第五章图的基本概念
合集下载
第二篇 图论-习题

例2 画出具有 6、8、10、…、2n个顶点的三次图; 是否有7个顶点的三次图? 例3 无向图有21条边,12个3度数顶点,其余顶点的 度数均为2,求的顶点数。 (p=15) 例4 下列各无向图中有几个顶点? (1) 16条边,每个顶点的度为2; (2) 21条边,3 个4度顶点,其余的都为3度数顶点; (3) 24条边,各顶点的度数相同。 (1. p=16; 2. p=13; 3. pk=48 讨论) 例5 设图G中有9个顶点,每个顶点的度不是5就是6。 证明:G中至少有5个6度顶点或至少有6个5度顶点。 例6 有n个药箱,若每两个药箱里有一种相同的药, 而每种药恰好放在两个药箱中,问药箱里共有多 少种药?
例13 某公司来了9名新雇员,工作时间不能互相交谈。 为了尽快互相了解,他们决定利用每天吃午饭时间相 互交谈。于是,每天在吃午饭时他们围在一张圆桌旁 坐下,他们是这样安排的,每一次每人的左、右邻均 与以前的人不同。问这样的安排法能坚持多久? 例14 已知a,b,c,d,e,f,g7个人中,a会讲英语;b会 讲英语和汉语;c会讲英语、意大利语和俄语;d会讲 汉语和日语;e会讲意大利语和德语;f会讲俄语、日 语和法语;g会讲德语和法语。能否将他们的座位安 排在圆桌旁,使得每个人都能与他身边的人交谈?
e
c b a
f a g j d
d j ihΒιβλιοθήκη ie hb
c
f
g
例3 给出一个10个顶点的非哈密顿图的例子,使得每 一对不邻接的顶点u和v,均有degu+degv≥9。 例4 证明:完全图K9中至少存在彼此无公共边的两条 哈密顿回路和一条哈密顿路? 例5 试求Kp中不同的哈密顿圈的个数。 例6(1) 证明具有奇数顶点的偶图不是哈密顿图;用 此结论证明如图所示的图不是哈密顿图。 (2) 完全偶图Km,n为哈密顿图的充要条件是什么? 例7 菱形12面体的表面上有无哈密顿回路? 例8设G=(V,E)是连通图且顶点数为p,最小度数为δ, 若p>2δ,则G中有一长至少为2δ的路。 例9 证明:彼德森图不是哈密顿图。
第五章 图论

第五章 图论
图论可应用于多个领域,如信息论,控制论, 运筹学,运输网络,集合论等(如用关系图来 描述一个关系)。
计算机领域,其可应用于人工智能,操作系统, 计算机制图,数据结构)
§1
图论基本概念
1-1 图的实例 问题1、哥尼斯堡桥问题
A C B D C B A D
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
同理,结点间按别的对应方式,便都不存在一一对应
关系。
所以G1,G2不同构。
两图同构有必要条件:
(1)结点数相同; (2)边数同; (3)次数相同的结点数目相等。
1-5 多重图与带权图
1.5.1 多重图 定义11、一个结点对对应多条边,称为多重边。
包含多重边的图称为多重图,否则,成为简单图。
如:
如:基本通路:p1,p2,p3.
简单通路:p1,p2,p3,p5,p6. p4,p7既不是基本通路,也不是简单通路。
定义3、起始结点和终止结点相同的通路称为回路。 各边全不同的回路称为简单回路,各点全不同 的回路称为基本回路。
例2、上例中,1到1的回路有: c1: (1,1,),c2: (1,2,1),c3: (1,2,3,1), 1 2
例2、设有四个城市c1,c2,c3,c4;其中c1与c2间, c1与c4间,c2与c3间有高速公路直接相连,用图表 示该事实。 解:G=<V,E>,其中:V={c1,c2,c3,c4}, E={l1,l2,l3}={(c1,c2),(c1,c4),(c2,c3)} 例3、有四个程序p1,p2,p3,p4,其间调用关系为p1 p2, p1 p4,p2 p3,用图表示该事实。 解:G=<V,E>,V={p1,p2,p3,p4}, E={l1,l2,l3}={(p1,p2),(p1,p4),(p2,p3)}
图论可应用于多个领域,如信息论,控制论, 运筹学,运输网络,集合论等(如用关系图来 描述一个关系)。
计算机领域,其可应用于人工智能,操作系统, 计算机制图,数据结构)
§1
图论基本概念
1-1 图的实例 问题1、哥尼斯堡桥问题
A C B D C B A D
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
同理,结点间按别的对应方式,便都不存在一一对应
关系。
所以G1,G2不同构。
两图同构有必要条件:
(1)结点数相同; (2)边数同; (3)次数相同的结点数目相等。
1-5 多重图与带权图
1.5.1 多重图 定义11、一个结点对对应多条边,称为多重边。
包含多重边的图称为多重图,否则,成为简单图。
如:
如:基本通路:p1,p2,p3.
