交通流预测模型综述
高速公路交通流预测中的时间序列模型

高速公路交通流预测中的时间序列模型随着交通拥堵问题日益突出,高速公路交通流预测成为了交通管理和规划的重要工作。
通过准确预测未来交通流量,交通管理者可以采取相应的措施,优化路网资源配置,提高交通效率,为司机和乘客提供更舒适的出行环境。
时间序列模型是一种常用的预测方法,其基本假设是未来的交通流量与过去的数据有一定的关联性。
在高速公路交通流预测中,时间序列模型可以充分利用历史交通数据,提取数据中的趋势、季节性以及周期性信息,从而进行准确的流量预测。
常见的时间序列模型包括ARIMA模型和指数平滑方法。
ARIMA模型是自回归滑动平均模型,利用当前观察点和历史观察点之间的关系进行预测。
ARIMA模型的核心是确定模型的阶数,即AR(自回归)阶数、I(差分)阶数和MA(滑动平均)阶数。
根据实际情况,可以通过统计方法和自动选择算法来确定ARIMA模型的阶数,以提高预测的准确性。
在实际应用中,ARIMA模型的性能受到很多因素的影响,例如历史数据的长度、数据的稳定性以及噪声的影响等。
为了克服这些问题,指数平滑方法也被广泛应用于高速公路交通流预测中。
指数平滑方法主要包括简单指数平滑、加权移动平均和双重指数平滑等。
这些方法通过对历史数据进行加权平均,以消除随机变化,使得预测结果更加平稳。
除了ARIMA模型和指数平滑方法,还有一些扩展的时间序列模型可以用于高速公路交通流预测。
例如,季节性自回归移动平均模型(SARIMA)可以处理具有季节性变化的交通数据,VAR模型可以同时考虑多个相关因素对交通流量的影响,而GARCH模型则可以捕捉交通流量中的波动性。
尽管时间序列模型有着一定的优势,但其预测精度仍然存在一定的局限性。
交通流量受到诸多因素的共同影响,包括天气条件、节假日效应、道路事故等。
为了提高预测的准确性,需要结合其他模型和方法,如人工神经网络、支持向量机等,以及引入外部信息。
此外,高速公路交通流预测中还需要考虑数据采集和处理的问题。
短时交通流预测模型综述

短时交通流预测模型综述引言:随着城市化进程的加快和交通拥堵问题的日益严重,短时交通流预测成为了交通管理和规划的重要工具。
通过准确地预测交通流量,交通部门可以根据预测结果来制定合理的交通管理措施,提高交通效率,缓解交通拥堵,为居民提供更加便捷的出行环境。
本文将综述目前常用的短时交通流预测模型,以便读者对该领域有更全面的了解。
一、基于统计模型的短时交通流预测基于统计模型的短时交通流预测方法是最早应用的预测方法之一。
这种方法通过对历史交通数据进行统计分析,建立数学模型来预测未来的交通流量。
常用的统计模型包括回归模型、ARIMA模型等。
这些模型通过分析交通流量与时间、天气等因素的关系,来预测未来的交通流量。
尽管这类模型在一定程度上能够准确预测交通流量,但是由于模型的线性假设和对历史数据的依赖性,对于复杂的交通流量变化往往预测效果较差。
二、基于人工神经网络的短时交通流预测人工神经网络是一种模拟人脑神经系统的计算模型,可以通过学习和自适应来预测未来的交通流量。
这种方法的优势在于可以对非线性关系进行建模,并且对于历史数据的依赖性较低。
常用的人工神经网络模型包括BP神经网络、RBF神经网络等。
这些模型通过对历史交通数据的学习和训练,来预测未来的交通流量。
然而,人工神经网络模型需要大量的训练数据,并且对网络结构和参数的选择较为敏感,往往需要较长的训练时间和计算资源。
三、基于机器学习的短时交通流预测机器学习是一种通过对大量数据进行学习和自适应来预测未来的交通流量的方法。
与传统的统计模型和人工神经网络相比,机器学习方法能够处理更复杂的非线性关系,并且对于历史数据的依赖性较低。
常用的机器学习方法包括支持向量机、决策树、随机森林等。
这些方法通过对历史交通数据的学习和训练,来预测未来的交通流量。
机器学习方法在短时交通流预测中取得了很好的效果,并且在实际应用中得到了广泛的应用。
四、基于深度学习的短时交通流预测深度学习是一种基于人工神经网络的机器学习方法,可以通过多层次的神经网络结构来提取和学习更高级别的特征。
城市道路交通流量预测模型研究

城市道路交通流量预测模型研究一、课题研究背景城市路网中不断增长的交通出行需求,进一步导致道路交通流的高峰时段拥堵情况不断加剧。
