河北省衡水中学2018届高三第十七次模拟考试数学(文)试
河北省衡水中学2018届高三第十七次模拟考试数学(文)试题(精编含解析)

2017~2018学年度高三年级十七模考试数学试卷(文)第Ⅰ卷(共60分)一、选择题:(每小题5分,共60分.下列每小题所给选项只有一个项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合,集合,则集合()A. B. C. D.【答案】C【解析】分析:解指数不等式可得集合A,求出函数的定义域可得集合B,然后再求出即可.详解:由题意得,,∴,∴.故选C.点睛:本题考查指数函数单调性的应用,对数函数的定义域及集合的运算,考查学生的运算能力及应用所学知识解决问题的能力,属基础题.2. 已知复数 (为虚数单位),若复数的共轭复数的虚部为, 则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:先化简复数,根据的共轭复数的虚部为求出复数,再根据复数的几何意义确定复数在复平面内对应的点的位置.详解:由题意得,∴,又复数的共轭复数的虚部为,∴,解得.∴,∴复数在复平面内对应的点位于第一象限.故选A.点睛:本题以复数的运算为基础,考查复数的基本概念和复数的几何意义,解题的关键是根据复数的共轭复数的虚部为求得实数,由此得到复数,然后再根据复数对应的点的坐标确定其所在的象限.3. 若,,,的平均数为3,方差为4,且,,则新数据,的平均数和标准差分别为()A. -4 -4B. -4 16C. 2 8D. -2 4【答案】D【解析】分析:根据样本的平均数、方差的定义计算即可.详解:∵,,,的平均数为3,方差为4,∴,.又,∴,,∴新数据,的平均数和标准差分别为.故选D.点睛:与平均数和方差有关的结论(1)若x1,x2,…,x n的平均数为,那么mx1+a,mx2+a,…,mx n+a的平均数为;(2)数据x1,x2,…,x n与数据x′1=x1+a,x′2=x2+a,…,x′n=x n+a的方差相等,即数据经过平移后方差不变;(3)若x1,x2,…,x n的方差为s2,那么ax1+b,ax2+b,…,ax n+b的方差为a2s2.4. 已知双曲线的左焦点为抛物线的焦点,双曲线的渐近线方程为,则实数()A. 3B.C.D.【答案】C【解析】抛物线的焦点坐标为,则双曲线中,由双曲线的标准方程可得其渐近线方程为,则:,求解关于实数a,b的方程可得:.本题选择C选项.5. 运行如图所示程序,则输出的的值为()A. B. C. 45 D.【答案】B【解析】程序是计算,记,,两式相加得.故,故选.6. 已知,,则的值为()A. B. C. D.【答案】A【解析】分析:根据同角三角函数关系由求得,于是可得,然后再根据两角和的余弦公式求解即可.详解:∵,,∴,∴,.∴.故选A.点睛:本题属于给值求值的问题,考查同角三角函数关系、倍角公式、两角和的余弦公式的运用,考查学生的计算能力和公式变形能力.7. 如图是某几何体的三视图,则该几何体的体积为()A. 6B. 9C. 12D. 18【答案】B【解析】由题设中提供的三视图可以看出这是一个底面边长为2的正方形高为1的四棱柱与一个底面是边长为4的等腰直角三角形高为1的三棱柱的组合体,其体积,应选答案C 。
2018届河北省衡水中学高三第十七次模拟考试数学(理)试题(解析版)

2018届河北省衡水中学高三第十七次模拟考试数学(理)试题一、单选题1.设集合,集合,则集合()A. B. C. D.【答案】C【解析】分析:解指数不等式可得集合A,求出函数的定义域可得集合B,然后再求出即可.详解:由题意得,,∴,∴.故选C.点睛:本题考查指数函数单调性的应用,对数函数的定义域及集合的运算,考查学生的运算能力及应用所学知识解决问题的能力,属基础题.2.已知复数 (为虚数单位),若复数的共轭复数的虚部为, 则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:先化简复数,根据的共轭复数的虚部为求出复数,再根据复数的几何意义确定复数在复平面内对应的点的位置.详解:由题意得,∴ ,又复数的共轭复数的虚部为,∴,解得.∴,∴复数在复平面内对应的点位于第一象限.故选A.点睛:本题以复数的运算为基础,考查复数的基本概念和复数的几何意义,解题的关键是根据复数的共轭复数的虚部为求得实数,由此得到复数,然后再根据复数对应的点的坐标确定其所在的象限.3.若,,,的平均数为3,方差为4,且,,则新数据,的平均数和标准差分别为()A. -4 -4B. -4 16C. 2 8D. -2 4【答案】D【解析】分析:根据样本的平均数、方差的定义计算即可.详解:∵,,,的平均数为3,方差为4,∴,.又,∴,,∴新数据,的平均数和标准差分别为.故选D.点睛:与平均数和方差有关的结论(1)若x1,x2,…,x n的平均数为,那么mx1+a,mx2+a,…,mx n+a的平均数为;(2)数据x1,x2,…,x n与数据x′1=x1+a,x′2=x2+a,…,x′n=x n+a的方差相等,即数据经过平移后方差不变;(3)若x1,x2,…,x n的方差为s2,那么ax1+b,ax2+b,…,ax n+b的方差为a2s2.4.已知双曲线的左焦点为抛物线的焦点,双曲线的渐近线方程为,则实数()A. 3B.C.D.【答案】C【解析】抛物线的焦点坐标为,则双曲线中,由双曲线的标准方程可得其渐近线方程为,则:,求解关于实数a,b的方程可得:.本题选择C选项.5.运行如图所示程序,则输出的的值为()A. B. C. 45 D.【答案】B【解析】程序是计算,记,,两式相加得.故,故选.6.已知,,则的值为()A. B. C. D.【答案】A【解析】分析:根据同角三角函数关系由求得,于是可得,然后再根据两角和的余弦公式求解即可.详解:∵,,∴,∴,.∴.故选A.点睛:本题属于给值求值的问题,考查同角三角函数关系、倍角公式、两角和的余弦公式的运用,考查学生的计算能力和公式变形能力.7.如图是某几何体的三视图,则该几何体的体积为( )A. 6B. 9C. 12D. 18【答案】B【解析】由已知中的三视图可得:该几何体是两个三棱柱形成的组合体,下部的三棱柱,底面面积为:14362⨯⨯=,高为1,体积为:6;上部的三棱柱,底面面积为:12×2×3=3,高为1,体积为:3;故组合体的体积V=6+3=9,故选:B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8.已知,点在线段上,且的最小值为1,则 ()的最小值为()A. B. C. 2 D.【答案】B【解析】分析:由可得点O在线段的垂直平分线上,由结合题意可得当C是的中点时最小,由此可得与的夹角为,故的夹角为.然后根据数量积可求得,于是可得所求.详解:∵,∴点O在线段的垂直平分线上.∵点在线段上,且的最小值为1,∴当C是的中点时最小,此时,∴与的夹角为,∴的夹角为.又,当且仅当时等号成立.∴的最小值为3,∴的最小值为.故选B.点睛:求解平面向量最值或范围问题的常见方法(1)利用不等式求最值,解题时要灵活运用不等式.(2)利用函数思想求最值,常利用“平方技巧”找到向量的模的表达式,然后利用函数思想求最值,有时也常与三角函数知识结合求最值.