习题:布置一些与菱形性质和判定方法相关的练习题,让学生独立完成,巩固课堂所学。
2.研究性作业:提供一些研究性问题,如探索菱形在实际生活中的应用,鼓励学生进行自主探究。
3.反思日记:要求学生撰写反思日记,总结本节课的学习收获和不足,促进学生的自我反思和成长。
五、板书设计与教学反思
(一)板书设计
我的板书设计注重布局合理、内容精炼、风格清晰。板书布局分为三个部分:标题区、知识点区和例题区。标题区位于黑板顶部,标注本节课的主题;知识点区按照教学顺序依次列出菱形的定义、性质和判定方法;例题区则展示典型例题的解题过程。板书内容主要包括关键词、重要公式和步骤,风格简洁明了,突出重点。
-菱形的性质:四边相等、四个角相等、对角线互相垂直平分等。
-菱形的判定方法:根据四边相等的性质判定菱形,以及根据对角线互相垂直平分的性质判定菱形。
2.教学难点:菱形的性质与判定方法在实际问题中的应用。
-在解决实际问题时,如何灵活运用菱形的性质进行证明和计算。
-如何根据条件判定一个四边形是否为菱形,以及在实际问题中如何选择合适的判定方法。
2.解答题:提供一些解答题,让学生运用菱形的性质进行证明或计算,锻炼学生的解题能力。
3.小组合作:组织学生进行小组合作,共同解决一些实际问题,培养学生的合作精神和解决问题的能力。
1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册

3. 教学内容与实际应用脱节:部分学生反映菱形的性质与判定知识与实际生活应用关联不大,需要加强与实际应用的结合,提高学生的学习动机。
(三)改进措施
1. 增加课堂互动:通过提问、小组讨论等方式,增加学生的参与度,鼓励学生积极思考和表达自己的观点。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解菱形的性质与判定知识点,结合实例帮助学生理解。
突出重点,强调难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕菱形的性质与判定问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
知识拓展:
介绍与菱形的性质与判定内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合菱形的性质与判定内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习菱形的性质与判定的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
3. 相邻角互补
4. 菱形中心对称
判定:
1. 四边相等的四边形
2. 对角线互相垂直平分的四边形
3. 相邻角互补的四边形
4. 中心对称的四边形
```
板书设计应根据实际教学情况和学生需求进行调整和优化,以达到最佳教学效果。
八、反思改进措施
(一)教学特色创新
1. 实践教学:在菱形的性质与判定教学中,通过实际操作和实验,让学生亲身体验菱形的性质和判定方法,提高学生的实践能力和解决问题的能力。
《菱形的性质与判定(3)》优教教案

第一章特殊平行四边形1. 菱形的性质与判定(3)一、学情与教材分析1.学情分析经过八年级下册平行四边形相关知识的学习,学生已经基本掌握了平行四边形的相关性质及判定;而通过前两节课的学习,学生已经经历了对菱形的性质及判定的探究及验证过程,基本掌握了菱形的各项性质及判别方法。
在前两节课的学习中教师引导学生通过动手操作、小组合作等方式探究发现了菱形的性质及判别方法,并对这些发现进行了严格的推理证明。
在探究过程中学生积累了许多关于菱形的活动经验,同时在学习中倡导学生进行合作学习,因此学生具有了一定的合作学习经验,也具备了合作交流的能力。
2.教材分析教科书对于本部分的安排,是在学生充分经历了菱形的性质及判定的基础上进行设计的,学生理解了菱形的概念,探索并证明了菱形的性质定理及判别方法,本节课是对菱形性质及判定的巩固,要求学生能利用性质定理及判定定理解决一些相关的问题。
通过本节课的知识运用和拓展提升的训练进一步提升学生推理论证的能力,规范学生的解答步骤.二、教学目标1.灵活运用菱形的性质定理和判定定理解决相关问题.2.进一步体会计算与证明在解题中的作用和证明的必要性.三、教学重难点重点:菱形的性质定理和判定定理的运用.难点:菱形的计算与证明方法的归纳总结.四、教法分析采用“启发诱导——导练结合”的教学方法,轮换运用菱形的性质定理和判定定理解决相关问题.五、教学过程1.课前设计(1)预习任务任务1:菱形的面积应该怎样计算呢预习例题3,思考菱形面积的计算公式。
任务2:思考并回答课本P8页的做一做的问题,自己动手做出对应的等宽的纸条,开始使两个纸条处于垂直的状态,固定其中一个纸条,随着另外一个纸条的转动,观察重叠部分面积的变化,并证明你的结论。
(2)预习自测:一.选择题1.在菱形ABCD中,E、F分别在BC和CD上,且△AEF是等边三角形,AE=AB,则∠BAD等于()A.95°B.100°C.105°D.120°答案:B解析:如图,设∠B=∠D=x,在菱形ABCD中,AB=AD,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∵AE=AB,∴AB=AE=AD=AF,∴∠BAE=180°﹣2x,∠DAF=180°﹣2x,∴∠BAD=∠BAE+∠DAF+∠EAF=180°﹣2x+180°﹣2x+60°=420°﹣4x,∵AD∥BC,∴∠B+∠BAD=180°,∴x+420°﹣4x=180°,解得x=80°,∴∠BAD=420°﹣4×80°=100°.故选B.点拨:设∠B=∠D=x,根据菱形的四条边都相等,等边三角形的三条边都相等可得AB=AE=AD=AF,再根据等腰三角形的两底角相等表示出∠BAE、∠DAF,从而得到∠BAD,再利用两直线平行,同旁内角互补列出方程求出x,然后代入进行计算即可得解.