如何有效利用交通流数据,建立合理、准确的道路交通流量预测模型,对于缓解交通拥堵,优化城市交通出行体验具有重要意义。
因此,本文将从理论与实践两个层面出发,全面介绍城市道路交通流量预测模型的研究现状和发展趋势。
二、城市道路交通流量预测模型概述1.概念定义城市道路交通流量预测模型是指通过建立数学模型,在给定区域内将未来的道路交通流量进行预测的一种方法。
该模型主要包括数据预处理、数据建模、模型验证与修正、预测结果评估等步骤。
2.建模思想城市道路交通流量预测模型的建模思想主要包括时间序列模型、回归分析模型、人工神经网络模型等。
它们可以在一定程度上反映城市道路交通流量的时空特征。
3.应用领域城市道路交通流量预测模型的应用领域主要包括智慧交通、城市交通规划等。
在智慧交通领域,该模型可以用于实现自动化交通控制和优化城市交通出行路线规划;在城市交通规划领域,该模型可以为交通出行提供科学依据,指导城市交通基础设施建设和改造。
三、城市道路交通流量预测模型的现状分析1.模型类型城市道路交通流量预测模型的类型越来越多,包括时间序列模型、回归分析模型、人工神经网络模型等。
其中,时间序列模型和人工神经网络模型应用较为广泛。
2.数据来源城市道路交通流量预测模型的数据来源多种多样,可以是交通信号控制系统数据、车辆定位数据、移动App出行数据等。
其中,车辆定位数据是交通流量预测的重要数据来源,其精度和实时性能够满足实时性较高的道路交通流量预测需求。
3.关键问题城市道路交通流量预测模型研究中存在着一些关键问题,如数据的缺失和质量问题、模型的选取和改进问题等。
因此,研究者需要利用先进的技术手段来克服这些问题。
四、城市道路交通流量预测模型的发展趋势1.数据挖掘技术与模型集成技术未来城市道路交通流量预测模型将结合数据挖掘技术和模型集成技术,充分利用不同类型的数据来源,提高预测精度和实时性。
实时交通流预测模型及其应用研究

实时交通流预测模型及其应用研究随着城市化进程的加快和汽车普及率的增加,交通拥堵问题越来越严重,给人们的生活和工作带来了诸多不便。
因此,如何能够准确地预测交通流量,提前采取相应的措施来缓解交通拥堵,成为了研究的热点之一。
本文将介绍实时交通流预测模型及其应用的研究进展。
实时交通流预测模型是通过对历史交通数据的分析和建模,利用机器学习、数据挖掘等技术手段,来预测未来某一时间段内的交通流量情况。
它的应用范围广泛,可以应用于交通管理、智能交通系统、出行规划等领域。
现在让我们来介绍一些常见的交通流预测模型。
首先,基于统计学的模型是最早应用于交通流预测的方法之一。
这类模型主要通过对历史交通数据进行统计分析,然后利用一定的数学模型来进行预测。
例如,基于ARIMA模型的交通流预测方法,它通过对历史交通数据进行自回归和移动平均的模型拟合,来预测未来交通流量的变化趋势。
这种方法的优点是简单易行,但是对于复杂的交通流量变化模式预测效果有限。
其次,基于人工神经网络的模型也是常用的交通流预测方法之一。
这类模型通过构建一个多层次的神经网络来模拟交通流量之间的复杂关系。
例如,BP神经网络模型通过输入历史交通数据和其他相关因素,利用反向传播算法来训练神经网络,最后实现对未来交通流量的预测。
这种方法的优点是可以捕捉到交通流量之间的非线性关系,但是需要大量的训练数据和较长的训练时间。
另外,基于机器学习的模型也是目前研究的热点之一。
这类模型通过对大量的历史交通数据进行特征提取,并利用机器学习算法来构建预测模型。
例如,支持向量机(SVM),随机森林(Random Forest)等机器学习算法,都可以用于交通流量的预测。
这种方法的优点是能够处理大量的数据,同时可以应用于复杂的交通流量预测问题。
除了以上介绍的一些常见模型之外,还有一些新兴的交通流预测方法也值得关注。
例如,基于深度学习的模型,如卷积神经网络(CNN)和循环神经网络(RNN),已经在交通流预测领域取得了显著的成果。
江苏省考研交通工程复习资料交通流理论重要模型分析

江苏省考研交通工程复习资料交通流理论重要模型分析交通工程是一个与人们生活息息相关的学科领域。
在交通规划、交通流量管理以及交通安全等方面,交通工程师需要掌握交通流理论以便进行准确的分析和预测。
本文将对江苏省考研交通工程复习资料中的交通流理论重要模型进行分析,并探讨其应用。