简单通路:p1,p2,p3,p5,p6. p4,p7既不是基本通路,也不是简单通路。
定义3、起始结点和终止结点相同的通路称为回路。 各边全不同的回路称为简单回路,各点全不同 的回路称为基本回路。
例2、上例中,1到1的回路有: c1: (1,1,),c2: (1,2,1),c3: (1,2,3,1), 1 2
例2、设有四个城市c1,c2,c3,c4;其中c1与c2间, c1与c4间,c2与c3间有高速公路直接相连,用图表 示该事实。 解:G=<V,E>,其中:V={c1,c2,c3,c4}, E={l1,l2,l3}={(c1,c2),(c1,c4),(c2,c3)} 例3、有四个程序p1,p2,p3,p4,其间调用关系为p1 p2, p1 p4,p2 p3,用图表示该事实。 解:G=<V,E>,V={p1,p2,p3,p4}, E={l1,l2,l3}={(p1,p2),(p1,p4),(p2,p3)}
运筹学-图论

以可允许的10个状态向量作为顶点,将可能互相转移的状态用线段连接起 来构成一个图。
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
第五部分图论GraphTheory教学课件

18
图的基本类型(5)
底图:将有向图G的所有有向边换成无向边,得到 的无向图称为G的底图。
19
图的基本类型(6)
定向图:将无向图G中每条无向边指定一个方向所 得到的图称为G的定向图。
20
图的基本分类(7)
逆图
称将为有G向的图逆G图的,每记一为条~G边。的方向颠倒所得到的图
a
a
b
c
逆图 b
54
图同构示例 1
b
c
a G
d b’
b’
d’
a’
c’
G’
c’
a’
G’
d’
55
图同构举示例2
a1
b1
a d1
d a1
b
c1 c
b1
a
d1
b
c1
d
c
a a1 d1
d
b b1 c1
c
56
图同构示例3
G1
GG3 2
GG11≌≌GG32?
57
自补图
如果G和它的补图 G同构,称G为自补图
a
a’
b
e
d’
理论》 经过近六十多年的发展,逐渐成为一门相对独立的学
科。
4
图论的应用
网络技术的理论基础和重要的研究工具 生物和化学:区别分子式相同但结构不同的两
种化合物。 计算机和通信:用于通信网络和计算机网络的
设计,交通网络的合理分布
大型工程项目的计划管理。
5
图的基本概念 1
图(graph):由结点(顶点)(vertex) 和连接结点的边所构成的图形.
i 1
n
((deg (vi ) deg (vi ))((deg (vi ) deg (vi ))
图的基本类型(5)
底图:将有向图G的所有有向边换成无向边,得到 的无向图称为G的底图。
19
图的基本类型(6)
定向图:将无向图G中每条无向边指定一个方向所 得到的图称为G的定向图。
20
图的基本分类(7)
逆图
称将为有G向的图逆G图的,每记一为条~G边。的方向颠倒所得到的图
a
a
b
c
逆图 b
54
图同构示例 1
b
c
a G
d b’
b’
d’
a’
c’
G’
c’
a’
G’
d’
55
图同构举示例2
a1
b1
a d1
d a1
b
c1 c
b1
a
d1
b
c1
d
c
a a1 d1
d
b b1 c1
c
56
图同构示例3
G1
GG3 2
GG11≌≌GG32?
57
自补图
如果G和它的补图 G同构,称G为自补图
a
a’
b
e
d’
理论》 经过近六十多年的发展,逐渐成为一门相对独立的学
科。
4
图论的应用
网络技术的理论基础和重要的研究工具 生物和化学:区别分子式相同但结构不同的两
种化合物。 计算机和通信:用于通信网络和计算机网络的
设计,交通网络的合理分布
大型工程项目的计划管理。
5
图的基本概念 1
图(graph):由结点(顶点)(vertex) 和连接结点的边所构成的图形.
i 1
n
((deg (vi ) deg (vi ))((deg (vi ) deg (vi ))
地图与测量第五章地形图及其应

地图比例尺 1:1万 1:2.5万 1:5万 1:10万
方里网间隔 10厘米 4厘米 2厘米 2厘米 .
