预测方法综述

合集下载

时间序列预测方法综述

时间序列预测方法综述

时间序列预测方法综述一、本文概述时间序列预测,作为数据分析与预测领域的重要分支,长期以来一直受到学者们的广泛关注。

时间序列数据,按照时间顺序排列的一系列数据点,广泛存在于金融、经济、气象、医学、工程等诸多领域。

对这些数据进行有效预测,对于决策制定、风险管理、趋势洞察等具有重要意义。

本文旨在对时间序列预测方法进行全面的综述,以期为读者提供清晰、系统的理论知识与实践指导。

文章将首先介绍时间序列预测的基本概念、研究意义和应用场景,为后续讨论奠定基础。

随后,将详细阐述时间序列数据的特性与分类,以及预测过程中常见的挑战与问题。

在此基础上,文章将重点综述各类时间序列预测方法,包括传统统计方法、机器学习方法和深度学习方法等,分析它们的原理、优缺点及适用范围。

还将关注这些方法的最新研究进展和发展趋势,以反映该领域的最新动态。

本文将总结时间序列预测的实践经验和应用案例,为读者提供实际操作的参考。

通过本文的综述,我们期望能够帮助读者更好地理解和应用时间序列预测方法,推动相关领域的理论与实践发展。

二、时间序列的基本概念与特性时间序列,是指按照时间顺序排列的一系列数据点,通常用于描述某种现象随时间变化的趋势和规律。

时间序列分析是统计学的一个重要分支,广泛应用于经济、金融、环境科学、医学、社会学等多个领域。

时间序列数据具有独特的特性,如趋势性、季节性、周期性、随机性等,这些特性对于时间序列的预测分析具有重要意义。

趋势性是指时间序列数据随时间呈现出的长期变化趋势。

这种趋势可以是线性的,也可以是非线性的。

例如,一个地区的人口数量可能会随着时间呈现线性增长趋势,而一个产品的销售额可能会呈现非线性增长趋势。

季节性是指时间序列数据在一年内或某一固定周期内重复出现的变化模式。

这种变化模式通常与季节变化有关,如夏季销售额上升、冬季销售额下降等。

季节性是时间序列数据的一个重要特性,对于预测和分析具有重要的指导作用。

周期性是指时间序列数据在固定周期内重复出现的变化模式。

《2024年多时空尺度的风力发电预测方法综述》范文

《2024年多时空尺度的风力发电预测方法综述》范文

《多时空尺度的风力发电预测方法综述》篇一一、引言随着全球能源结构的转型,风力发电作为清洁可再生能源的代表,正逐渐成为能源领域的研究热点。

然而,风力发电的间歇性和不确定性给电力系统的稳定运行带来了挑战。

因此,对风力发电进行准确预测,尤其是在多时空尺度下的预测,对于提高电力系统运行效率和稳定性具有重要意义。

本文将对多时空尺度的风力发电预测方法进行综述,分析其研究现状、方法、挑战及未来发展趋势。

二、风力发电预测的研究现状风力发电预测经历了从单一尺度到多时空尺度的演变。

在单一尺度下,主要关注的是短期内的风速和功率预测。

随着研究的深入,学者们开始关注多时空尺度的预测,包括超短期、短期、中期和长期等多个时间尺度的预测。

此外,空间尺度的扩展也使得区域性乃至全球性的风力发电预测成为可能。

三、多时空尺度的风力发电预测方法(一)超短期预测超短期预测主要关注未来几分钟至几小时的风速和功率变化。

常用的方法包括基于物理模型的方法、基于统计学习的方法和基于机器学习的方法。

其中,机器学习方法在处理非线性、复杂的风速变化方面具有较大优势。

(二)短期预测短期预测主要关注未来数天的风速和功率变化。

在短期预测中,常用的方法包括时间序列分析、卡尔曼滤波等。

此外,结合气象预报信息,可以提高短期预测的准确性。

(三)中期和长期预测中期和长期预测主要关注季节性或年际尺度的风速和功率变化。

这些预测方法通常需要结合气候学、大气环流模型等知识,以及大量的历史数据进行分析。

(四)空间尺度扩展在空间尺度上,多时空尺度的风力发电预测需要考虑到地理位置、地形、气候等多种因素的影响。

因此,需要将地理信息系统(GIS)技术与风力发电预测方法相结合,实现区域性乃至全球性的风力发电预测。

四、挑战与未来发展尽管多时空尺度的风力发电预测方法取得了一定的研究成果,但仍面临诸多挑战。

首先,风速和功率的预测精度仍有待提高,特别是在极端天气条件下的预测。

其次,多时空尺度的预测需要处理大量的数据和信息,对计算能力和算法的要求较高。

地震预测技术与方法综述

地震预测技术与方法综述

地震预测技术与方法综述地震是一种自然现象,在地壳运动引发的震荡波导致地球表面晃动。

由于地震有时会造成严重的人员伤亡和财产损失,科学家们努力寻找一种有效的地震预测技术和方法,以便提前发现和警示可能的地震事件。

地震预测是一个持续发展的领域,涉及多个学科和方法。

科学家和地震学家们利用各种技术和工具来研究地壳的运动、地震的发生规律以及其可能的前兆信号。

下面将针对几种主要的地震预测技术和方法进行综述。

1. 地震监测网络:地震监测网络是最常用的地震预测方法之一,它由多个地震监测站组成,这些站点分布在全球各地。

这些站点会实时地记录地震活动,并将相关数据传输给地震监测中心进行分析和处理。

通过监测地震活动的强度、震源深度和地震波传播速度等参数,科学家们可以评估地震的潜在威胁,并向公众发出预警。

2. 地震模型和预测算法:地震模型和预测算法是另一种重要的地震预测方法。

科学家们根据地震历史数据和地球科学原理,建立地震模型,通过数学和物理算法来预测未来地震的概率和强度。

这些模型和算法可以帮助科学家们识别地震发生的潜在地区,并对可能的震中和震源进行定位。

3. 成像技术:成像技术是一种非常有前景的地震预测方法。

它利用地球物理学原理和高级成像算法来检测地下构造和地震活动的变化。