一、交通流理论概述交通流理论是研究交通流动规律的一门学科,通过建立各种数学模型,以解决交通拥堵、交通信号控制、交通规划等问题。
其中,常用的交通流理论模型有流量-密度关系模型、速度-流量关系模型和速度-密度关系模型。
1.1 流量-密度关系模型流量-密度关系模型描述了道路上的车辆流量与车辆密度之间的关系。
常见的数学模型有线性模型、三角形模型和其他非线性模型。
通过实际数据的反复测量和分析,可以建立适合实际情况的交通流量-密度关系模型,并根据模型得出的结果进行交通规划和信号控制。
1.2 速度-流量关系模型速度-流量关系模型研究了车辆流量对道路上的车辆速度的影响。
在道路通行能力预测和交通控制中,速度-流量关系模型起到了重要作用。
常见的模型有Greenshields模型、Greenberg模型和Daganzo-Newell模型等。
这些模型可以帮助交通工程师对道路拥堵情况进行评估,并提出相应的交通管理措施。
1.3 速度-密度关系模型速度-密度关系模型研究了道路上的车辆密度对车辆速度的影响。
一般情况下,车辆密度越大,车辆速度越低。
常用的模型有Greenberg模型、Daganzo-Newell模型和Underwood模型等。
通过建立速度-密度关系模型,交通工程师可以预测并规划道路的通行能力,以减少交通拥堵。
二、交通流理论重要模型分析在江苏省考研交通工程复习资料中,有几个重要的交通流理论模型值得特别关注。
2.1 Greenshields模型Greenshields模型是速度-流量关系模型中的经典模型之一。
它假设车辆在道路上的速度与车流量呈负线性关系。
交通工程中的交通流预测模型研究

交通工程中的交通流预测模型研究交通流预测是交通工程中的重要课题,对于交通规划、交通管理以及交通控制具有重要意义。
而交通流预测模型则是交通流量变化进行预测的数学模型。
本文将探讨交通工程中常用的交通流预测模型,并分析它们在不同情境下的适用性和局限性。
传统模型中的交通流预测包括线性回归模型、时间序列模型和神经网络模型等。
线性回归模型是一种基本的预测方法,它通过建立交通流量与相关因素之间的线性关系来进行预测。
这种模型简单易用,但对于复杂的交通流动态变化预测效果较差。
时间序列模型是通过对历史交通流量数据进行分析和建模,预测未来的交通流量。
尽管时间序列模型在一定程度上能够反映出交通流量的周期性和趋势性,但对于非线性关系的建模能力有限。
神经网络模型则可以更好地处理非线性问题,但它对数据的要求较高,需要大量的训练数据和较长的训练时间。
近年来,随着机器学习和深度学习技术的发展,新型交通流预测模型,如卷积神经网络(CNN)和长短期记忆网络(LSTM)等开始被广泛应用于交通工程中。
卷积神经网络能够有效地提取特征,捕捉交通流量数据中的空间相关性,从而提高预测准确性。
长短期记忆网络则可以学习交通流量数据中的时序特征,较好地处理交通流量数据中的周期性和趋势性。
这些新型模型在交通流预测中取得了显著的效果,大大提高了交通规划和管理的准确性和效率。
除了传统模型和新型模型,还有一些其他模型被用于交通流预测中。
例如,基于GIS的模型可以将地理信息系统与交通流量数据结合,进一步提高预测结果的准确性。
此外,混合模型将多种预测模型相结合,通过特定的权重调整来获得更准确的预测结果。
这些模型的优点在于充分利用不同模型的优势,提高了预测结果的稳定性和准确性。
然而,任何模型都存在一定的局限性。
首先,交通流量预测受到多种因素的影响,如天气、特殊事件和交通政策等。
这些外部因素对交通流量产生的影响很大,但在传统模型中往往未被充分考虑。
其次,交通流量预测是一个非线性和动态的过程,因此模型需要能够适应交通流量的变化。
交通流预测模型的研究与应用

交通流预测模型的研究与应用随着城市化进程的加速以及人民生活水平的不断提高,城市交通压力越来越大。
公共交通的滞后和私家车的增多,使得道路拥堵越来越严重,给人们的出行带来了极大的不便。
因此,研究交通流预测模型,并将其应用于城市交通管理中,具有重要意义。
一、交通流预测模型的概述交通流预测模型是一种通过分析历史交通流数据、路段情况等信息,来预测未来一段时间内交通状态的方法。
这种模型通常可以分为基于统计分析和基于机器学习的两类。