相应实地长 1公里 1公里 1公里 2公里
坐标系与方里网
在1:1万---1:10万地形图上,只在内外 图廓间绘有间隔为1分的经、纬度刻划线, 称为分度带,不在图幅内绘制经纬网格。
1:25及1:50万地形图只绘经纬网,其间 隔见下表
118 o 120
122
20带
21带
120o 30
117
123
每幅1: 100万 图幅范 围内各 种比例 尺地形 图需绘 邻带方 里网的 图幅
经 差 7.5分 内 的 1: 1万 图 绘西边邻带方里网
经 差 7.5分 内 的 1: 2.5万 图 绘东边邻带方里网
经 差 3 0 分 内 的 1 : 1 0.万 、 1 : 5 万 、 1: 2.5万 图 绘 东 边 邻 带 方 里 网
.
第五章 地形图和普通地图
第二节 地形图的数学基础
一、高斯----克吕格投影 由于地球是一个接近于椭球的不规则形体,无法用数学 公式表示,这给地面点的精确定位造成困难,人们构造 了一个非常接近地球的形体——旋转椭球体来表示地球, 可以用数学公式表示,但它与地球一样不可无变形地展 在平面上。地图学中,通过选择可展的过渡面(圆柱面、 圆锥面、平面),使它们与旋转椭球体相切或相割,再 设定投影的变形条件(等积、等距、等角、任意),从 而建立了从椭球面到平面的数学关系——地图投影。
我国规定:每个投影带西边缘 30分以内及东边缘7.5分(1: 2.5万)、15分(1:5万)以 内的图幅,加绘邻带方里网。 即西带方里网延伸到东带30 分内,中央经线以东应该投 影到经差3度30分。
Voronoi图

目前矢量方法用离散点集代替线面,使空间实体的完整性 遭到破坏,同时生成的V图,要经过复杂的识别和修补工 作,这是一个尚待克服的困难;
对于光滑、不光滑组合曲线及相应组合成的封闭面域,尽 管可用折线逼近,但折线毕竟不是曲线,在曲线光滑处, 每一点都是转折点,而化为折线,折线交接处的点就成为 唯一转折点,性质突变处。
义G的Voronoi图V(G)为
V(G)={V(g1),V(g2),…,V(gn)} 一般V图特性在广义V图中类似存在。
5.2 V图生成方法
V图有着按距离划分邻近区域的普遍特性,应 用范围广。
生成V图的方法很多,一般分为两种: 矢量方法 栅格方法
一、生成V图的矢量方法
矢量方法生成V图大多是对点实体。 方法分为:对偶生成法
义G的Voronoi图V(G)为
V(G)={V(g1),V(g2),…,V(gn)}
V图是与距离紧密相关的,而距离值是由尺度所 基本定义的。不同尺度,距离的概念不一样, 数值往往也不一样,因此不同的尺度空间,有 不同的V图。上述定义同样可推广到3维。
(二)广义Voronoi图
拓展Voronoi图为广义Voronoi图具有广泛意义。
(二)性质
假设平面上有n个离散点,其对应的Voronoi多边
形分别为V1,V2…Vn, Voronoi多边形之间除边
界外,其交集为空集,所有Voronoi多边形的并集 为二维平面R2,即
Vi Vj
PV1 V2 ...Vn R2 (假定到Pi为0的点不算在Vi内)
V1 V2 ...Vn R2
V图、障碍V图、广义V图的多边形边界提供了点、 线、面全形态,障碍、非障碍完备空间,广义加 权距离的等距线、等比线、等势线等,是具有严 密数学意义且极广泛使用价值的轨迹线。
对于光滑、不光滑组合曲线及相应组合成的封闭面域,尽 管可用折线逼近,但折线毕竟不是曲线,在曲线光滑处, 每一点都是转折点,而化为折线,折线交接处的点就成为 唯一转折点,性质突变处。
义G的Voronoi图V(G)为
V(G)={V(g1),V(g2),…,V(gn)} 一般V图特性在广义V图中类似存在。
5.2 V图生成方法
V图有着按距离划分邻近区域的普遍特性,应 用范围广。
生成V图的方法很多,一般分为两种: 矢量方法 栅格方法
一、生成V图的矢量方法
矢量方法生成V图大多是对点实体。 方法分为:对偶生成法
义G的Voronoi图V(G)为
V(G)={V(g1),V(g2),…,V(gn)}
V图是与距离紧密相关的,而距离值是由尺度所 基本定义的。不同尺度,距离的概念不一样, 数值往往也不一样,因此不同的尺度空间,有 不同的V图。上述定义同样可推广到3维。
(二)广义Voronoi图