(3)利用数形结合思想求最值,利用平面向量“形”的特征,挖掘向量的模所表示的几何意义,从图形上观察分析出模的最值.9.函数的图像大致是()A. B.C. D.【答案】A【解析】分析:先判断函数为奇函数,可排除选项C;然后求导可得函数在上单调递增,可排除B和D,从而可得答案.详解:由题意可得,∵,∴函数为奇函数,其图象关于原点对称,∴排除选项C.又,∴当时,单调递增,∴排除选项B和D.故选A.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.10.若抛物线的焦点是,准线是,点是抛物线上一点,则经过点、且与相切的圆共()A. 0个B. 1个C. 2个D. 4个【答案】D【解析】分析:由于圆经过点、且与相切,故圆心在线段的垂直平分线上,且圆心到点和准线的距离相等,故圆心在抛物线上.结合条件可得满足条件的点有两个,且每条线段的垂直平分线与抛物线都有两个交点,故可得圆心有4个.详解:因为点在抛物线上,所以可求得.由于圆经过焦点且与准线l 相切,所以由抛物线的定义知圆心在抛物线上. 又圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,故圆心是线段FM 的垂直平分线与抛物线的交点. 结合图形知对于点M (4,4)和(4,−4),线段FM 的垂直平分线与抛物线都各有两个交点. 所以满足条件的圆有4个. 故选D .点睛:解答本题要抓住两点:一是圆心在线段FM 的垂直平分线上,二是圆心到焦点和准线的距离相等,结合抛物线的定义可得圆心应在抛物线上,故可得圆心的个数取决于点M 的个数,且每条线段FM 的垂直平分线与抛物线都各有两个交点. 11.设函数.若,且,则的取值范围为( )A. B. C.D.【答案】B【解析】分析:采用取特殊值的方法求解,画出函数的图象,根据图象找到使得且的的值,并由此得到所求的范围. 详解:(特殊值法)画出的图象如图所示.结合图象可得,当时,;当时,,满足.由此可得当,且时,. 故选B . 点睛:本题考查三角函数图象的画法和图象的应用,考查学生运用数形结合解决问题的能力,有一定难度.解题的关键值确定满足条件的临界位置,并在此基础上得到满足条件的最小值,然后将此结论推广可得所求的范围.12.对于函数()f x 和()g x ,设(){}0x f x α∈=,(){}0x g x β∈=,若存在,αβ,使得1αβ-≤,则称()f x 与()g x 互为“零点相邻函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点相邻函数”,则实数a 的取值范围是( )A .[]2,4B .72,3⎡⎤⎢⎥⎣⎦C .7,33⎡⎤⎢⎥⎣⎦D .[]2,3【答案】D【解析】试题分析:根据题意,1α=,满足()f x 与()g x 互为“零点相邻函数”,02β≤≤,又因为函数()23g x x ax a =--+图像恒过定点(1,4)-,要想函数在区间[0,2]上有零点,需22(0)30()30242g a a a a g a =-+≥⎧⎪⎨=--+≤⎪⎩,解得23a ≤≤,故选D . 【考点】新定义,函数零点问题.二、填空题 13.若数列是等差数列,对于,则数列也是等差数列.类比上述性质,若数列是各项都为正数的等比数列,对于时,数列也是等比数列,则 【答案】【解析】试题分析:等差数列中的和类别为等比数列中的乘积,是各项的算术平均数,类比等比数列中是各项的几何平均数,因此【考点】归纳类比 点评:类比题目要通过比较给定的已知条件与所要类比的结论之间的相似点,通过相似点找到其满足的性质14.函数()y f x =的图象在点()()2,2M f处的切线方程是28y x =-,则()()'22f f =__________.【答案】12-【解析】 由导数的几何意义可知()22f '=,又()22284f =⨯-=-,所以()()12f x f x =-'. 15.已知是区间上的任意实数,直线与不等式组表示的平面区域总有公共点,则直线的倾斜角的取值范围为__________.【答案】【解析】分析:先画出当和时不等式组表示的平面区域,根据题意可知只要该区域包含在不等式组表示的平面区域内即可满足条件,由此可得的取值范围,进而得到直线的倾斜角的范围. 详解:由题意直线直线的方程即为,∴直线的斜率为,且过定点.画出不等式组表示的可行域如图所示.由解得,故点,此时.当时,直线的方程为,即,由解得,故点,如图所示.结合图形可得要使直线与不等式组表示的平面区域总有公共点,只需满足.∴直线的斜率∴直线的倾斜角的取值范围为.点睛:本题考查不等式组表示的平面区域的画法,考查数形结合在解题中的应用以及学生运用所学知识解决问题的能力.解答本题的关键是对题意的正确理解和准确画出图形.16.设锐角三个内角所对的边分别为,若,则的取值范围为__________.【答案】【解析】分析:由题意得,然后根据正弦定理得,结合为锐角三角形可得,于是可得的取值范围.详解:由及余弦定理得,∴,∴.又为锐角三角形,∴.由正弦定理得,∴.由得,∴,∴.∴的取值范围为.点睛:解答本题时容易出现的错误是忽视“为锐角三角形”这一条件,导致角的取值范围增大而出现错误的结果.三、解答题 17.已知数列{}n a 为公差不为0的等差数列, 23a =,且21log a , 23log a , 27log a 成等差数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n S . 【答案】(1) =1n a n +;(2) ()22n nS n =+.【解析】试题分析:(1)由题意可得数列的公差为1d =,则数列{}n a 的通项公式是=1n a n +; (2)结合(1)中求得的通项公式裂项求和可得数列{}n b 的前n 项和()22n nS n =+.试题解析:(1)设数列{}n a 的公差为d由23a =,且21log a , 23log a , 27log a 成等差数列,得2321272log log log a a a =+, 即()()()2222log 3log 3log 35d d d +=-++, 得()()()2222log 3log 335d d d +=-+,得()()()23335d d d +=-+,解得1d =或0d =(舍去).所以数列{}n a 的通项公式为()()2=23211n a a n d n n +-⋅=+-⋅=+. (2)因为()()11111=1212n n n b a a n n n n +==-++++, 所以1111111111112334451112n S n n n n n n =-+-+-++-+-+--+++ ()112222n n n =-=++. 点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18.在测试中,客观题难题的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;(3)定义统计量,其中为第题的实测难度,为第题的预估难度().规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.【答案】(1)见解析;(2);(3)见解析.