基于统计分析的模型主要是通过对历史数据的统计分析,来预测未来的交通状况。
这种模型常用的方法包括回归分析、ARIMA模型等。
基于机器学习的模型,则是通过利用计算机科学中的机器学习方法,通过大量的实时交通数据来建立交通流预测模型。
这种模型通常包括神经网络、支持向量机等。
二、交通流预测模型的应用交通流预测模型的应用,主要是为了更加准确地预测未来的交通状况,并在此基础上制定合理的交通管理策略。
现在,许多城市交通管理部门都开始应用交通流预测模型来管理城市交通。
例如,在交通监控中心会运用交通流预测模型,预测未来一段时间内的交通情况,让交通监控人员更好地管理交通。
在实时交通导航系统中,交通流预测模型也扮演了重要角色,它可以分析交通拥堵情况,为驾驶员提供最佳路径,缩短出行时间,提升驾驶体验。
同时,交通流预测模型也可以用于公共交通运营和路网规划中,预测某些区域未来的公共交通状况,为公共交通公司制定合理的运营计划提供依据,为城市规划者制定更科学合理的路网规划提供依据。
三、目前交通流预测模型研究的挑战及其发展趋势然而,交通流预测模型也存在着一些挑战。
首先,交通状况非常复杂,由多种因素共同影响,如公共交通运营、车流密度等等,这些因素可能会产生不同的影响,需要针对不同的情况建立不同的预测模型。
其次,容易受到外部环境因素干扰,如天气、事故等突发事件,因此,需要不断地优化交通流预测算法,以应对这些突发事件。
针对这些挑战,未来交通流预测模型的研究和发展方向主要包括以下几点:一是细分预测模型类型,根据不同的实际情况和数据特征构建不同的预测模型;二是加强数据的存储和管理,完善交通数据采集和分析体系,提高数据质量和精度;三是引入人工智能技术和大数据分析,提升交通流预测能力和准确度;四是探索交通流量优化算法,利用交通流预测模型制定更加高效合理的交通管理策略。
高速公路交通流数据预测模型研究

高速公路交通流数据预测模型研究随着城市化进程加快,交通拥堵成为越来越多城市的难题。
高速公路交通拥堵不仅给人们的出行带来了不便,还对城市经济发展产生了极大的影响。
如何准确预测高速公路交通流是许多学者和研究人员关注的一个热点问题。
本文探讨了高速公路交通流数据预测模型的研究现状、问题及未来发展方向。
一、研究现状在高速公路交通流数据的预测模型研究中,主要有以下几个方向:经典时间序列预测模型、机器学习模型和深度学习模型。
经典时间序列预测模型包括ARIMA模型、SARIMA模型和VAR模型等,这些模型早在上世纪70年代就得到了广泛的应用。
ARIMA模型基于时间序列的历史数据,通过特定的数理统计方法对时间序列进行建模,从而预测未来的交通流量。
SARIMA模型在ARIMA模型的基础上加入了季节性因素的考虑。
VAR模型则是建立在多变量时间序列的基础上的模型,专门研究多变量直接关系的预测。
机器学习模型则是通过训练数据来进行模型的构建。
常用的机器学习模型包括支持向量机、神经网络和随机森林等。
其中,支持向量机的核心思想是将高维特征空间的样本映射到一个更低维的空间中,同时在这个低维空间中实现有效的分类和回归。
神经网络则通过模拟人脑神经元之间的联系,来识别交通流数据中的规律和特征。
随机森林则是一个基于决策树的集成方法,通过对样本进行随机抽样、随机选择特征进行建模,从而实现预测模型的构建。
深度学习模型则是在机器学习模型的基础上进一步发展而来的。
深度学习模型通常采用神经网络的方式进行建模,常用的模型包括卷积神经网络、循环神经网络和长短时记忆模型等。
卷积神经网络主要通过卷积核来提取数据中的空间特征,从而实现分类和回归。
循环神经网络则通过循环结构来实现对序列数据的建模,能够有效地识别数据中的长期依赖关系。
长短时记忆模型则通过门控机制来实现对数据的选择性保存和遗忘,能够有效地实现长远依赖关系的建模。
二、研究问题虽然各种预测模型均能够对高速公路交通流数据进行预测,但是在实际应用中仍然存在着一些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交通流预测模型综述
摘要:
随着社会的发展,交通事故、交通堵塞、环境污染和能源消耗等问题日趋严重。
为了缓解交通压力,交通专家也提出了各种不同的方法。