通过成像技术,科学家们可以研究地壳的运动、断层的活动以及可能导致地震发生的地下应力和应变。

这些数据有助于科学家们对地震进行更准确的预测和定位。

4. 前兆信号监测:地震前兆信号监测是一种通过监测地震前后的物理变化来预测地震的方法。

这些前兆信号包括地下水位的变化、地表形变、电离层电场变化和动物行为的异常等。

虽然目前这些前兆信号尚未被广泛应用于地震预测,但科学家们对于探索这些信号的潜力和准确性持续进行研究和实验。

尽管地震预测技术和方法在不断进步,但预测地震仍然是一项非常复杂和困难的任务。

地震是一种复杂的现象,受到多种因素的影响,包括地壳构造、地下构造、板块运动、应力积累和释放等。

《2024年多时空尺度的风力发电预测方法综述》范文

《2024年多时空尺度的风力发电预测方法综述》范文

《多时空尺度的风力发电预测方法综述》篇一摘要:随着能源结构转型和清洁能源需求不断增长,风力发电作为可再生能源的重要组成部分,其预测技术成为了研究的热点。

本文综述了多时空尺度的风力发电预测方法,包括不同时间尺度的预测模型、主要影响因素、存在的问题及挑战,并探讨了未来可能的研究方向。

一、引言风力发电作为一种清洁、可再生的能源形式,在全球范围内得到了广泛的应用。

然而,风力的不稳定性和间歇性给电网的稳定运行带来了挑战。

因此,准确预测风力发电的出力对于电力系统的优化调度、电网平衡以及风力发电场的经济运行至关重要。

多时空尺度的风力发电预测方法正是在这样的背景下提出的,其目的在于适应不同时间尺度的预测需求,为电力系统提供更加准确和全面的风力发电预测信息。

二、多时空尺度风力发电预测概述多时空尺度的风力发电预测方法主要涉及不同时间尺度的预测模型。

这些模型通常包括短期预测(如分钟级、小时级)、中期预测(日级、周级)和长期预测(月级、季度级)。

每种时间尺度的预测都有其特定的应用场景和需求。

三、主要预测方法与技术1. 短期风力发电预测:基于数值天气预报模型和风场实测数据,结合机器学习算法进行短期风速和功率的预测。

主要技术包括支持向量机、神经网络等。

2. 中期风力发电预测:主要利用历史数据和统计方法进行预测,如时间序列分析、灰色预测等。

这些方法能够捕捉到风速和功率的长期变化趋势。

3. 长期风力发电预测:通常基于气候模型和大气环流模型进行预测,能够提供关于未来一段时间内风力发电趋势的预测信息。

四、影响因素及挑战1. 影响因素:风速的时空分布特性、气象因素(如温度、湿度、气压等)、地形地貌等都是影响风力发电预测的重要因素。

此外,电力系统的运行状态和需求也会对预测结果产生影响。

2. 挑战:多时空尺度的风力发电预测面临的主要挑战包括数据的不确定性、模型的复杂性以及计算资源的限制等。

此外,如何将不同时间尺度的预测结果进行有效融合,提高预测的准确性和可靠性也是一个重要的研究方向。

基于大数据分析的市场预测方法综述

基于大数据分析的市场预测方法综述

基于大数据分析的市场预测方法综述随着信息技术的不断发展和大数据的广泛应用,市场预测方法也在不断升级和改进。

基于大数据分析的市场预测方法成为人们研究和分析市场的重要工具。

本文将对基于大数据分析的市场预测方法进行综述,分析其原理、优势和应用领域。

首先,基于大数据分析的市场预测方法的原理主要是通过收集和分析大量的市场数据,运用统计学和机器学习算法来预测市场的发展趋势。

这些数据可以包括消费者行为数据、市场交易数据、智能设备数据等。

通过对这些数据进行深入的挖掘和分析,可以得出对市场未来发展的预测。

基于大数据分析的市场预测方法相比传统的市场预测方法具有明显的优势。

首先,大数据分析可以处理大量、多样化、复杂的数据,而传统的市场预测方法通常只能应用于特定的数据类型和场景。

其次,基于大数据分析的市场预测方法可以减少人为主观因素的干扰,更加客观地从数据中获取预测结果。

同时,大数据分析还可以发现和挖掘隐藏在数据中的规律和模式,提高市场预测的准确性和精度。

基于大数据分析的市场预测方法在各个行业和领域都得到了广泛的应用。

首先,在金融行业,大数据分析可以帮助银行、保险公司等金融机构预测市场波动,优化投资组合,降低风险。

其次,在零售业,大数据分析可以分析客户购买记录、消费习惯等,帮助零售商预测产品需求和优化销售策略。

另外,在物流和供应链管理方面,大数据分析可以通过分析大量的交易和运输数据,优化物流路径,提高物流效率。

此外,大数据分析还可以在市场决策、市场营销、市场调研等方面发挥重要作用。

在实际应用中,基于大数据分析的市场预测方法需要注意一些问题。

首先,数据质量是保证预测准确性的关键。

如果数据质量不高,分析结果可能不可靠。

因此,对数据的采集、处理和清洗工作必须严谨细致。

其次,算法的选择和优化也是影响预测效果的重要因素。

不同的预测模型和算法可能适用于不同的市场场景,需要根据具体情况进行选择。

另外,模型的评估和验证也非常重要,可以通过交叉验证、模型比较等手段来验证预测效果的可靠性和稳定性。

常用预测方法综述

常用预测方法综述

常用预测方法综述一、预测方法(1)回归分析方法:一元回归,多元回归,当因变量与一个或多个自变量之间存在线性关系。

(2)非线性方法(函数逼近、曲线拟合、插值、非线性回归):因变量与一个或多个自变量之间存在非线性关系。

(3)微分方程(差分方程):变量之间的关系由机理确定。

(4)灰色预测:GM(1,1)模型、GM(1,1)残差模型、灰色序列预测、拓扑预测,包络模型,具有发展趋势的序列的预测方法。

(5)时间序列分析:移动平均法、指数平滑法、趋势分析、AR模型、MA模型、ARMA模型、自回归求和滑动平均模型ARIMA、季节性乘积模型ARIMAz、门限自回归模型TAR。