【解析】分析:(1)根据统计表中的数据,可得每道题实测的答对人数及相应的实测难度表,由表可知估计120人中有人答对第题;(2)这人中随机抽取2人,不同的抽取方法有10种,其中恰好有1人答对第题共6种,由古典概型概率公式可得结果;(3)根据方差公式可得,从而可得该次测试的难度预估是合理的.所以,估计120人中有人答对第5题.(2)记编号为的学生为,从这5人中随机抽取2人,不同的抽取方法有10种.其中恰好有1人答对第5题的抽取方法为,,,,,,共6种.所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为.(3)为抽样的10名学生中第题的实测难度,用作为这120名学生第题的实测难度.因为,所以,该次测试的难度预估是合理的.点睛:本题主要考查古典概型概率公式的应用,属于难中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….… 这样才能避免多写、漏写现象的发生;(3)利用组合知识解答.19.四棱锥中,面,底面是菱形,且,,过点作直线,为直线上一动点.(1)求证:;(2)当面面时,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】分析:(1)由平面得,又在菱形中有,故得平面,于是得到.(2)结合题意可得平面,故.根据面面得到,然后根据几何图形的计算得到,于是,,又,由此可得所求的三棱锥的体积.详解:(1)∵,∴直线确定一平面.∵平面,平面,∴.由题意知直线在面上的射影为,又在菱形中有,,∴平面,∵平面,∴.(2)由题意得和都是以为底的等腰三角形,设和的交点为,连接、,则,,又,∴平面.又平面面,平面面,∴面,∴.在菱形中,,,∴.在中,.在中,设,则.∴在中,,又在直角梯形中,,故,解得,即.∴,∴.点睛:(1)用空间中的线面关系的有关定理证明时,要注意解题的规范性,对于定理中的关键词语在证题过程中要体现出来.(2)在求解一些不规则的几何体的体积时,常常需要用到分割法,将不规则的几何体的体积转化为规则的几何体的体积来求解.20.设点、的坐标分别为,直线相交于点,且它们的斜率之积是. (1)求点的轨迹的方程; (2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由.【答案】(1);(2)不存在.【解析】试题分析:(1)根据题意,得,整理得的轨迹为;(2)联立,化为:,,得到韦达定理,求出弦长,再求出到直线的距离,写出面积方程,解出,但此时直线方程过、,这两点由(1)知是取不到的,所以不存在。
河北省衡水中学2018届高三上学期五调考试数学(文)试题+Word版含答案(精品资料).doc

【最新整理,下载后即可编辑】2017—2018学年度上学期高三年级五调考试数学(文科)试卷本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟.第I 卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑) 1.已知集合{}{}2540,0,1,2,3M x x x N =-+≤=,则集合M N ⋂中元素的个数为A .4B .3C .2D .1 2.已知,,a b R i ∈是虚数单位,若2a i bi -+与互为共轭复数,则()2a bi += A .34i - B .5+4i C .3+4i D .5-4i3.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a =A .0B .14C .4D .24.设()1112,1,,,,1,2,3232a f x x α⎧⎫∈---=⎨⎬⎩⎭,则使为奇函数且在区间()0,+∞内单调递减的α值的个数是A .1B .2C .3D .45.若点()cos ,sin P αα在直线2y x =-上,则cos 22πα⎛⎫+ ⎪⎝⎭的值等于 A .45-B .45C.35-D .356.如图,网格纸上小正方形的边长均为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A .803B .403C .203D .1037.已知函数()()cos f x x ωϕ=+的部分图像如图所示,则()f x 单调递减区间为A .13,,44k k k Z ππ⎛⎫-+∈ ⎪⎝⎭ B .132,2,44k k k Z ππ⎛⎫-+∈ ⎪⎝⎭ C .13,,44k k k Z ⎛⎫-+∈ ⎪⎝⎭D .132,2,44k k k Z ⎛⎫-+∈ ⎪⎝⎭8.已知H 是球O 的直径AB 上一点,AH :HB=1:3,AB ⊥平面,,H α为垂足,α截球O 所得截面的面积为4π,则球O 的表面积为 A .163π B .1633π C .643π D .169π9.若在函数()()20,0f x ax bx a b =+>>的图像的点()()1,1f 处的切线斜率为2,则8a bab+的最小值是 A .10B .9C .8D .3210.若,x y 满足约束条件220,0,4,x y x y x y ⎧+≤⎪-≤⎨⎪+≤⎩则23y z x -=+的最小值为 A .2- B .23-C .125-D .247- 11.已知动圆M 与圆()221:11C x y ++=,与圆()222125C x y -+=:内切,则动圆圆心M 的轨迹方程是A .22189x y += B. 22198x y += C .2219x y += D .2219y x +=12.已知()f x 是定义在R 上的可导函数,且满足()()()10x f x xf x '++>,则A .()0f x >B .()0f x < C. ()f x 为减函数 D .()f x 为增函数第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分) 13.已知函数()()3311log 2log 212xf x f f ⎛⎫=+= ⎪+⎝⎭,则___________.14.已知向量(),a b a b==,则与的夹角的大小为___________.15.等比数列{}n a 中,若1532,4a a a =-=-=,则__________.16,已知平面α过正方体1111ABCD A B C D -的面对角线1AB ,且平面α⊥平面1C BD ,平面α⋂平面111ADD A AS A AS =∠,则的正切值为_________.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足121111,,3n n n n b b a b b nb ++==+=. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和.18.(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为,,,32a b c a c =,且tan tan tan tan A B A B +=.(1)求角B 的大小;(2)若2224,a a c b =+<,求BA CB 在方向上的投影.19.