在交通网络越来越复杂的今天,交通流预测在智能交通系统中是个热门的研究领域,因为正确的交通流预测,可以进行实时交通信号控制,交通分配、路径诱导、自动导航,事故检测等。
本文从交通流短期预测模型出发,分析常见预测模型的优缺点,得出综合模型进行预测将是交通流预测领域的发展趋势。
关键字:交通流预测,智能交通系统,综合模型
Traffic flow predictive models review
Abstract:
With the development of society, traffic accidents, traffic jams, environmental pollution and energy consumption problems become more and more serious. In order to alleviate traffic pressure, traffic experts also puts forward all kinds of different methods. In the traffic network is more and more complex today, traffic flow predictive in intelligent transportation system is a hot research fields, because the correct traffic flow predictive, can real-time traffic signal control, traffic distribution, route guidance, automatic navigation, accident detection, etc. This article from short-term prediction model of traffic flow, analyzes the advantages and disadvantages of common prediction model, it is concluded that predict comprehensive model will be traffic flow predictive areas of development trend.
Keywords:Traffic flow predictive, Intelligent transportation system, integrated model
引言
目前,有关交通流预测方面的研究已取得大量的成果,建立了多种实时交通量预测的方法,其预测精度也达到了较高水平。
本文先是通过研究分析不同交通流短期预测模型的优缺点,然后对具有优势的基于神经网络的综合模型进行模型的构建。
一、交通流预测概述
(一)交通流预测的必要性
随着人们生活水平的提高,私家车的数量、人们出行的次数等越来越多,使得交通事故、交通堵塞、环境污染和能源消耗等问题日趋严重。
很多城市也陷入了“拥有最宽阔的马路,也拥有最宽阔的…停车场‟”的困境,严重影响了城市的运转效率,客观上阻碍了社会、经济的快速发展。
多年来,世界各国的城市交通专家提出各种不同的方法,试图通过先进的智能交通手段来缓解交通拥堵问题。
而实现这些系统或方法的关键,不仅要有实时的道路检测数据,更重要的是,要获得实时、可靠、准确的预测信息。
再利用动态路径诱导和交通信息系统为出行者提供实时有效的道路信息,实现动态路径诱导,达到节约出行者旅行时间,缓解道路拥堵,减少污染、节省能源等的目的。
因此,准确、可靠的交通预测信息是动态路径诱导系统的基础和关键。
(二)预测原则与预测模式
实时交通流预测是一项谨慎的研究,从数据收集到形成样本,再到模型建立都要求做到准确、精确。
因此要遵循以下原则:
(1)检测线圈设置位置要合适,要尽可能的检测连续通过的车流,车辆的排队不能超过线圈设置位置。
(2)预测参数的时间段长度要合理,能体现出交通流特征,还要为标定,模型留有空余空间。
合理的长度时段的交通流绘制成的曲线有一定的光滑性,能形成一定规律。
(3)模型的建立要符合实际,无论从哪个角度建模,模型计算要简便、标定参数要容易、以便实时预测不会出现计算问题。
实时交通流的预测模式如下图
二、交通流预测常用模型及其发展趋势