(6)马尔可夫预测:具有随机状态转移规律的长期预测。

(7)神经网络预测:BP网络预测、Hopfield网络预测、模糊神经网络预测。

(8)分形预测,遗传预测,混沌预测。

(9)组合预测:非线性规划模型、权重综合、区域综合、最优加权法、最优加权模型、模型综合的正权组合方法、方差倒数加权法、正权综合方法的改进——递归下权综合方法。

二、预测的一般步骤(1)筛选预测变量,选择主要因素作为预报因子(即自变量),如果因素较多可以采取加权合并或者选取主成分(主成分回归)等办法。

(2)收集或计算数据,一般都要做数据的标准化处理。

(3)异常值处理:①剔出;②修补。

(4)绘图进行分析,观察规律,选择合适的预测模型进行预测。

(5)进行误差分析,分析预测的效果,进行各种检验,对预测模型给出评价。

三、综合预测方法根据实际情况可以综合采用多种预测方法组合进行预测。

如对序列X,先用灰色预测模型预测发展趋势Y,用X-Y得到平稳变化序列,再用ARIMA方法预测。

如对有震荡、规律性不强的序列先进行一次,两次或三次累加得到规律较强的序列,再用曲线进行拟合等。

如用两种方法分别进行预测得出结果再综合,即组合预测。

股票价格预测方法综述

股票价格预测方法综述

股票价格预测方法综述股票价格预测是金融市场中非常重要的一个问题,它不仅关乎到投资者的收益,还涉及到企业的发展方向以及整个市场的走向。

然而,由于股票市场的复杂性和不确定性,预测股票价格是一项颇具挑战性的工作。

本文将综述几种常见的股票价格预测方法。

1. 基于统计模型的预测方法基于统计模型的股票价格预测方法是目前应用最为广泛的一种方法,主要包括时间序列分析、回归分析、指数模型等。

时间序列分析是基于股价的历史数据进行分析,预测未来股价的一种方法。

该方法需要收集大量的历史数据,通过对数据进行平稳性检验和建立预测模型,可以得到未来股价的趋势。

回归分析是基于相关因素与股价之间的关系,通过建立回归模型来预测未来股价。

该方法需要选择相关因素,并对其进行定量测量,然后建立预测模型。

指数模型是一种简单的股票价格预测方法,它通过计算股价指数的变动来预测未来股价的趋势。

该方法对历史数据的要求较低,但是需要对市场具有较好的理解和判断力。

基于机器学习的股票价格预测方法又称为数据驱动模型,主要包括人工神经网络、支持向量机和决策树等。

人工神经网络是一种基于生物神经网络的模式识别和预测方法,它可以通过学习历史数据来预测未来股价。

该方法需要构建神经网络模型,并对其进行训练和优化。

支持向量机是一种基于统计学习理论的分类和回归方法,它可以通过寻找最优超平面来进行预测。

该方法需要选择核函数和超参数,并对其进行调参,以提高预测性能。

决策树是一种基于树形结构的分类和回归方法,它可以通过构建决策树来进行预测。

该方法需要选择特征和节点分裂方式,并对其进行剪枝和优化,以降低过拟合风险。

基于深度学习的股票价格预测方法是近年来发展起来的一种新型方法,主要包括卷积神经网络、循环神经网络和深度强化学习等。

深度强化学习是一种基于环境和奖励的深度学习模型,它可以通过多次交互来学习最优决策,进而进行股票价格预测。

该方法需要选择奖励函数和优化算法,并对其进行训练和优化。

短路电流预测方法综述

短路电流预测方法综述

文章编号:1004-289X(2024)02-0001-09短路电流预测方法综述李嘉敏1ꎬ庄胜斌1ꎬ杨广辉1ꎬ唐玲玲2(1.福州大学电气工程与自动化学院ꎬ福建㊀福州㊀350108ꎻ2.福建电力职业技术学院ꎬ福建㊀泉州㊀362008)摘㊀要:随着用电负荷与新型电力系统容量的不断增大ꎬ短路保护如何与之适配的技术难题日渐突出ꎮ系统发生短路故障时ꎬ可对短路电流发展进行预测ꎬ并根据该规律制定最佳保护与控制方案ꎬ力求安全前提下ꎬ使得短路造成的停电范围㊁设施损害最小ꎮ因此ꎬ短路电流预测方法被广泛研究ꎮ首先对短路电流进行了数学分析ꎬ得出其主要特征与影响因素ꎻ其次ꎬ以不同短路电流预测应用场景为分类依据ꎬ将国内外主要相关贡献归纳为节点预测㊁零点预测和峰值预测共三种研究类型ꎬ并总结了各类型预测方法的优缺点ꎻ最后ꎬ对短路电流预测方法进一步的研究方向和趋势进行了展望ꎮ关键词:短路电流预测ꎻ节点预测ꎻ过零预测ꎻ峰值预测中图分类号:TM71㊀㊀㊀㊀㊀文献标识码:BASummaryoftheShortCircuitCurrentPredictionMethodLIJia ̄min1ꎬZHUANGSheng ̄bin1ꎬYANGGuang ̄hui1ꎬTANGLing ̄ling2(1.CollegeofElectricalEngineeringandAutomationꎬFuzhouUniversityꎬFuzhou350108ꎬChinaꎻ2.FujianVocational ̄technicalSchoolofElectricPowerꎬQuanzhou362008ꎬChina)Abstract:Withthecontinuousexpansionofpowerloadandnewpowersystemcapacityꎬthetechnicalproblemthatadaptingshort ̄circuitprotectiontowhichhasbecomeincreasinglyprominent.Whenashort ̄circuitfaultoccursinthesystemꎬtheshort ̄circuitcurrentdevelopmentcanbepredicted.Accordingtotheregularityꎬthebestprotectionandcontrolschemecanbeformulatedsoastonarrowpoweroutageareaandreducefacilitydamagecausedbytheshortcircuitundersafety.Thereforeꎬshort ̄circuitcurrentpredictionmethodshavebeenwidelystudied.Inthispa ̄perꎬtheshort ̄circuitcurrentismathematicallyanalyzedꎬanditsmaincharacteristicsandinfluencingfactorsareob ̄tained.Secondlyꎬbasedondifferentapplicationscenariosofshort ̄circuitcurrentpredictionꎬthemainrelevantcontri ̄butionsathomeandabroadaresummarizedintothreeresearchtypes:nodepredictionꎬzeropredictionandpeakpre ̄diction.Theadvantagesanddisadvantagesofeachtypeofpredictionmethodaresummarized.Finallyꎬthefurtherre ̄searchdirectionsandtrendsofshort ̄circuitcurrentpredictionmethodsareprospected.Keywords:predictionofshortcircuitcurrentꎻnodepredictionꎻzero ̄crossingpredictionꎻpeakprediction1㊀引言随着分布式新能源和储能的大规模不断并网与区域电网的不断互联ꎬ电力系统短路电流水平不断提高[1ꎬ2]ꎮ部分电网出现由于更换不及时造成短路电流水平已接近或超出保护设备的额定分断能力ꎬ且无限提升设备的短路承载力是不现实的ꎮ短路电流的发展预测ꎬ可为短路故障电流早期抑制与选择性保护提供科学的决策依据ꎬ同时也是指导电网规划与建设㊁继电保护设计的主要技术手段[3]ꎮ因此ꎬ快速准确的短路故障电流预测技术研究对电网安全运行有着十分重要的意义ꎮ㊀㊀近年来ꎬ国内外提出的短路电流预测可分为三类:(1)节点预测短路电流方法ꎻ(2)过零预测短路电流方法ꎻ(3)峰值预测短路电流方法ꎬ如图1所示ꎮ以上三种短路电流预测方法适应不同的应用场景ꎮ节点预测方法ꎬ即从电力系统的网络拓扑结构及分布式电源㊁储能㊁负荷或潮流分布的角度出发ꎬ通过仿真电路计算或已训练的神经网络模型对特定网络节点的短路电流水平进行预估ꎬ以便在网架改造或建设初期配置合理的继电保护设备ꎻ过零预测方法则是在电网发生短路故障时ꎬ实时㊁快速㊁准确地进行短路电流特征参数估计并预测出过零时刻ꎬ以实现断路器相位控制开断ꎬ适当协调不断增大的系统短路容量与断路器分断能力提升困难且浪费之间的矛盾ꎻ峰值预测方法ꎬ是在短路故障保护在故障发生后时刻进行动作ꎬ该时间内故障电流激增ꎬ若提前预测出峰值便可指导限流与分断措施实施ꎮ同时ꎬ若在系统规划建设时利用短路故障信号数学模型及人工智能算法进行短路电流峰值预测ꎬ有利于实现系统全局选择性㊁经济协调保护方案设计ꎮ图1㊀短路电流预测分类图㊀㊀算法快速性与准确性的恰当配合是短路电流预测方法有效作用的关键ꎬ不同应用场景对于预测算法性能的要求也不尽相同ꎮ国内外学者从不同角度出发对短路电流预测方法做了大量研究ꎬ本文在此基础上对各类预测方法加以详细分类总结ꎬ客观分析了现有方法存在的问题和不足ꎬ并对短路电流预测方法的未来发展趋势进行展望ꎮ2㊀短路故障特性分析电流与电压信号可以直观反映电力系统的运行状态ꎬ当发生短路故障时ꎬ电压下跌而电流剧增ꎮ然而电压信号易受到干扰及噪声的影响并不稳定ꎬ从保护的角度出发一般更多以短路故障电流信号作为关键信息依据ꎬ因此ꎬ大量文献针对短路电流剧增现象进行故障检测研究[4-6]ꎮ系统发生短路故障时的简化电路如图2所示ꎬ假设电源等效为无穷大㊁理想系统ꎮ图2㊀简化短路故障等效电路图㊀㊀图2中R1㊁L1为电源侧等效电阻及电感ꎬR2㊁L2为等效负载电阻及电感ꎬu(t)为等效电源ꎬisc为线路电流ꎮ假设系统在t=0时刻发生短路故障ꎬ故障发生后系统等效阻抗由(R1+R2)+jw(L1+L2)(R1+R2)+(jωL1+jωL2)突然变为R1+jwL1R1+jωL1()ꎮ由基尔霍夫定律可得:L1disc(t)dt+Risc(t)=Umsin(wt+α)(1)㊀㊀对式(1)求解可得线路短路电流的瞬时公式ꎬ即isc(t)=Imsin(wt+α-φ)+[Im(sin(α-φ0)-sin(α-φ))]e-tτ(2)㊀㊀式中ꎬIm=Um/Zk为短路电流周期分量峰值ꎻIm0=Um/Z为短路前的电流峰值ꎻα为故障电压初相角ꎻϕ为短路回路阻抗角ꎻϕ0为短路前回路阻抗角ꎻτ=L1/R1为衰减时间常数ꎮ在不同故障初相角下ꎬ即不同短路故障发生时刻的短路电流如图3所示ꎮ图3㊀不同故障初相角下电流随时间变化曲线㊀㊀由式(2)与图3分析可得:㊀㊀(1)故障初相角对短路电流第一峰值有显著影响ꎮ在0ʎ故障初相角下ꎬ短路电流第一峰值接近短路电流最大峰值ꎬ随着故障初相角增大至180ʎꎬ短路电流第一峰值减小至接近0ꎮ(2)不同故障初相角下的短路电流上升速率有明显不同ꎮ在90ʎ故障初相角附近ꎬ短路电流上升速率最大ꎬ畸变特征最为明显ꎻ在0ʎ及180ʎ故障初相角附近ꎬ短路电流上升速率最小ꎬ畸变特征最不明显ꎮ㊀㊀(3)短路故障发生后短路电流呈现明显的非周期性ꎬ非周期性分量按照指数规律衰减ꎬ衰减的速度由时间常数决定ꎬ则与短路阻抗有关ꎮ3㊀短路电流的节点预测3.1㊀节点预测概述㊀㊀随着电网分布式电源数量的快速增长与充电桩等新型电力电子设施的大规模接入ꎬ导致电网结构越来越趋于复杂化ꎬ电网负荷水平持续增加㊁负荷特性日益多样ꎬ短路电流情况也愈复杂ꎬ传统的短路电流计算方法已经难以满足电网安全稳定运行的要求ꎮ基于逐渐升高的电网信息化程度ꎬ利用在电力网络中采集的海量数据与人工智能算法相结合ꎬ对短路电流进行短期㊁超短期的预测能够起到良好的效果ꎮ网络节点预测法是先构建各节点电路短路模态ꎬ然后通过分析短路电流水平预估可能发生短路故障的节点位置ꎮ与传统的短路电流计算方法相比ꎬ网络节点预测法在通过减少数据的输入量来提高计算速度的同时ꎬ还能保证预测精度[7]ꎮ3.2㊀节点预测法分类㊀㊀网络节点预测法主要可以分为两类:第一类是特征提取法ꎬ通过快速提取和分析短路电流的暂态特征分量ꎬ根据暂态特征的分量的变化ꎬ来实现短路电流预测[8-10]ꎻ第二类是机器学习法ꎬ建立考虑各种因素对短路电流的影响ꎬ确定预测模型的输入特征量ꎬ采用神经网络等机器学习方法训练历史数据ꎬ建立电力网络短路电流水平的预测模型[7-11]ꎮ其预测依据与特点如表1所示ꎮ表1㊀网络节点预测法中不同方法的比较预测方法预测依据特点特征提取法短路电流关于特征分量的数字表达式对历史数据需求低ꎬ预测精度高ꎬ数据处理量少ꎬ运算量小ꎬ程序运行速度快等优势ꎬ有利于在硬件系统上的实时实现机器学习法神经网络对历史数据的训练需要大量历史数据并对数据进行预处理ꎬ拟合程度强ꎬ但容易陷入局部最优ꎬ需引入其他算法来优化参数㊀㊀文献[12]通过设定220kV电厂接入的分布模型ꎬ得到该电厂短路电流与接入发电机容量之间的关系ꎬ由此建立了系统最大供电规模与220kV电网的短路电流关系ꎮ文献[13]选用三次B样条区数为小波函数ꎬ对短路电流实施二进小波变换ꎬ获得各尺度小波变换的平滑分量及小波分量ꎬ将小波分量变化作为短路故障信息特征对峰值电流进行预测ꎮ文献[14]在短路故障早期诊断基础