(本小题满分12分)如图,四棱柱11111ABCD A B C D A A -⊥中,底面ABCD ,四边形ABCD 为梯形, AD //BC ,且AD=2BC ,过1,,A C D 三点的平面记为1,BB α与平面α的交点为Q . (1)求BQ :1QB 的值;(2)求此四棱柱被平面α分成上、下两部分的体积之比.20.(本小题满分12分)已知函数()()ln xe f x a x x x=+-(e为自然对数的底数).(1)当0a >时,求函数()f x 的单调区间; (2)若函数()f x 在区间1,22⎛⎫⎪⎝⎭内有三个不同的极值点,求实数a 的取值范围.21.(本小题满分12分)已知圆()()()2222:222840M x y N x y -+-=+-=,圆:,经过坐标原点的两直线12,l l 满足121l l l ⊥,且交圆M 于不同的两点A ,B ,2l 交圆N 于不同的两点C ,D ,记1l 的斜率为k . (1)求实数k 的取值范围;(2)若四边形ABCD 为梯形,求k 的值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程 在平面直角坐标系xOy 中,曲线1:4C x y +=;曲线21cos ,:sin x C y θθ=+⎧⎨=⎩(θ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 1,C 2的极坐标方程;(2)若射线():0l θαρ=≥分别交12,C C 于A ,B 两点(B 点不同于坐标原点O),求OB OA的最大值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()212f x x x =--+. (1)求不等式()0f x >的解集;(2)若存在0x R ∈,使得()2024f x a a +<,求实数a 的取值范围.。
【全国百强校word】河北省衡水中学2018届高三第十七次模拟考试数学(文)试题

2017~2018学年度高三年级十七模考试数学试卷(文)第Ⅰ卷(共60分)一、选择题:(每小题5分,共60分.下列每小题所给选项只有一个项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合{041}x A x ,集合2{|lg 2}B x y x x ,则集合R A C B ()A .02,B .0,C .1,D .,10,2. 已知复数3a i z a i (a R 为虚数单位),若复数z 的共轭复数的虚部为12, 则复数z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3. 若1x ,2x ,,2018x 的平均数为3,方差为4,且22i i y x ,1i x ,2x ,,2018x ,则新数据1y ,2y 的平均数和标准差分别为()A . -4 -4B . -4 16C . 2 8D . -2 44. 已知双曲线22221(0,0)x y a b a b 的左焦点为抛物线212y x 的焦点,双曲线的渐近线方程为2y x ,则实数a ()A . 3B .2 C. 3 D .235. 运行如图所示程序,则输出的S 的值为()A .1442B .1452 C. 45 D .14626. 已知10sin 10,(0,)2a ,则cos 26a 的值为()A .4310B .43+310 C. 43310 D .334107. 如图是某几何体的三视图,则该几何体的体积为()A .6B . 9 C. 12 D .188. 已知2OA OB ,点C 在线段AB 上,且OC 的最小值为1,则OA tOB (t R )的最小值为()A .2B .3 C. 2 D .59. 函数22sin 33y ([,0)(0,])1441x x x 的图像大致是()A .B .C. D .10. 若抛物线24y x 的焦点是F ,准线是l ,点4M m 是抛物线上一点,则经过点F 、M 且与l 相切的圆共()A . 0个B .1个 C. 2个 D .4个11. 设函数sin 23f x x .若120x x ,且120f x f x ,则21x x 的取值范围为()A .(,)6B .(,)3 C. 2(,)3 D .4(,)312. 对于函数f x 和g x ,设/0x f x ;{/0}B x g x ,若所有的,,都有1,则称f x 和g x 互为“零点相邻函数”.1 ()2x f x e x 与23g x x ax a 与互为“零点相邻函数”,则实数a 的取值范围是()A .2,4B .72,3 C. 7,33 D .2,3第Ⅱ卷(非选择题90分)二、填空题(每题5分,共20分,把每小题的答案填在答卷纸的相应位置)13.若数列n a 是等差数列,对于121()n n b a a a n ,则数列n b 也是等差数列.类比上述性质,若数列n c 是各项都为正数的等比数列,对于0n d 时,数列n d 也是等比数列.14.函数()y f x 的图象在点(2,(2))M f 处的切线方程是28y x ,则(2)(2)f f .15.已知a 是区间1,7上的任意实数,直线1:220l ax y a 与不等式组830x mx y x y 表示的平面区域总有公共点,则直线:30(,)l mx y n m n R 的倾斜角的取值范围为.16.设锐角ABC 三个内角A B C 、、所对的边分别为a b c 、、,若3cos cos 2sin ,1a B b A c C b ,则c 的取值范围为.三、解答题(共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列n a 为公差不为0的等差数列,23a ,且21log a ,23log a ,27log a 成等差数列(1)求数列n a 的通项公式;(2)若数列{}n b 满足11n n n b a a ,求数列n b 的前n 项和n S .18. 在测试中,客观题难题的计算公式为ii R P N ,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号 1 2 3 4 5 考前预估难度i P 0.9 0.8 0.7 0.6 0.4测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”。
2017-2018学年河北省衡水中学高三(下)七调数学试卷(文科)