二.填空题1.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是______cm2.答案:3解析:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).点拨:由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.2.如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F.则四边形BEDF的面积为_______cm2.答案:16解析:如图,连接BD,∵∠A=60°,AB=AD(菱形的边长),∴△ABD是等边三角形,∴DE=AD=×8=4cm,根据菱形的对称性与等边三角形的对称性可得,四边形BEDF的面积等于△ABD 的面积,×8×4=16cm2.故答案为:16.点拨:连接BD,可得△ABD是等边三角形,根据菱形的对称性与等边三角形的对称性可得四边形BEDF的面积等于△ABD的面积,然后求出DE的长度,再根据三角形的面积公式列式计算即可得解.2.课堂设计第一环节:知识回顾内容:通过前两节课的学习我们已经知道了菱形的性质及判定,你能完成下面几个题目吗1.如图1所示:在菱形ABCD 中,AB=6,请回答下列问题:(1)其余三条边AD 、DC 、BC 的长度分别是多少(2)对角线AC 与BD 有什么位置关系(3)若∠ADC=120°,求AC 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章特殊平行四边形菱形的性质与判定(一)一、学生知识状况分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容。
九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。
其次,经历了七年级下册“第二章相交线与平行线”、“第三章三角形”和八年级下册“第六章平行四边形”的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。
再次,在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。
在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。
所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。
综上所述,本节的教学目标为:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。
第一环节课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。
2、教师准备菱形纸片,上课前发给学生上课时使用。
第二环节设置情境,提出课题【教学内容】学生:观察衣服、衣帽架和窗户等实物图片。
教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形。
教师:请同学们观察,彩图中的平行四边形与ABCD相比较,还有不同点吗?学生2:彩图中的平行四边形不仅对边相等,而且任意两条邻边也相等。
教师:同学们观察的很仔细,像这样,“一组邻边相等的平行四边形叫做菱形”。
【教学目的】通过这个环节,培养了学生的观察和对比分析能力。
上课时让学生观察图形,从直观上把握菱形的特点,从而给出菱形的定义,让学生明确菱形不但是平行四边形,而且有其特点“一组邻边相等”。
同时,要让学生体会数学来源于生活,让学生去发现生活中因为有了数学而变得更精彩,从而提高学生学习数学的兴趣。
【注意事项】学生在通过观察对比得到菱形定义的过程中,会提出菱形的许多性质,如四条边相等、对角相等和对边平行等等,教师要对学生的答案进行积极的有鼓励性的评价,激发学生的学习积极性,同时又要强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义,又为下面的教学内容做好了铺垫。
第三环节猜想、探究与证明【教学内容】1、想一想①教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分。
②教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流。
学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果。
教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质。
对学生的结论,教师要及时评价,积极引导,激励学生。
2、做一做教师:请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?学生活动:分小组折纸探索教师的问题答案。
组长组织,并汇总结果。
教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论。
学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学。
师生结论:①菱形是周对称图形,有两条对称轴,是菱形对角线所在的直线,两条对角线互相垂直。
②菱形的四条边相等。
3、证明菱形性质教师:通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面我们要对菱形的性质进行严格的逻辑证明。
教师活动:展示题目已知:如图1-1,在菱形ABCD 中,AB=AD,对角线AC 与BD 相交于点O.求证:(1)AB=BC=CD=AD ;(2)AC ⊥BD.师生共析:①菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了。