上ꎬ提出一种基于最小二乘法的低压配电系统短路电流峰值预测计算方法ꎬ利用少量电流数据与故障电压初相角进行曲线拟合ꎬ预测短路电流发展趋势及峰值ꎮ㊀㊀文献[10]通过大量的历史数据的训练得到隐含层与输出层的权值ꎬ即可利用训练好的模型对未知的短路电流值进行预测ꎬ无需知道具体输入输出量之间的表达式ꎬ但存在过学习和易陷入局部最优解的缺陷ꎮ为解决上述不足ꎬ文献[11]将故障发生后0.2ms的电流值和故障初始相位角作为多层神经网络的输入特征向量来预测低压分布式系统短路电流的大小ꎮ文献[15]提出一种将小波变换短路故障早期检测技术与极端学习机相结合的短路电流预测方法ꎬ将特征提取法与机器学习法结合在一起ꎬ结合二者优势从而提高了预测精度ꎮ㊀㊀综上所述ꎬ网络节点预测法是在电网架构相对稳定的前提下ꎬ通过对电网节点的短路水平进行预测㊁辨识ꎬ对合理平衡电网短路容量和输电容量的资源㊁减少设备投资具有指导意义ꎻ同时对电网可能出现的短路故障进行预测分析ꎬ为电力系统的规划设计和运行工作提供有效依据[3]ꎮ4㊀短路故障电流过零点预测4.1㊀电流过零预测概述㊀㊀新能源渗透比例与用电需求持续上升ꎬ带来低压交流系统短路容量增大ꎬ对保护电器的短路分断能力也提出了较高要求ꎮ现有断路器产品的最大开断性能已无法匹配部分区域电网的短路电流ꎬ而大批量地更换高分断能力开关是不经济且不可持续的ꎬ因此有必要对短路电流过零预测进行研究ꎬ使开关可在短路电流过零时将故障隔离ꎬ实现小电弧能量开断ꎬ减小短路故障分断时对开关设备的损害ꎮ但由于短路故障的多样性和直流衰减分量的影响ꎬ故障电流并非周期性过零ꎬ因此快速提取故障电流的特征参数并准确估计故障电流零点是短路电流相控开断技术的关键基础ꎮ㊀㊀故障电流选相控制技术可缩短断路器动作时灭弧室的燃弧时间ꎬ降低触头间隙电弧能量ꎬ减小触头电侵蚀ꎬ能够有效提高断路器的开断容量和寿命[16-17]ꎮ相控分断是通过对短路电流波形的拟合重构ꎬ在短路故障发生后ꎬ通过零点预测算法精确预测一个目标过零点ꎬ根据开关机构固有分闸动作时间ꎬ延迟一定时刻触发断路器分闸ꎬ使得断路器触头在时刻分离后ꎬ经过最佳燃弧时间ꎬ在目标电流自然过零点处熄弧ꎬ这样燃弧时间短而能量积累少ꎬ有利于绝缘介质恢复ꎬ从而避免电弧重燃㊁实现短路故障开断[18]ꎬ如图4所示ꎮ㊀㊀断路器相控开断时序如图5所示ꎬ其中tzpr为零点预测算法响应时间ꎻtwait为零点预测结束到发出分闸动作信号之间的等待时间ꎻtcbo为操动机构固有动作时间ꎻtarc为燃弧时间ꎻto为从接受分闸动作信号到电弧熄灭的总时间ꎬ即为开关分闸动作总时间ꎮ图4㊀相控分断流程图5㊀故障电流相控分断时序4.2㊀零点预测法分类㊀㊀国内外关于利用短路电流离散采样数据估算短路特征参数预测目标过零点以实现提前发出断路器分断指令的预测算法主要可分为基于傅里叶算法的零点预测法㊁基于最小二乘算法的零点预测法与其他预测法三大类ꎮ4.2.1㊀基于傅里叶算法的零点预测法㊀㊀傅立叶算法在电力系统谐波分析㊁故障诊断等领域中应用广泛[19]ꎬ在短路电流零点预测领域中已有研究的包括全波傅立叶算法和半波傅立叶算法[20-23]ꎮ基于傅氏算法的预测流程如图6所示ꎬ该算法对于只含有奇数次谐波分量的信号处理效果很好ꎬ能够保证零点预测的速度与准确度ꎬ但在直流衰减分量或者偶数次谐波含量较大时的信号时预测精度不佳[24]ꎮ㊀㊀文献[25]采用改进快速傅里叶算法对6个采样数据长度的窗口对短路电流进行分解计算ꎬ但实验为理想状态ꎬ实际会出现的谐波分量并未充分考虑ꎮ文献[26]对比了最小二乘参数辨识与改进快速傅里叶变换两种方法在短路电流含有不同噪声㊁采样不同期情况下的过零预测效果ꎬ最终得出:理想状态下改进快速傅里叶算法预测精度高ꎬ但在受到采样采集系统的噪声和电网频率的较大波动影响时ꎬ最小二乘参数辨识算法可靠性与准确度更高ꎮ图6㊀基于傅氏算法的预测流程图4.2.2㊀基于最小二乘算法的零点预测法㊀㊀最小二乘法是一种通过求解估计值与实际值之间的误差平方和最小问题从而找到最符合样本数据的函数的经典方法ꎬ计算简单ꎬ具有灵活的数据窗口ꎬ但其提取参数的过程常常将短路电流中的衰减直流分量表达式用泰勒级数展开式的前两项近似代替[27]ꎬ该截断误差使得其采样窗长通常需超过半个周波(10ms)才能对参数进行有效提取ꎮ基于最小二乘算法的预测流程如图7所示ꎮ㊀㊀文献[28]提出一种基于加权最小二乘法的零点预测法ꎬ对电流参数进行估计ꎬ可以在10ms内实现短路电流过零点的预测ꎬ预测误差在ʃ1ms以内ꎬ但采用相位角替换会产生随机误差ꎻ文献[27]提出一种能够消除直流衰减分量影响的递推最小二乘校正算法ꎬ利用递推原理对计算过程进行分解以提高计算速度ꎮ文献[29-30]提出了补偿时间常数的改进递推最小二乘法ꎬ该算法具有可变的数据窗ꎬ参数估计精度高ꎬ收敛速度快ꎬ计算简便ꎬ且对高频分量的滤波能力强ꎬ在故障电流含有谐波时仍然有效ꎬ但是部分工况下算法预测时间较长ꎮ文献[31]提出了带有遗忘因子的最小二乘法来提高算法对频率偏移问题的耐受能力ꎬ提升了预测初始阶段的零点精度ꎬ但是随着时间推移ꎬ零点预测误差仍会逐渐增大ꎮ图7㊀基于最小二乘法的预测流程4.2.3㊀其他零点预测方法㊀㊀小波分析法在时频域分析时可以聚焦原始信号细节处ꎬ能够自动划分信号频段ꎮ但小波变换会有 边界效应 的缺陷ꎬ须经过较长时间的采样数据过渡ꎬ实际应用在零点预测时需事先启动计算ꎬ耗费单片机算力资源[32]ꎮ㊀㊀文献[33]提出了一种 安全点算法 以预测短路电流过零时刻ꎮ该算法为简化计算模型ꎬ做出 电流中的直流分量并不衰减 的假设与利用故障电流基波分量的过零时刻为 安全点 替代实际波形过零点ꎮ该算法在直流含量较低㊁衰减缓慢的场合可实现准确快速的预测ꎬ然而简化模型的同时也导致当谐波含量较大时预测精度不足ꎮ㊀㊀Thomas等人[34-35]针对 安全点算法 存在的缺陷ꎬ提出了 自适应算法 