2017-2018学年河北省衡水中学高三(下)七调数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2230A x x x =--≤,(){}ln 2B x y x ==-,则A B =I ( )A .()1,3B .(]1,3C .[)1,2-D .()1,2-2.已知集合{}02A x x =<<,{}210B x x =-<,则A B =U ( )A .()1,1-B .()1,2-C .()1,2D .()0,1 3.若1122aii i+=++,则a =( ) A .5i -- B .5i -+ C .5i - D .5i +4.设()f x 是定义在R 上周期为2的奇函数,当01x ≤≤时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A .14-B .12-C .14D .125.某几何体的三视图如图所示,则该几何体的表面积为( )A .3612π+B .3616π+C .4012π+D .4016π+ 6.下列说法正确的是( )A .x ∀,y R ∈若0x y +≠,则1x ≠且1y ≠-B .a R ∈,“11a>”是“1a >”的必要不充分条件 C .命题“x R ∃∈使得2230x x ++<”的否定是“x R ∀∈都有2230x x ++>”D .“若22am bm <则a b <”的逆命题为真命题 7.某一算法框图如图所示,则输出的S 值为( )A B ..0 8.《算术法》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也,又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h =,它实际上是将圆锥体积公式中的圆周率π近似为3,那么近似公式27264V L h ≈相当于将圆锥体积公式中的圆周率π近似取为( ) A .227 B .258 C .237 D .157509.已知某椎体的正视图和侧视图如图,则该椎体的俯视图不可能是( )A .B .C .D .10.已知函数()2cos 2f x x x =-的图象在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增,则正数a 的取值范围是( ) A .5,612ππ⎡⎤⎢⎥⎣⎦ B .5,12ππ⎡⎤⎢⎥⎣⎦ C .,4ππ⎡⎤⎢⎥⎣⎦ D .2,43ππ⎡⎤⎢⎥⎣⎦11.已知ln x x =,5log 2y =,0.5z e -=,则( )A .x y z <<B .x z y <<C .z y x <<D .y z x << 12.对任意的0x >,总有()lg 0f x a x x =--≤,则a 的取值范围是( ) A .()(,lg lg lg e e -∞-⎤⎦ B .(],1-∞ C .()1,lg lg lg e e -⎡⎤⎣⎦ D .()lg lg lg ,e e -+∞⎡⎤⎣⎦二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.已知向量,则= .14.若变量x ,y 满足,则点P (x ,y )表示的区域的面积为 .15.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 2﹣b 2=c ,且sin Acos B=2cosAsinB ,则c= .16.某公司在进行人才招聘时,由甲乙丙丁戊5人入围,从学历看,这5人中2人为硕士,3人为博士:从年龄看,这5人中有3人小于30岁,2人大于30岁,已知甲丙属于相同的年龄段,而丁戊属于不同的年龄段,乙戊的学位相同,丙丁的学位不同,最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是 .三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.已知正项等比数列{b n }(n ∈N +)中,公比q >1,b 3+b 5=40,b 3b 5=256,a n =log 2b n +2. (1)求证:数列{a n }是等差数列; (2)若c n =,求数列{c n }的前n 项和S n .18.某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.19.如图,菱形ABEF所在平面与直角梯形ABCD所在的平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF的中点.(1)求证:FD∥平面AHC;(2)求多面体ABCDEF的体积.20.已知a为常数,函数f(x)=x2+ax﹣lnx,g(x)=e x(其中e是自然数对数的底数).(1)过坐标原点O作曲线y=f(x)的切线,设切点P(x0,y0)为,求x0的值;(2)令,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.21.已知椭圆C1: +=1的离心率为e=且与双曲线C2:﹣=1有共同焦点.(1)求椭圆C1的方程;(2)在椭圆C1落在第一象限的图象上任取一点作C1的切线l,求l与坐标轴围成的三角形的面积的最小值;(3)设椭圆C1的左、右顶点分别为A,B,过椭圆C1上的一点D作x轴的垂线交x轴于点E,若C点满足⊥,∥,连结AC交DE于点P,求证:PD=PE.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-4坐标系与参数方程]22.已知曲线C的参数方程为(θ为参数)在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C′.(1)求曲线C′的普通方程.(2)若点A在曲线C′上,点B(3,0).当点A在曲线C′上运动时,求AB中点P的运动轨迹方程.[选修4-5不等式选讲]23.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.河北省衡水中学高三(下)七调数学试卷(文科)参考答案与试题解析一、选择题1-5:CBDCC 6-10:BDADB 11、12:DA二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.已知向量,则=2.【考点】平面向量的坐标运算.【分析】利用向量的坐标运算性质、数量积运算性质即可得出.【解答】解:﹣2=(﹣1,3),∴=﹣1+3=2.故答案为:2.14.若变量x,y满足,则点P(x,y)表示的区域的面积为4.【考点】简单线性规划.【分析】画出约束条件的可行域,求出点的坐标,然后求解区域的面积即可.【解答】解:变量x,y满足表示的可行域如图:则点P(x,y)表示的区域的面积为:.故答案为:4.15.在△ABC中,内角A、B、C的对边分别为a、b、c,已知a2﹣b2=c,且sin Acos B=2cosAsinB,则c=3.【考点】余弦定理;正弦定理.【分析】利用正弦定理、余弦定理,化简sinAcosB=2cosAsinB,结合a2﹣b2=c,即可求c.【解答】解:由sinAcosB=2cosAsinB得•=2••,所以a2+c2﹣b2=2(b2+c2﹣a2),即a2﹣b2=,又a2﹣b2=c,解得c=3.故答案为:3.16.某公司在进行人才招聘时,由甲乙丙丁戊5人入围,从学历看,这5人中2人为硕士,3人为博士:从年龄看,这5人中有3人小于30岁,2人大于30岁,已知甲丙属于相同的年龄段,而丁戊属于不同的年龄段,乙戊的学位相同,丙丁的学位不同,最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是丁.【考点】进行简单的合情推理.【分析】通过推理判断出年龄以及学历情况,然后推出结果.【解答】解:由题意可得,2人为硕士,3人为博士;有3人小于30岁,2人大于30岁;又甲丙属于相同的年龄段,而丁戊属于不同的年龄段,可推得甲丙小于30岁,故甲丙不能应聘成功;又乙戊的学位相同,丙丁的学位不同,以及2人为硕士,3人为博士,可得乙戊为博士,故乙戊也不能应聘成功.