②因为菱形是平行四边形,所以点O 是对角线AC 与BD 中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了。
学生活动:写出证明过程,进行组内交流对比,优化证明方法,掌握相关定A C理。
证明:(1)∵四边形ABCD是菱形,∴AB = CD, AD= BC (菱形的对边相等).又∵AB=AD∴AB=BC=CD=AD(2)∵AB=AD∴△ABD是等腰三角形又∵四边形ABCD是菱形∴OB=OD(菱形的对角线互相平分)在等腰三角形ABD中,∵OB=OD∴AO⊥BD即AC⊥BD教师活动:展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明方法,提高学生的逻辑证明能力,最后强调“菱形的四条边都相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象。
【教学目的】学生通过折纸可以猜想到菱形的相关性质,教师在参与学生的活动过程中,应该关注学生的口述论证过程,并根据学生的认知水平加以引导,尽量减少学生推理论证过程中的困难。
学生经过了折纸这一操作活动后,再经过逻辑证明,把操作层面的感知上升到了理性认识,充分了解了菱形的本质特征。
本环节让学生进行猜想探究和证明,符合学生的认知规律。
同时,操作活动得到的结论与逻辑推理相结合,是对数学知识进行探索活动的自然延续,实现了从感性认识到理性认识的升华。
【注意事项】在折纸过程中,教师要与学生探讨折纸的方法,明确折叠过程中的对应点及相应的对称轴,对称轴是菱形对角线所在的直线,而不是菱形的对角线,以便于学生正确迅速找出菱形中的对称关系。
掌握数学知识,离不开“实践→认识→再实践→认识”这个重要的数学学习方法,通过说理论证可以使学生充分理解菱形的本质,对这样的过程学生也可以很好的掌握,在这个过程中,教师要充分关注学生使用几何语言的规范性和严谨性。
第四环节 性质应用与巩固【教学内容】教师:通过刚才的严格论证,我们已经认识了菱形的特殊性质,下面我们利用这些性质来解决一些问题。
教师活动:展示题目1、例1 如图1-2,在菱形ABCD 中,对角线AC与BD 相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长。
师生共析:①因为菱形的邻边相等,一个内角是60°,这样就可以得到等边△ABD ,BD=6,菱形的边长也是6。
②菱形的对角线互相垂直,可以得到直角△AOB ;菱形的对角线互相平分,可以得到OB=3,根据勾股定理就可以求出OA 的长度;再一次根据菱形的对角线互相平分,即AC=2OA,求出AC 。
解:∵ 四边形ABCD 是菱形∴AB=AD(菱形的四条边都相等)AC ⊥BD (菱形的对角线互相垂直) OB=OD= BD = ×6 =3(菱形的对角线互相平分) 在等腰三角形ABC 中,∵∠BAD=60° ∴△ABD 是等边三角形O D A 2121图1-2∴AB=BD=6 在Rt △AOB 中,由勾股定理,得OA 2+OB 2=AB 2!未找到引用源。
误!未找到引用源。
2、随堂练习如图,在菱形ABCD 中,对角线AC 与BD 相交于点O.已知AB=5cm ,AO=4cm 求 BD 的长.师生共析:从图中可以知道AC 与BD 互相垂直,可以构成直角△AOB ,因为AB=5cm ,AO=4cm ,这样就可以运用勾股定理求出OB ;又因为菱形的对角线互相平分,BD 为OB 的两倍,这样就可以很方便的求出BD 的数值了。
解:∵ 四边形ABCD 是菱形∴AC ⊥BD (菱形的对角线互相垂直)在Rt △AOB 中,由勾股定理,得AO 2+BO 2=AB 2∴ ∵ 四边形ABCD 是菱形∴BD=2BO=2×3=6(菱形的对角线互相平分)所以,BD 的长是6cm.【教学目的】学生通过本环节的学习,进一步理解和掌握了菱形的性质,对前面所学知识进行了更加深入的认识,同时提高了学生的逻辑推理能力,培养了学生的主动探索能力,激发了学生学习的兴趣。
【注意事项】3452222=-=-=AO AB BO在此活动中,教师应重点关注以下方面:(1)学生是否提出了不同的解题方法,这种方法的优点和缺点分别是什么;(2)学生的几何语言是否准确、规范、严谨;(3)给学生充分的独立思考时间和交流时间,让学生在合作交流的过程中完成题目,理解所学的知识。
第五环节 课堂小结【教学内容】本节课我们探讨了菱形的定义、性质 ,我们来共同总结一下:1、菱形的定义:一组邻边相等的平行四边形是菱形. 分别平行一组邻边相等菱形平行四边形两组对边四边形C D C D DA B C A B A B2、菱形的性质:①菱形是轴对称图形,对称轴是两条对角线所在的直线;②菱形的四条边都相等;③菱形的对角线互相垂直平分。
3、菱形具有平行四边形的所有,应用菱形的性质可以进行计算和推理。
【教学目的】教师鼓励学生交流课堂实践的经历、感受和收获;培养学生的归纳能力,使学生形成完整的知识结构,培养学生的自我评价能力、反思意识及总结能力。
【注意事项】学生们畅所欲言自己的收获,老师对学生的回答给予充分的肯定和鼓励,及时引导学生归纳总结本节的知识。
第六环节 布置作业:课本习题1.1 知识技能 1、2、3 数学理解 4四、教学设计反思1、本节课的主要教学内容为菱形的定义和性质。
学生已经学习了平行四边形的性质,这是本节的知识基础。
关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的。
2、本节授课思路为“创设情境——猜想归纳——逻辑证明——知识运用”。
课堂上的折纸活动,可以让学生直观感知图形的特点,还可以激发学生的兴趣和积极性,教师要引导学生积极思考,抓住表面现象中的本质。
在性质的证明和应用过程中,教师要鼓励学生大胆探索新颖独特的证明思路和证明方法,提倡证明方法的多样性,并引导学生在与其他同学的交流中进行证明方法比较,优化证明方法,有利于提高学生的逻辑思维水平。