(一)交通流预测常用模型
本文主要讲短时交通流预测模型。
多年来,世界各国的专家和学者利用各学科领域的方法开发出了各种预测模型用于短时交通流预测,大概可以分为七类模型:基于统计方法的模型、动态交通分配模型、交通仿真模型、非参数回归模型、神经网络模型、基于混沌理论的模型、综合模型等。
1、基于统计方法的模型
该模型用数理统计的方法处理交通历史数据。
一般来说统计模型使用历史数据进行预测,它假设未来预测的数据与过去的数据有相同的特性。
总之,基于统计方法的模型理论简单,容易理解但由于大部分模型都是基于线性的基础,所以对于交通流变化较大时,预测效
果降低。
2、动态交通分配模型
该模型通过采集到的交通流数据和出行者出行选择的行为来估计随时间变化的网络的状态。
此类方法目标明确,理论清晰,但缺点是:①假设条件苛刻,获取信息困难而且代价昂贵;②有些模型无法求解或求解难度大,优化时间长;③过分强调精确的系统最优或用户最优分配结果,加大了模型求解的难度,也不适合在大规模路网上实现应用。
3、交通仿真模型
实际中影响交通的因素很多,很难用理论公式把所有的复杂因素都考虑进去,交通仿真模型可以提供一个唯一的手段来进行评价。
仿真模型提供了一个交通流、占有率和旅行时间之间关系的一个模拟实际的计算方法。
但从严格意义上说,交通仿真模型不能用于交通流预测的目的,而且不能实现实时性。
4、非参数回归模型
非参数回归模型是一种多条路段分析方法,该算法认为系统所有的因素之间的内在联系都蕴涵在历史数据中,它没有将历史数据作平滑处理,因此,在有特殊事件发生时,较适合。
5、神经网络模型
神经网络具有识别复杂非线性系统的特性,交通系统是复杂巨系统,因此神经网络比较适合于交通领域应用。
它采用典型的“黑箱”式学习模式,很适合交通流预测的应用。
但不能获得容易被人接受的输入/输出关系,而且在训练过程中需要大量的原始数据,数据不足会导致不好的预测结果;训练完成的网络推广能力差;同时,神经网络的学习算法在理论上存在不足。
6、基于混沌理论的模型
混沌理论研究的目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求利用这些普遍遵循的共同规律来解决一大类复杂系统的问题。
理论上讲,复杂系统中总是存在着混沌,交通流系统是人的群体参与的开放的复杂巨系统,因此交通中存在着混沌。
7、综合模型
每类模型各有其优缺点和适用条件,将不同的预测方法进行组合,以求产生较好的预测效果,这就是综合模型的目标。
目前发展的综合模型主要有:基于神经网络的综合模型、基于小波理论的综合模型等。
(二)交通流预测模型发展趋势
通过上述对各种交通流预测模型的比较和分析,可看出任何一个模型都具有其优势和缺
点。
单个模型总存在着局限性,基于传统统计理论的模型已不能满足复杂的交通系统的精度的要求,为了提高预测的精度和可靠性,应结合其他研究领域先进的方法和模型,博采众长,研究适合我国交通流特性的交通流预测综合模型。
另外,交通系统本质上是人、车、路综合作用的一个复杂巨系统,是一个开放、远离平衡的系统,所以基于神经网络的综合模型用于短期交通流预测将有很广阔的应用前景。
三、基于神经网络的综合模型的构建
参考文献:
[1] 刘静,关伟. 交通流预测方法综述[J]公路交通科技,2004(3):82-85
[2] 杨兆升. 城市交通流诱导系统理论与模型[B]. 人民交通出版社,2000
[3]刘静,关伟.交通流预测方法综述[J].公路交通科技,2004(3):82-85
[4]王正武,黄中祥.短时交通流预测模型的分析与评价[J].系统工程,2003(6):97-100
[5]By Brian L.Smith,Michael J.Demetsky.Traffic Flow Forecasting:Comparion of Modeling Approaches [J].Journal of Transportion Engineering,1997:262-266
[6]Stephen Clark ,Traffic Prediction Using Multivariate Nonparametric Regression [J].Journal of Transportion Engineering,2003:161-168。