所以只有丁能应聘成功.故答案为:丁.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.已知正项等比数列{b n}(n∈N+)中,公比q>1,b3+b5=40,b3b5=256,a n=log2b n+2.(1)求证:数列{a n}是等差数列;(2)若c n=,求数列{c n}的前n项和S n.【考点】数列的求和;等差关系的确定.【分析】(1)通过b3+b5=40,b3b5=256解得q=2,进而可得结论;(2)通过对c n=分离分母,并项相加即可.【解答】(1)证明:由题可知设数列首项b1>0,∵b3+b5=40,b3b5=256,∴,解得q=2或q=(舍),又∵b3+b5=40,即=40,∴b1===2,∴b n=2×2(n﹣1)=2n,∴a n=log2b n+2=n+2,∴数列{a n}是以3为首项、1为公差的等差数列;(2)解:∵c n==﹣,∴S n=﹣+﹣…+﹣=﹣=.18.某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.【考点】列举法计算基本事件数及事件发生的概率;收集数据的方法.【分析】(1)通过频率分布表得推出m+n=0.45.利用等级系数为5的恰有2件,求出n,然后求出m.(2)根据条件列出满足条件所有的基本事件总数,“从x1,x2,x3,y1,y2,这5件日用品中任取两件,等级系数相等”的事件数,求解即可.【解答】解:(1)由频率分布表得0.05+m+0.15+0.35+n=1,即m+n=0.45.…由抽取的20个零件中,等级为5的恰有2个,得.…所以m=0.45﹣0.1=0.35.…(2):由(1)得,等级为3的零件有3个,记作x1,x2,x3;等级为5的零件有2个,记作y1,y2.从x1,x2,x3,y1,y2中任意抽取2个零件,所有可能的结果为:(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2)共计10种.…记事件A为“从零件x1,x2,x3,y1,y2中任取2件,其等级相等”.则A包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2)共4个.…故所求概率为.…19.如图,菱形ABEF所在平面与直角梯形ABCD所在的平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF的中点.(1)求证:FD∥平面AHC;(2)求多面体ABCDEF的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)由∠BAD=∠CDA=90°,可得AB∥CD,再由四边形ABEF为菱形,可得AB∥EF,得到EF∥CD.结合H是EF的中点,AB=2CD,得CD=FH,可得四边形CDFH为平行四边形,从而得到DF∥CH.再由线面平行的判定可得FD∥平面AHC;(2)由平面ABEF⊥平面ABCD,DA⊥AB,可得DA⊥平面ABEF,结合已知可得四棱锥C﹣ABEF的高DA=2,三棱锥F﹣ADC的高AH=.然后由V ABCDEF=V C﹣ABEF+V F 求得多面体ABCDEF的体积.﹣ADC【解答】(1)证明:∵∠BAD=∠CDA=90°,∴AB∥CD,∵四边形ABEF为菱形,∴AB∥EF,则EF∥CD.∵H是EF的中点,AB=2CD,∴CD=FH,∴四边形CDFH为平行四边形,则DF∥CH.∵DF⊄平面AHC,HC⊂平面AHC,∴FD∥平面AHC;(2)解:∵平面ABEF⊥平面ABCD,DA⊥AB,∴DA⊥平面ABEF,∵DC∥AB,∴四棱锥C﹣ABEF的高DA=2,∵∠ABE=60°,四边形ABEF为边长是4的菱形,∴可求三棱锥F﹣ADC的高AH=2.∴V ABCDEF=V C﹣ABEF+V F﹣ADC==.20.已知a为常数,函数f(x)=x2+ax﹣lnx,g(x)=e x(其中e是自然数对数的底数).(1)过坐标原点O作曲线y=f(x)的切线,设切点P(x0,y0)为,求x0的值;(2)令,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)先对函数求导,f′(x)=2x+a﹣,可得切线的斜率k=2x0+a﹣= =,即x02+lnx0﹣1=0,由x0=1是方程的解,且y=x2+lnx﹣1在(0,+∞)上是增函数,可证(2)由F(x)==,求出函数F(x)的导数,通过研究2﹣a的正负可判断h(x)的单调性,进而可得函数F(x)的单调性,可求a的范围.【解答】解:(1)f′(x)=2x+a﹣(x>0),过切点P(x0,y0)的切线的斜率k=2x0+a﹣==,整理得x02+lnx0﹣1=0,显然,x0=1是这个方程的解,又因为y=x2+lnx﹣1在(0,+∞)上是增函数,所以方程x2+lnx﹣1=0有唯一实数解.故x0=1;(2)F(x)==,F′(x)=,设h(x)=﹣x2+(2﹣a)x+a﹣+lnx,则h′(x)=﹣2x+++2﹣a,易知h'(x)在(0,1]上是减函数,从而h'(x)≥h'(1)=2﹣a;①当2﹣a≥0,即a≤2时,h'(x)≥0,h(x)在区间(0,1)上是增函数.∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.∴F(x)在区间(0,1]上是减函数.所以,a≤2满足题意;②当2﹣a<0,即a>2时,设函数h'(x)的唯一零点为x0,则h(x)在(0,x0)上递增,在(x0,1)上递减;又∵h(1)=0,∴h(x0)>0.又∵h(e﹣a)=﹣e﹣2a+(2﹣a)e﹣a+a﹣e a+lne﹣a<0,∴h(x)在(0,1)内有唯一一个零点x',当x∈(0,x')时,h(x)<0,当x∈(x',1)时,h(x)>0.从而F(x)在(0,x')递减,在(x',1)递增,与在区间(0,1]上是单调函数矛盾.∴a>2不合题意.综合①②得,a≤2.21.已知椭圆C1: +=1的离心率为e=且与双曲线C2:﹣=1有共同焦点.(1)求椭圆C1的方程;(2)在椭圆C1落在第一象限的图象上任取一点作C1的切线l,求l与坐标轴围成的三角形的面积的最小值;(3)设椭圆C1的左、右顶点分别为A,B,过椭圆C1上的一点D作x轴的垂线交x轴于点E,若C点满足⊥,∥,连结AC交DE于点P,求证:PD=PE.【考点】直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率e=,得到a2=4b2,再结合椭圆与双曲线有共同的交点及隐含条件解得a2,4b2,则椭圆的方程可求;(2)由题意设出切线方程y=kx+m(k<0),和椭圆方程联立后由方程仅有一个实根得到方程的判别式等于0,即得到k与m的关系,求出直线在x轴和y轴上的截距,代入三角形的面积公式后化为含有k的代数式,然后利用基本不等式求最值;(3)求出A,B的坐标,设出D,E,C的坐标,结合条件⊥,∥可得D,E,C的坐标的关系,把AC,DE的方程都用D点的坐标表示,求解交点P的坐标,由坐标可得P为DE的中点.