拓展Voronoi图为广义Voronoi图具有广泛意义。
(二)性质
假设平面上有n个离散点,其对应的Voronoi多边
形分别为V1,V2…Vn, Voronoi多边形之间除边
界外,其交集为空集,所有Voronoi多边形的并集 为二维平面R2,即
Vi Vj
PV1 V2 ...Vn R2 (假定到Pi为0的点不算在Vi内)
V1 V2 ...Vn R2
V图、障碍V图、广义V图的多边形边界提供了点、 线、面全形态,障碍、非障碍完备空间,广义加 权距离的等距线、等比线、等势线等,是具有严 密数学意义且极广泛使用价值的轨迹线。
图论-图的基本概念

若 i, j 中有奇数,比如 i 是奇数,则路 P 上 v0 到 vi 的一段与边 v0vi 构成一个偶圈; 若 i, j 都是偶数,则路 P 上 vi 到 v j 的一段与边 v0vi 及 v0v j 构成一个偶圈。证毕。 例 1.1.4 设 G 是简单图,若δ (G) ≥ 3 ,则 G 中各个圈长的最大公因数是 1 或 2。 证明:由上例知,G 中有长分别为 i + 1, j + 1和 j − i + 2 的圈。若 i + 1, j + 1, j − i + 2 三 数有公因数 m > 2 ,则 m | ( j − i) ,于是 m | 2 ,这是不可能的。因此 i + 1, j + 1, j − i + 2
证明:按每个顶点的度来计数边,每条边恰数了两次。 推论 1.1.1 任何图中,奇度顶点的个数总是偶数(包括 0)。 4. 子图
子图(subgraph):如果 V (H ) ⊆ V (G) 且 E(H ) ⊆ E(G) ,则称图 H 是 G 的子图,记为 H ⊆G。
生成子图(spanning subgraph): 若 H 是 G 的子图且V (H ) = V (G) ,则称 H 是 G 的生成子图。
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。
证明:按每个顶点的度来计数边,每条边恰数了两次。 推论 1.1.1 任何图中,奇度顶点的个数总是偶数(包括 0)。 4. 子图
子图(subgraph):如果 V (H ) ⊆ V (G) 且 E(H ) ⊆ E(G) ,则称图 H 是 G 的子图,记为 H ⊆G。
生成子图(spanning subgraph): 若 H 是 G 的子图且V (H ) = V (G) ,则称 H 是 G 的生成子图。
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。
机械制图之第五章-轴侧视图及投影

10
25
16
8
Y
X
36
O
O
8
O X
X
20
Y
Z
O Y
25
Z
Z
18
10
25
16
8
16
Y
X
36
O
O
O X
20
Y
8
36
18
10
20
25
16
3、叠加法
步骤:逐个部分进行叠加
例5:
例6:
24 Z
Z
6
6
28
20
X
32
O
O
X
O
8
Z Y
O
24
Y X
Y
24 Z
Z
6
6
28
20
X
32
O
O
X
O
8
Z Y
24
X Y
O Y
投影面 Z1
O1 X1
Y1
▲ 用斜投影法 ▲ 不改变物体与投影面的相对位置(物体正放)
一、轴向伸缩系数和轴间角
投影线方向 轴向伸缩系数
特
轴间角
性
投影线与轴测投影面倾斜
p = r = 1 ,q = 0.5
1:1
1:1
Z1 X1 1:1 O1 45°
Y1 X1 1:1 45°
O1
Y1
Z1
X1O1Z1 = 90°,X1O1Y1 = Y1O1Z1 = 135°
边长为L的正 方形的轴测图
二、平行于各坐标面的圆的画法
☆ 平行于V面的圆仍为圆,反映实形。
☆ 平行于H面的圆为椭圆,长轴对O1X1轴 偏转7°, 长轴≈1.06d, 短轴≈0.33d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1
v4
v5
v1
P (G1 ) 1
v2
P (G ) 1
v3
v2
v4
v5
v3
删除v3后G2
v1
删除v1,v3后G3
v4
v5
v1
v4
v5
v2
P (G 2 ) 2
v3
v2
v3 P (G 3 ) 3