ꎬ该算法对电流中的衰减直流分量进行泰勒展开[28ꎬ36]ꎬ且能够自适应地变换采样窗长以更好地实现故障判断ꎮ自适应算法考虑了直流分量的衰减特性ꎬ但是该算法模型的拟合阶数增加ꎬ需要在线进行矩阵和除法运算ꎬ计算量大ꎬ难以满足快速性的技术要求ꎮ文献[37]提出了基于自适应神经元的短路电流参数提取算法ꎬ当矩阵维数较大时ꎬ计算量大不利于短路故障的快速隔离ꎮ㊀㊀Prony算法模型将短路电流的周期分量和直流衰减分量综合进行考虑ꎬ直接利用采样信号得到电流的特征参数ꎬ且在参数求解时应用最小二乘拟合ꎬ对测量过程中带来的噪声有所消除[36ꎬ38]ꎮProny算法可在时域内直接得到待分析信号的幅值㊁相位㊁频率和衰减因子ꎬ计算量小ꎬ适合分析按照指数规律变化的信号ꎬ但仅适合离线计算[39]ꎮ㊀㊀文献[40]将支持向量机(SVM)应用于短路电流零点预测ꎬ该算法原理简单ꎬ对大量数据进行离线训练后即可得到预测结果ꎬ目前只在特定的短路故障中可应用ꎬ实时性和通用性还有待提高ꎮ文献[41]基于神经网络模型提出了一种电力系统谐波频率的分析方法ꎬ整次谐波的求解精度较高ꎬ但是该算法可能受网络本身收敛系数的影响而出现难以收敛的现象ꎮ㊀㊀文献[42]通过长度为3的电流数据采样滑动窗口不断求解更新短路电流的周期分量幅值和衰减时间常数ꎬ并根据计算参数重构短路故障电流波形ꎬ进而预测故障电流过零点㊁实现断路器相位控制开断ꎮ该预测方法故障辨识参数计算准确㊁计算量小㊁预测短路电流与实际波形吻合度高ꎬ与改进递推最小二乘法相比ꎬ其具有快速㊁精度高的优点ꎮ㊀㊀综上所述ꎬ现有方法均通过数字信号分析算法实现零点预测ꎮ目前所研究算法存在模型简化带来误差与模型完整带来求解复杂的矛盾ꎮ这些算法虽然较传统傅里叶㊁最小二乘拟合等方法已有诸多改善ꎬ但由于硬件电流传感器对模拟信号采集调理放大环节的信噪比和短路工况下电路频率稳定性等因素的制约ꎬ难以同时满足现场预测精度与实时性的要求ꎮ如何将不同算法组合起来进行目标过零点预测ꎬ兼顾预测精度与短耗时ꎬ是未来研究热门方向且具有开阔的应用前景ꎮ5㊀短路电流的峰值预测5.1㊀峰值预测概述㊀㊀为解决如何根据短时故障信息精准采取最佳的抗短路故障的技术措施这一难题ꎬ有必要进行短路电流峰值预测与发展规律研究ꎮ依托故障信息的短时辨识ꎬ结合轻量化峰值预测算法ꎬ可实现短路电流尚未 成熟 时预知电流发展规律ꎬ继而可根据该规律制定选择性限制㊁分断保护策略ꎬ以保证短路故障下低压配电网全范围的最优保供电服务ꎮ5.2㊀电流峰值预测方法分类㊀㊀目前关于短路电流峰值预测的方法主要可分为两类:一类是从短路电流的数学模型出发ꎬ采集短路故障早期的电流(电压)信号ꎬ计算出模型的特征参数ꎬ进行曲线拟合ꎬ可在时间序列上对短路电流的发展趋势进行外推预测ꎬ称为趋势外推预测法ꎻ另一类是以人工智能算法为工具ꎬ以故障后某个时刻的电流㊁故障电压初相角或其他电气量为输入特征量ꎬ以短路电流峰值为输出结果ꎬ建立短路电流峰值预测模型并加以训练及测试ꎬ称为人工智能预测法[43]ꎮ5.2.1㊀趋势外推预测法㊀㊀趋势外推预测法的主要实现过程包括确立短路电流随时间的数学模型㊁利用实时(历史)数据求出模型的特征参数㊁在时间序列上进行递推预测ꎬ其关键在于数学模型建立的有效性与特征参数提取的准确性ꎮ傅氏算法㊁最小二乘法㊁灰色算法等多种算法均可在线提取短路电流的特征参数ꎮ㊀㊀傅氏算法是目前应用最广泛的峰值预测法ꎬ它的预测精度高ꎬ滤波效果好ꎬ但至少需要采样半个周波(10ms)的数据量ꎬ检测时间过长ꎮ为解决傅氏算法的滤波效果与响应速度之间的矛盾ꎬ文献[44]提出一种可根据需要滤除指定谐波分量的数字信号处理算法ꎬ为短窗傅氏算法在微机继电保护中的应用提供了理论基础ꎮ随后ꎬ文献[43]采用短窗傅氏算法ꎬ建立五元滤波矩阵对短路电流信号进行分解ꎬ通过基本四则运算求出周期分量与直流衰减分量的特征参数ꎬ最终确定电流离散表达式ꎬ实现短路电流趋势的预测ꎮ㊀㊀文献[45]结合短路电流的一阶微分方程ꎬ提出将灰色理论应用于低压配电系统的短路电流预测ꎮ文献[46]提出等维信息递推预测算法可缩短总体预测时间ꎬ并通过调整初始迭代点㊁选择合适的外推因子等方式提高预测精度ꎮ文献[10]在实现低压配电系统短路故障早期检测的基础上ꎬ采用最小二乘法将故障电压初相角和少量已采集到的短路电流数据进行曲线拟合ꎬ并对其进行残差修正以得到更好的预测效果ꎮ㊀㊀趋势外推预测法的模型简单ꎬ易于在线实现ꎬ且在参数提取过程中具有数据窗口灵活㊁计算过程简单的优点ꎮ但是趋势外推法必须经过一定的数据窗口对信号进行采样ꎬ导致其在预测速度上有所滞后ꎬ难以满足实际工程应用中短路电流峰值预测的实时性要求ꎮ5.2.2㊀人工智能预测法㊀㊀人工智能预测法是通过算法模拟人类的思考㊁学习方式ꎬ根据历史数据和模型算法ꎬ对未来事件㊁趋势㊁情况进行预测和分析从而得到预测条件与待预测量之间的关系ꎮ目前用于短路电流峰值预测的人工智能算法有人工神经网络(ANN)㊁BP神经网络㊁遗传算法(GA)㊁支持向量机(SVM)㊁极端学习机(ELM)和二维云模型等ꎮ㊀㊀2011年ꎬ文献[47]首次提出将人工神经网络应用于短路电流峰值预测ꎬ以故障电压初相角及故障后0.2ms的短路电流瞬时值作为预测模型输入特征量ꎬ利用仿真模型得到的短路电流数据进行训练与预测ꎬ验证了ANN算法的可行性ꎮ文献[15]直接采用极端学习机算法ꎬ以故障后0.2ms的短路电流瞬时值及故障电压初相角为输入ꎬ经离线训练后应用于NICompact-RIO硬件上ꎬ实现短路电流的在线预测ꎮ㊀㊀文献[48]提出可充分动态应用新数据且相对误差最小的灰色BP神经网络动态预测模型ꎬ改进了传统灰色预测模型数据迭代不合理的问题ꎬ适用于原始样本点少㊁非线性和随机性强的复杂系统ꎮ其以短路电流㊁故障初相角㊁灰色模型预测结果和结果相对残差作为BP神经网络的输入参数对灰色模型训练ꎬ得到能快速准确地进行短路电流峰值预测的模型ꎮ灰色BP神经网络模型预测流程如图8所示ꎮ㊀㊀文献[49]利用粒子群优化算法去改善传统ELM短路电流峰值预测准确性低和效果不稳定的缺点ꎬ通过故障点位置不确定下的全相角故障数据建立预测模型ꎬ并分析了粒子群算法在不同适应度函数ꎬ即平均相对误差㊁均方根误差和灰色绝对关联度下的精度与预测实时性ꎬ得出灰色绝对关联度做适应度函数的短路电流峰值预测模型最佳的结论ꎮ㊀㊀人工智能预测中不同方法的比较ꎬ如表2所示ꎮ人工智能预测法最主要的优点在于它能够自动学习并发现历史数据中的规律和模式ꎬ即可通过数据训练建立预测模型ꎬ无需计算出输入与输出之间的表达式ꎮ人工神经网络的学习能力非常强大ꎬ能充分逼近复杂的非线性关系ꎬ具有鲁棒性和容错能力ꎬ然而一个完善的人工神经网络需要具有大量的历史数据和时间来训练ꎬ且有可能会陷入局部最优解ꎮ支持向量机适用于小样本和非线性数据的预测ꎬ能够避免过拟合和局部最小值问题ꎬ但核函数计算复杂ꎬ对缺失数据敏感ꎬ并且求解支持向量所需时间较长ꎮ极端学习机参数设置简单ꎬ学习速度快ꎬ泛化能力强ꎬ但可能产生无效的隐层节点ꎬ且精度和速度具有随机性ꎮ二维云模型预测过程中兼顾模糊性和随机性ꎬ虽然每次预测的精度不尽相同ꎬ但都能够集中在一定范围之内[50]ꎬ能够使得预测结果更加合理ꎬ然而其预测速度未得到实际验证ꎬ且通过硬件实现也相对困难ꎮ图8㊀灰色BP神经网络模型预测流程图表2㊀AI短路电流峰值预测方法对比文献[]AI类型预测耗时/ms预测峰值偏差/100%[15]极限学习机1.903.2[48]BP神经网络0.06(迭代次数为3时)1.93[50]二维云模型/1.71[49]粒子群优化极限学习机2.901.36。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