【解答】(1)解:由e=,可得:,即,∴,a2=4b2①又∵c2=2b2+1,即a2﹣b2=2b2+1 ②联立①②解得:a2=4,b2=1,∴椭圆C1的方程为:;(2)解:∵l与椭圆C1相切于第一象限内的一点,∴直线l的斜率必存在且为负,设直线l的方程为:y=kx+m(k<0),联立,消去y整理可得:③根据题意可得方程③只有一实根,∴△=,整理可得:m2=4k2+1 ④∵直线l与两坐标轴的交点分别为且k<0,∴l与坐标轴围成的三角形的面积⑤④代入⑤可得:(当且仅当k=﹣时取等号);(3)证明:由(1)得A(﹣2,0),B(2,0),设D(x0,y0),∴E(x0,0),∵,∴可设C(2,y1),∴,由可得:(x0+2)y1=2y0,即,∴直线AC的方程为:,整理得:,点P在DE上,令x=x0代入直线AC的方程可得:,即点P的坐标为,∴P为DE的中点∴PD=DE.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-4坐标系与参数方程]22.已知曲线C的参数方程为(θ为参数)在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C′.(1)求曲线C′的普通方程.(2)若点A在曲线C′上,点B(3,0).当点A在曲线C′上运动时,求AB中点P的运动轨迹方程.【考点】参数方程化成普通方程.【分析】(1)利用坐标转移,代入参数方程,消去参数即可求曲线C′的普通方程;(2)设P(x,y),A(x0,y0),点A在曲线C′上,点B(3,0),点A在曲线C′上,列出方程组,即可求AB中点P的轨迹方程.【解答】解:(1)将代入,得C'的参数方程为∴曲线C'的普通方程为x2+y2=1.…(2)设P(x,y),A(x0,y0),又B(3,0),且AB中点为P∴有:又点A在曲线C'上,∴代入C'的普通方程得(2x﹣3)2+(2y)2=1∴动点P的轨迹方程为(x﹣)2+y2=.…[选修4-5不等式选讲]23.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)不等式f(x)≤3就是|x﹣a|≤3,求出它的解集,与{x|﹣1≤x≤5}相同,求实数a的值;(2)在(1)的条件下,f(x)+f(x+5)≥m对一切实数x恒成立,根据f(x)+f(x+5)的最小值≥m,可求实数m的取值范围.【解答】解:(1)由f(x)≤3得|x﹣a|≤3,解得a﹣3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|﹣1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x﹣2|.设g(x)=f(x)+f(x+5),于是所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的取值范围为(﹣∞,5].。
2018届河北省衡水中学高三第十七次模拟考试数学(理)试题(解析版)

2018届河北省衡水中学高三第十七次模拟考试数学(理)试题一、单选题1.设集合,集合,则集合()A. B. C. D.【答案】C【解析】分析:解指数不等式可得集合A,求出函数的定义域可得集合B,然后再求出即可.详解:由题意得,,∴,∴.故选C.点睛:本题考查指数函数单调性的应用,对数函数的定义域及集合的运算,考查学生的运算能力及应用所学知识解决问题的能力,属基础题.2.已知复数 (为虚数单位),若复数的共轭复数的虚部为, 则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:先化简复数,根据的共轭复数的虚部为求出复数,再根据复数的几何意义确定复数在复平面内对应的点的位置.详解:由题意得,∴,又复数的共轭复数的虚部为,∴,解得.∴,∴复数在复平面内对应的点位于第一象限.故选A.点睛:本题以复数的运算为基础,考查复数的基本概念和复数的几何意义,解题的关键是根据复数的共轭复数的虚部为求得实数,由此得到复数,然后再根据复数对应的点的坐标确定其所在的象限.3.若,,,的平均数为3,方差为4,且,,则新数据,的平均数和标准差分别为()A. -4 -4B. -4 16C. 2 8D. -2 4【答案】D【解析】分析:根据样本的平均数、方差的定义计算即可.详解:∵,,,的平均数为3,方差为4,∴,.又,∴,,∴新数据,的平均数和标准差分别为.故选D.点睛:与平均数和方差有关的结论(1)若x1,x2,…,x n的平均数为,那么mx1+a,mx2+a,…,mx n+a的平均数为;(2)数据x1,x2,…,x n与数据x′1=x1+a,x′2=x2+a,…,x′n=x n+a的方差相等,即数据经过平移后方差不变;(3)若x1,x2,…,x n的方差为s2,那么ax1+b,ax2+b,…,ax n+b的方差为a2s2.4.已知双曲线的左焦点为抛物线的焦点,双曲线的渐近线方程为,则实数()A. 3B.C.D.【答案】C【解析】抛物线的焦点坐标为,则双曲线中,由双曲线的标准方程可得其渐近线方程为,则:,求解关于实数a,b的方程可得:.本题选择C选项.5.运行如图所示程序,则输出的的值为()A. B. C. 45 D.【答案】B【解析】程序是计算,记,,两式相加得.故,故选.6.已知,,则的值为()A. B. C. D.【答案】A【解析】分析:根据同角三角函数关系由求得,于是可得,然后再根据两角和的余弦公式求解即可.详解:∵,,∴,∴,.∴.故选A.点睛:本题属于给值求值的问题,考查同角三角函数关系、倍角公式、两角和的余弦公式的运用,考查学生的计算能力和公式变形能力.7.如图是某几何体的三视图,则该几何体的体积为( )A. 6B. 9C. 12D. 18【答案】B【解析】由已知中的三视图可得:该几何体是两个三棱柱形成的组合体,下部的三棱柱,底面面积为:14362⨯⨯=,高为1,体积为:6;上部的三棱柱,底面面积为:12×2×3=3,高为1,体积为:3;故组合体的体积V=6+3=9,故选:B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8.已知,点在线段上,且的最小值为1,则 ()的最小值为()A. B. C. 2 D.【答案】B【解析】分析:由可得点O在线段的垂直平分线上,由结合题意可得当C是的中点时最小,由此可得与的夹角为,故的夹角为.然后根据数量积可求得,于是可得所求.详解:∵,∴点O在线段的垂直平分线上.∵点在线段上,且的最小值为1,∴当C是的中点时最小,此时,∴与的夹角为,∴的夹角为.又,当且仅当时等号成立.∴的最小值为3,∴的最小值为.故选B.点睛:求解平面向量最值或范围问题的常见方法(1)利用不等式求最值,解题时要灵活运用不等式.(2)利用函数思想求最值,常利用“平方技巧”找到向量的模的表达式,然后利用函数思想求最值,有时也常与三角函数知识结合求最值.(3)利用数形结合思想求最值,利用平面向量“形”的特征,挖掘向量的模所表示的几何意义,从图形上观察分析出模的最值.9.函数的图像大致是()A. B.C. D.【答案】A【解析】分析:先判断函数为奇函数,可排除选项C;然后求导可得函数在上单调递增,可排除B和D,从而可得答案.详解:由题意可得,∵,∴函数为奇函数,其图象关于原点对称,∴排除选项C.