因此,{v1}不是点割集,P(G1)=P(G), {v3}是点割集,又是割点,P(G2)>P(G), {v1,v3}不是点割集,因为它不是最小点集。 a b [例题] 给定图G,则图G的点割集 c f 是 。 解:图G的点割集是
v1
v4
删除边(v1,v2)后G1
v5
v1
v4
v5
v2
P (G ) 1
v3
v2
v3 P (G1 ) 1
删除(v1,v2),(v2,v3)后G2
v1
删除(v3,v5)后G3
v1
v4
v5
v4
v5
v2
v3
P (G 2 ) 2
v2
v3
P (G 3 ) 2
因此,{(v1,v2)}不是边割集,P(G1)=P(G), {(v1,v2),(v2,v3)}是边割集,P(G2)>P(G), {(v3,v5)}是边割集,也是割边, P(G3)>P(G)。
(2) 若D’是具有单侧连通性的最大子图,则称D’为 单侧分图, (3) 若D’是具有弱连通性的最大子图,则称D’为弱 分图。 3。两个定理 [定理6] 一个有向图是强连通的充分必要条件是存在一条 至少经过每个结点一次的回路。 [定理7] 在有向图中,它的每个结点必位于且仅位于一个 强分图中。
3 图的矩阵表示
1。强连通图、单侧连通图、弱连通图 在有向图D中, (1) 若任何两个结点间都可以到达,则称为强连通图, (2) 若任何两个结点间,总有一个结点可以到达另一 个结点,则称为单侧连通图, (3) 若不考虑边的方向图是连通的,则称为弱连通图。 2。连通分图 在有向图D中,如果存在一个子图D’ (1) 若D’是具有强连通性的最大子图,则称D’为强 分图
2 图的连通性
一、通路和回路
1。通路、回路e 在G=<V,E>中,如果从结点v0依次经过边和结点 可以到达vn ,则称v0 与vn 间存在通路,或v0 与vn 连通, 记作v0~vn ,如v0=vn则称为回路。通路经过的边数 称为通路的的长度。 2。简单通路、简单回路 没有重复边的通路称为简单通路,没有重复边 的回路称为简单回路。
6。简单图 不含平行边和环(自回路)的图称为简单图。 在简单图中,任何结点的度数都小于等于n-1。这 是判断一个度数序列能否构成简单图的主要依据。 7。完全图 每一对结点之间都有边相连的无向简单图称为无 向完全图,每一对结点之间都有方向相反的两条边相 连的有向简单图称为有向完全图。 8。补图 由图G中的所有结点和构成完全图需添加的边所 组成的图称为G的补图,记作 G 。
{ f }和 { c , e }
e
d
2。边割集 在无向连通图G=<V,E>中,若删除边集E’,得到 子图G-E’,若E’是满足条件P(G-E’)>P(G)的最小边 集,则称E’是G的一个边割集。 换句话说,边割集是指在G的某连通子图中删除 边集E’后,能使此连通子图变成不连通的最小边集。 若E’中只有一条边则称为割边。 例如,G:
可以看出,A(G)是对称矩阵。 主对角线上的元素表示各结点的自回路数。
二、有向图的矩阵
1。关联矩阵 对于无环有向图D=<V,E>,若|V|=m,|E|=n,作 m×n矩阵M(D),其中的 m ij 表示 v i 与 e j 的关联情况。 (若 v i 是 e j的起点 a ij 1 ,若 v i 是 e j的终点 a ij 1 若 v i 与 e j 不关联 a ij 0 )
四、连通度
1。点连通度 若G是无向连通图,V’是G的结点数最少的点割集 或G-V’是平凡图(孤点),则V’中的结点数称为G的点 连通度,记作 (G ) 。 因此, (1) 若G是平凡图,则V’=φ, ( G ) 0 , (2) 若G是完全图,去掉n-1个结点才能成为平凡 图,所以 ( K n ) n 1, (3) 若G存在割点,则 ( G ) 1 , (4) 若G是非连通图,则 ( G ) 0 。
一、无向图的矩阵 1。关联矩阵 对于无向图G=<V,E>,若|V|=m,|E|=n,作m×n 矩阵M(G),其中的 m ij 表示 v i 与 e j 关联的次数。 (自回路 m ij 2 ,单关联 m ij 1 ,不关联 m ij 0 )
e1 v1
2
v4
例如G: e
v2
e3
v3
2 0 M (G ) 0 0 e1
二、握手定理
图G中所有结点的度数之和等于边数的二倍。
de g ( v ) 2 | E |