季节周期情形: yt a1 yt 4 a2 yt 8 a3
适用情形:数据离散且较少,回归分析效果不好
五、微分方程
dx 单方程情形: f ( x, t ) dt
dx f ( x, y , t ) dt 方程组情形: dy g ( x, y , t ) dt
适用情形:跟变化率有关,尤其是随时间变化的问题
可以是离散型数据,也可以是连续型变化
特殊情形:
参数求解:离散化,建立差分方程
微分方程求解:
(1)解析解 dsolve(‘方程1’,„,‘方程n’,‘初始条件’,‘自变量’)
(2)数值解 在生产和科研中所处理的微分方程往往很复杂,且大 多得不出一般解.而实际中的对初值问题,一般是要求 得到解在若干个点上满足规定精确度的近似值,或者得 到一个满足精确度要求的便于计算的表达式.
非线性回归中的难点:参数求解
(1)线性化: 优点:可进行参数检验,求解容易 缺点:不是对原模型的直接反映
(2)直接用数值解法 优点:一般来说求解更精确 缺点:缺乏对参数的检验,结果对初值依赖性强 几种常用特殊的非线性表达: (1)多项式
y a0 a1x a2 x2 an xn
建立数值解法的一些途径
设 xi 1 xi h, i 0,1, 2, 微分方程 y ' f ( x, y ) y ( x0 ) y0 , n 1, 则可用以下离散化方法求解
a.用差商代替导数(欧拉法)
y ( x h) y ( x ) y ' ( x) h
b1m 1 ) S1 m K b0b1 ( b1 1 m m 1 b1 1 S 2 m K b0b1 ( ) b1 1 m 2 m 1 b1 1 S3 m K b0b1 ( ) b1 1
1 S3 S 2 m ) b1 ( S 2 S1 b1 1 b0 ( S 2 S1 ) m 2 b ( b 1 ) 1 1 1 b1m 1 K ( S1 b0b1 ) m b1 1
的传输噪声过滤过程极为接近,故称为自适应滤波法。
自适应滤波法的基本预测公式为