[推论1] 在任何图中,度数为奇数的结点数必为 偶数。 [推论2] 在有向图中,所有入度之和等于所有出 度之和。 例题:已知图G中有1个1度结点,2个2度结点,3个3 度结点,4个4度结点,则G的边数是 。 解:
3。初级通路、初级回路 没有重复结点的通路称为初级通路,没有重复 结点的回路称为初级回路。 [定理]在一个具有n个结点的图中,如果vi与vj连通, 且vi≠vj,则至少存在一条边数不多于n-1的通路。 [推论]在一个具有n个结点的图中,如果vi与vj连通, 且vi≠vj,则存在一条边数不多于n-1的初级通路。 [定理]在一个具有n个结点的图中,如果vi存在一条 回路,则至少存在一条边数不多于n的回路。 [推论]在一个具有n个结点的图中,如果vi存在一条 回路,则至少存在一条边数不多于n的初级回路。
v2
v5
v4
v7 v6
例如G:
v1
v3
G不是连通图,但可以划分为三个连通分支。
G ({ v1 }) 是一个连通分支,G ({ v 2 , v 3 , v 4 , v 5 })
是一个连
通分支,G ({ v 6 , v 7 }) 是一个连通分支。
{{ v1 }, {v 2 , v 3 , v 4 , v 5 G中,任何两个不同的结点都是连通的 则称G是连通图。 无向图中结点的连通关系具有自反性、对称性和 传递性,所以结点的连通关系是等价关系。 若G的子图G’是连通图,则称G’是G的连通子图, 若给连通子图G’增加任一结点,都使G’成为不连通, 则称G’是G的连通分支,记作G(V’)。V’是连通分支G’ 中所有结点的集合。 G中相互连通的结点一定在同一连通分支中。 不同的连通分支之间一定没有相同的结点。 无向图G的连通分支数记作P(G)。
vV
[例题] 设图G是有n个结点的无向完全图,则G的边数为
C
A) C)
。 n(n-1)
1 2 n ( n 1)
B) n(n+1) D)
1 2 ( n 1)
三、子图
1。已知图G=<V,E>,如果 V ' V , E ' E 则G’=<V’,E’>称为G的子图。 2。如果 V ' V 或 E ' E,则称G’称为G的真子图。 3。如果 V ' V , E ' E ,则称G’称为G的生成子图。 [例题] 设图 ,若 G V , E , 则称G ’是G的真子图。 G ' V ' , E ' 解:应填
(G ) (G ) (G ) 1
(G ) (G ) (G ) 2
( G ) 1, ( G ) ( G ) 2
(G ) (G ) 2, (G ) 3
(G ) (G ) (G )
五、连通分图
1 1 2 2 3 3 4 4 30 , | E | 15
vV
[例题] 设图G=<V,E>,则下列结论成立的是
A) deg( V ) 2 | E | C)
C
。
B) deg( V ) | E | D)
d eg ( v ) 2 | E |
vV
d eg ( v ) | E |
1 1 0 0
e2
0 1 1 0 e3
v1 v2 v3 v4
2。相邻矩阵 对于无向图G=<V,E>,若|V|=n,作n阶方阵A(G) 其中的 a ij 表示 v i 与 v j 相关联的边数。 上例中,
1 1 A (G ) 0 0 1 0 1 0 0 1 0 0 0 0 0 0
v1
例如D:e1
v2
e4
e2
e3
v3
1 M (D ) 1 0
0 1 1
1 0 1
1 0 1
2。邻接矩阵 对于有向图D=<V,E>,若|V|=n,作n阶方阵A(D) 其中的 a ij 表示从 v i 指向 v j 的边数。 上例中,
V ' V或 E ' E
,
四、图的同构
如果图G中的结点集V与图G’中的结点集V’具有 一一对应的关系,并且对应的边都具有相同的重数, 则称G与G’同构,记作 G G ' 。 因此,两图同构必须满足下列条件: ⑴结点数相同, ⑵边数相同, ⑶度数相同的结点数相同。 上述条件是两图同构的必要条件,但不是充分条 件,也就是说,两个图即使满足上述条件也不一定同 构。如果把其中一个图中的结点重新排列,边跟着结 点移动,并且可以任意弯曲,能够与另一图完全重合, 那么这两个图是同构的。
称为V的一个划分。
v4
v5
v1
P (G1 ) 1
v2
P (G ) 1
v3
v2
v4
v5
v3
删除v3后G2
v1
删除v1,v3后G3
v4
v5
v1
v4
v5
v2
P (G 2 ) 2
v3
v2
v3 P (G 3 ) 3
因此,{v1}不是点割集,P(G1)=P(G), {v3}是点割集,又是割点,P(G2)>P(G), {v1,v3}不是点割集,因为它不是最小点集。 a b [例题] 给定图G,则图G的点割集 c f 是 。 解:图G的点割集是
v1
v4
删除边(v1,v2)后G1
v5
v1
v4
v5
v2
P (G ) 1
v3
v2
v3 P (G1 ) 1
删除(v1,v2),(v2,v3)后G2
v1
删除(v3,v5)后G3
v1
v4
v5
v4
v5
v2
v3
P (G 2 ) 2
v2
v3
P (G 3 ) 2
因此,{(v1,v2)}不是边割集,P(G1)=P(G), {(v1,v2),(v2,v3)}是边割集,P(G2)>P(G), {(v3,v5)}是边割集,也是割边, P(G3)>P(G)。
(2) 若D’是具有单侧连通性的最大子图,则称D’为 单侧分图, (3) 若D’是具有弱连通性的最大子图,则称D’为弱 分图。 3。两个定理 [定理6] 一个有向图是强连通的充分必要条件是存在一条 至少经过每个结点一次的回路。 [定理7] 在有向图中,它的每个结点必位于且仅位于一个 强分图中。
3 图的矩阵表示
1。强连通图、单侧连通图、弱连通图 在有向图D中, (1) 若任何两个结点间都可以到达,则称为强连通图, (2) 若任何两个结点间,总有一个结点可以到达另一 个结点,则称为单侧连通图, (3) 若不考虑边的方向图是连通的,则称为弱连通图。 2。连通分图 在有向图D中,如果存在一个子图D’ (1) 若D’是具有强连通性的最大子图,则称D’为强 分图
2 图的连通性
一、通路和回路
1。通路、回路e 在G=<V,E>中,如果从结点v0依次经过边和结点 可以到达vn ,则称v0 与vn 间存在通路,或v0 与vn 连通, 记作v0~vn ,如v0=vn则称为回路。通路经过的边数 称为通路的的长度。 2。简单通路、简单回路 没有重复边的通路称为简单通路,没有重复边 的回路称为简单回路。
6。简单图 不含平行边和环(自回路)的图称为简单图。 在简单图中,任何结点的度数都小于等于n-1。这 是判断一个度数序列能否构成简单图的主要依据。 7。完全图 每一对结点之间都有边相连的无向简单图称为无 向完全图,每一对结点之间都有方向相反的两条边相 连的有向简单图称为有向完全图。 8。补图 由图G中的所有结点和构成完全图需添加的边所 组成的图称为G的补图,记作 G 。
{ f }和 { c , e }
e
d
2。边割集 在无向连通图G=<V,E>中,若删除边集E’,得到 子图G-E’,若E’是满足条件P(G-E’)>P(G)的最小边 集,则称E’是G的一个边割集。 换句话说,边割集是指在G的某连通子图中删除 边集E’后,能使此连通子图变成不连通的最小边集。 若E’中只有一条边则称为割边。 例如,G:
可以看出,A(G)是对称矩阵。 主对角线上的元素表示各结点的自回路数。
二、有向图的矩阵
1。关联矩阵 对于无环有向图D=<V,E>,若|V|=m,|E|=n,作 m×n矩阵M(D),其中的 m ij 表示 v i 与 e j 的关联情况。 (若 v i 是 e j的起点 a ij 1 ,若 v i 是 e j的终点 a ij 1 若 v i 与 e j 不关联 a ij 0 )
四、连通度
1。点连通度 若G是无向连通图,V’是G的结点数最少的点割集 或G-V’是平凡图(孤点),则V’中的结点数称为G的点 连通度,记作 (G ) 。 因此, (1) 若G是平凡图,则V’=φ, ( G ) 0 , (2) 若G是完全图,去掉n-1个结点才能成为平凡 图,所以 ( K n ) n 1, (3) 若G存在割点,则 ( G ) 1 , (4) 若G是非连通图,则 ( G ) 0 。
一、无向图的矩阵 1。关联矩阵 对于无向图G=<V,E>,若|V|=m,|E|=n,作m×n 矩阵M(G),其中的 m ij 表示 v i 与 e j 关联的次数。 (自回路 m ij 2 ,单关联 m ij 1 ,不关联 m ij 0 )
e1 v1
2
v4
例如G: e
v2
e3
v3
2 0 M (G ) 0 0 e1