y
t 1
w1 y w2 y ... wN
t t 1
y
t N 1
wi y
i 1
N
t i 1
其调整权数的公式为
wi =wi +2k ei +1 yt -i +1
该式表明:调整后的一组权数应等于旧的一组权数加上 误差调整项,这个调整项包括预测误差、原观测值和学 习常数等三个因素。学习常数k的大小决定权数调整的 速度。
特征:拐点个数为n-1时通常选择n次多项式
(2)修正指数曲线
y K b0b1t
(其中t为时间变量)
特征:初期增长迅速,随后增长率逐渐降低,最终以 K为极限 例子:新产品的问世,初期销量增长可能很快,当社会
拥有量接近饱和时,销售量趋于某一稳定水平
解法:三和法
三和法介绍: 将时间序列观测值等分为3个部分,每部分m个时期,根据
预测值的3个局部总和分别等于原序列的3个局部总和来确定
3个系数,即
S1 yt , S 2
t 1 m
t m 1
y ,S
t
2m
3

t 2 m 1
y
3m
t
S1 m K b0b1 b0b12 b0b1m m K b0b1 (1 b1 b12 b1m 1 ) m 1 m 1 S 2 m K b0b1 b0b1m 2 b0b12 m m K b0b1 (1 b1 b12 b1m 1 ) 2 m 1 2 m 1 2m2 3m 2 m 1 S m K b b b b b b m K b b ( 1 b b b ) 0 1 0 1 0 1 0 1 1 1 1 3
(6)比较所有可能的模型:优化
(7)预测:点预测和区间预测
ARMA模型的难点: (1)拖尾和截尾在判别上的模糊性 (2)ARMA (p,q)模型中参数的识别 尝试低阶模型或调用minic函数自动识别 (3)疏系数模型的应用
季节模型:简单季节模型和乘积季节模型
适用情形:有明显周期性 难点:关系及参数取值需靠多次尝试,难有定法
设时间序列 {yt } 从某时期开始具有直线趋势,且认为未来 时期也按此直线趋势变化,则可设此直线趋势预测模型为
at 2M t(1) M t(2) 2 (1) (2) b ( M M t t t ) N 1
yt T at bT t , T 1, 2,
三、灰色系统
GM(1,1):一阶微分方程,一个变量 关键:累加生成、累减生成、紧邻均值、时间响应函数 优点:对序列长度没有特殊要求,可适用于短序列 检验:残差,关联度,后验差等 推广:
GM(2,1) 残差修正模型 残差周期修正模型
新陈代谢模型
四、差分方程
一阶方程情形: yt a1 yt 1 a2 二阶方程情形: yt a1 yt 1 a2 yt 2 a3
Байду номын сангаас
因变量只取少数几个整数值(如logistic回归)
二、时间序列分析
ARMA(p,d,q)
平稳序列:ARMA(p,q)
非平稳序列:差分(d)为平稳序列,针对差分后序列建模 步骤: (1)时序图:平稳性 (2)白噪声检验:是否有信息量 (3)自相关图与偏自相关图:参数识别
(4)模型中参数的检验:显著性 (5)残差白噪声检验:信息提取是否充分
N N
极限概率分布: P( j i pij ), j 1
i 1 j 1
说明:n步概率分布用来预测一段时间过后的概率分布 极限概率分布用来预测充分长时间过后的概率分布
七、神经网络
适用:训练样本足够多,预留一定比例的检验样本 注意:网络模型的构造,节点个数的设置 类型:BP神经网络、RBF神经网络等
yi 1 yi hf ( xi , yi ) i 0,1, 2, y0 y( x0 )
, n -1
b.使用数值积分
y ( xi 1 ) y ( xi )

xi 1
xi
f (t , y (t )) dt
xi 1 xi [ f ( xi , y ( xi )) f ( xi 1 , y ( xi 1 ))] 2
十一、其它方法
随机微分方程
灰色马尔可夫
灰色神经网络 模糊神经网络 组合预测 插值拟合
混沌时间序列
......
作业要求:编程实现不少于三种(学过的除外)预测方法, 并自己找例子验证(可借用文献中的数据),程序要求对
关键语句要有注释,如果是借助软件,必须截图给出具体
操作步骤,即你所做的东西要有可操作性和可重复性。最 迟当天晚上离开机房前交到邮箱:42540871@。
预测:当期输入,当期输出
前期输入,当期输出
八、指数平滑法
指数平滑采用时间序列本期的实际值与前期对本期
预测值的加权平均作为本期的预测值,相当于用本
期的实际值对预测值进行不断地修正,以适应数据 的变化。
* Yt* Y ( 1 ) Y 1 t t
*
其中,Yt 1和 Yt 分别为第t+1期和第t 期的预测值;Yt 为第t期真实值; 称为平滑系数,反应利用本期实际 值的信息的程度;而1-
(4)含虚拟变量的回归 虚拟变量:定性的自变量 性别(男,女)、企业类型(家电、医药、其他) 某一定性变量有k个水平,需要k-1个虚拟变量:
1 水平1 1 水平2 1 水平k 1 x1 x2 xk 1 0 其他水平 0 其他水平 0 其他水平
功能:比较、建立混合模型等 (5)受限因变量的回归
*
则被称为阻尼(平滑)系数。
九、移动平均法
一次移动平均
M t(1) 1 ( yt yt 1 N
1 ( M t(1) N
yt N 1 )
1 ( M t(1) M t(1) n ) N
二次移动平均
M t(2)
(2) M t(1) ) M N 1 t 1
(3)龚铂茨(Gompertz)曲线
y Kb0
t b1
(其中t为时间变量)
特征:初期增长缓慢,以后增长率逐渐加快,当达到一 定程度后又开始下降,最后接近一条水平线,两 端都有渐近线,上渐近线为y=k,下渐近线为y=0 例子:产品的寿命周期、一定时期内的人口增长 解法:先取对数,再用三和法
ln y ln K (ln b0 )b1t
十、自适应滤波
自适应滤波法以时间序列的历史观测值进行某种加权
平均来预测,它要寻找一组“最佳”的权数。 方法是先用一组给定的权数来计算一个预测值,然后 计算预测误差,再根据预测误差调整权数以减少误差。 反复进行,直至找出一组三 “最佳”权数,使误差减少 到最低限度。由于这种调整权数的过程与通讯工程中
预测方法综述
一、回归分析
一元回归
多元回归
线性回归 非线性回归 变量选择:相关性 、共线性 模型选择:散点分布 模型检验:线性性、参数、拟合优度、残差
多元回归中的难点:共线性 (1)逐步回归 (2)主成分回归 非线性回归中的难点:模型选择 (1)借鉴相应学科背景下的已有模型 (2)根据散点分布或其连线趋势
h y i 1 y i [ f ( xi , y i ) f ( xi 1 , y i 1 )] 2 y 0 y ( x0 )
c.泰勒公式 龙格-库塔法 线性多步法
六、马尔可夫链
相关文档
最新文档