二、握手定理
图G中所有结点的度数之和等于边数的二倍。
de g ( v ) 2 | E |
[推论1] 在任何图中,度数为奇数的结点数必为 偶数。 [推论2] 在有向图中,所有入度之和等于所有出 度之和。 例题:已知图G中有1个1度结点,2个2度结点,3个3 度结点,4个4度结点,则G的边数是 。 解:
3。初级通路、初级回路 没有重复结点的通路称为初级通路,没有重复 结点的回路称为初级回路。 [定理]在一个具有n个结点的图中,如果vi与vj连通, 且vi≠vj,则至少存在一条边数不多于n-1的通路。 [推论]在一个具有n个结点的图中,如果vi与vj连通, 且vi≠vj,则存在一条边数不多于n-1的初级通路。 [定理]在一个具有n个结点的图中,如果vi存在一条 回路,则至少存在一条边数不多于n的回路。 [推论]在一个具有n个结点的图中,如果vi存在一条 回路,则至少存在一条边数不多于n的初级回路。
v2
v5
v4
v7 v6
例如G:
v1
v3
G不是连通图,但可以划分为三个连通分支。
G ({ v1 }) 是一个连通分支,G ({ v 2 , v 3 , v 4 , v 5 })
是一个连
通分支,G ({ v 6 , v 7 }) 是一个连通分支。
{{ v1 }, {v 2 , v 3 , v 4 , v 5 G中,任何两个不同的结点都是连通的 则称G是连通图。 无向图中结点的连通关系具有自反性、对称性和 传递性,所以结点的连通关系是等价关系。 若G的子图G’是连通图,则称G’是G的连通子图, 若给连通子图G’增加任一结点,都使G’成为不连通, 则称G’是G的连通分支,记作G(V’)。V’是连通分支G’ 中所有结点的集合。 G中相互连通的结点一定在同一连通分支中。 不同的连通分支之间一定没有相同的结点。 无向图G的连通分支数记作P(G)。
vV
[例题] 设图G是有n个结点的无向完全图,则G的边数为
C
A) C)
。 n(n-1)
1 2 n ( n 1)
B) n(n+1) D)
1 2 ( n 1)
三、子图
1。已知图G=<V,E>,如果 V ' V , E ' E 则G’=<V’,E’>称为G的子图。 2。如果 V ' V 或 E ' E,则称G’称为G的真子图。 3。如果 V ' V , E ' E ,则称G’称为G的生成子图。 [例题] 设图 ,若 G V , E , 则称G ’是G的真子图。 G ' V ' , E ' 解:应填
(G ) (G ) (G ) 1
(G ) (G ) (G ) 2
( G ) 1, ( G ) ( G ) 2
(G ) (G ) 2, (G ) 3
(G ) (G ) (G )
五、连通分图
1 1 2 2 3 3 4 4 30 , | E | 15
vV
[例题] 设图G=<V,E>,则下列结论成立的是
A) deg( V ) 2 | E | C)
C
。
B) deg( V ) | E | D)
d eg ( v ) 2 | E |
vV
d eg ( v ) | E |
1 1 0 0
e2
0 1 1 0 e3
v1 v2 v3 v4
2。相邻矩阵 对于无向图G=<V,E>,若|V|=n,作n阶方阵A(G) 其中的 a ij 表示 v i 与 v j 相关联的边数。 上例中,
1 1 A (G ) 0 0 1 0 1 0 0 1 0 0 0 0 0 0
v1
例如D:e1
v2
e4
e2
e3
v3
1 M (D ) 1 0
0 1 1
1 0 1
1 0 1
2。邻接矩阵 对于有向图D=<V,E>,若|V|=n,作n阶方阵A(D) 其中的 a ij 表示从 v i 指向 v j 的边数。 上例中,
V ' V或 E ' E
,
四、图的同构
如果图G中的结点集V与图G’中的结点集V’具有 一一对应的关系,并且对应的边都具有相同的重数, 则称G与G’同构,记作 G G ' 。 因此,两图同构必须满足下列条件: ⑴结点数相同, ⑵边数相同, ⑶度数相同的结点数相同。 上述条件是两图同构的必要条件,但不是充分条 件,也就是说,两个图即使满足上述条件也不一定同 构。如果把其中一个图中的结点重新排列,边跟着结 点移动,并且可以任意弯曲,能够与另一图完全重合, 那么这两个图是同构的。
称为V的一个划分。