又,∴当时,单调递增,∴排除选项B和D.故选A.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.10.若抛物线的焦点是,准线是,点是抛物线上一点,则经过点、且与相切的圆共()A. 0个B. 1个C. 2个D. 4个【解析】分析:由于圆经过点、且与相切,故圆心在线段的垂直平分线上,且圆心到点和准线的距离相等,故圆心在抛物线上.结合条件可得满足条件的点有两个,且每条线段的垂直平分线与抛物线都有两个交点,故可得圆心有4个.详解:因为点在抛物线上,所以可求得.由于圆经过焦点且与准线l 相切,所以由抛物线的定义知圆心在抛物线上. 又圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,故圆心是线段FM 的垂直平分线与抛物线的交点.结合图形知对于点M (4,4)和(4,−4),线段FM 的垂直平分线与抛物线都各有两个交点. 所以满足条件的圆有4个. 故选D .点睛:解答本题要抓住两点:一是圆心在线段FM 的垂直平分线上,二是圆心到焦点和准线的距离相等,结合抛物线的定义可得圆心应在抛物线上,故可得圆心的个数取决于点M 的个数,且每条线段FM 的垂直平分线与抛物线都各有两个交点. 11.设函数.若,且,则的取值范围为( )A. B. C.D.【答案】B【解析】分析:采用取特殊值的方法求解,画出函数的图象,根据图象找到使得且的的值,并由此得到所求的范围. 详解:(特殊值法)画出的图象如图所示.结合图象可得,当时,;当时,,满足.由此可得当,且时,. 故选B .点睛:本题考查三角函数图象的画法和图象的应用,考查学生运用数形结合解决问题的能力,有一定难度.解题的关键值确定满足条件的临界位置,并在此基础上得到满足条件的最小值,然后将此结论推广可得所求的范围.12.对于函数()f x 和()g x ,设(){}0x f x α∈=,(){}0x g x β∈=,若存在,αβ,使得1αβ-≤,则称()f x 与()g x 互为“零点相邻函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点相邻函数”,则实数a 的取值范围是( )A .[]2,4B .72,3⎡⎤⎢⎥⎣⎦C .7,33⎡⎤⎢⎥⎣⎦D .[]2,3【解析】试题分析:根据题意,1α=,满足()f x 与()g x 互为“零点相邻函数”,02β≤≤,又因为函数()23g x x ax a =--+图像恒过定点(1,4)-,要想函数在区间[0,2]上有零点,需22(0)30()30242g a a a a g a =-+≥⎧⎪⎨=--+≤⎪⎩,解得23a ≤≤,故选D . 【考点】新定义,函数零点问题.二、填空题 13.若数列是等差数列,对于,则数列也是等差数列.类比上述性质,若数列是各项都为正数的等比数列,对于时,数列也是等比数列,则【答案】【解析】试题分析:等差数列中的和类别为等比数列中的乘积,是各项的算术平均数,类比等比数列中是各项的几何平均数,因此【考点】归纳类比点评:类比题目要通过比较给定的已知条件与所要类比的结论之间的相似点,通过相似点找到其满足的性质14.函数()y f x =的图象在点()()2,2M f 处的切线方程是28y x =-,则()()'22f f =__________.【答案】12-【解析】 由导数的几何意义可知()22f '=,又()22284f =⨯-=-,所以()()12f x f x =-'. 15.已知是区间上的任意实数,直线与不等式组表示的平面区域总有公共点,则直线的倾斜角的取值范围为__________.【答案】【解析】分析:先画出当和时不等式组表示的平面区域,根据题意可知只要该区域包含在不等式组表示的平面区域内即可满足条件,由此可得的取值范围,进而得到直线的倾斜角的范围.详解:由题意直线直线的方程即为,∴直线的斜率为,且过定点. 画出不等式组表示的可行域如图所示.由解得,故点,此时.当时,直线的方程为,即,由解得,故点,如图所示.结合图形可得要使直线与不等式组表示的平面区域总有公共点,只需满足.∴直线的斜率∴直线的倾斜角的取值范围为.点睛:本题考查不等式组表示的平面区域的画法,考查数形结合在解题中的应用以及学生运用所学知识解决问题的能力.解答本题的关键是对题意的正确理解和准确画出图形.16.设锐角三个内角所对的边分别为,若,则的取值范围为__________.【答案】【解析】分析:由题意得,然后根据正弦定理得,结合为锐角三角形可得,于是可得的取值范围.详解:由及余弦定理得,∴,∴.又为锐角三角形,∴.由正弦定理得,∴.由得,∴,∴.∴的取值范围为.点睛:解答本题时容易出现的错误是忽视“为锐角三角形”这一条件,导致角的取值范围增大而出现错误的结果.三、解答题 17.已知数列{}n a 为公差不为0的等差数列, 23a =,且21log a , 23log a , 27log a 成等差数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n S . 【答案】(1) =1n a n +;(2) ()22n nS n =+.【解析】试题分析:(1)由题意可得数列的公差为1d =,则数列{}n a 的通项公式是=1n a n +; (2)结合(1)中求得的通项公式裂项求和可得数列{}n b 的前n 项和()22n nS n =+.试题解析:(1)设数列{}n a 的公差为d由23a =,且21log a , 23log a , 27log a 成等差数列,得2321272log log log a a a =+, 即()()()2222log 3log 3log 35d d d +=-++, 得()()()2222log 3log 335d d d +=-+,得()()()23335d d d +=-+,解得1d =或0d =(舍去).所以数列{}n a 的通项公式为()()2=23211n a a n d n n +-⋅=+-⋅=+. (2)因为()()11111=1212n n n b a a n n n n +==-++++, 所以1111111111112334451112n S n n n n n n =-+-+-++-+-+--+++ ()112222n n n =-=++. 点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18.在测试中,客观题难题的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;(3)定义统计量,其中为第题的实测难度,为第题的预估难度().规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.【答案】(1)见解析;(2);(3)见解析.【解析】分析:(1)根据统计表中的数据,可得每道题实测的答对人数及相应的实测难度表,由表可知估计120人中有人答对第题;(2)这人中随机抽取2人,不同的抽取方法有10种,其中恰好有1人答对第题共6种,由古典概型概率公式可得结果;(3)根据方差公式可得,从而可得该次测试的难度预估是合理的.所以,估计120人中有人答对第5题.(2)记编号为的学生为,从这5人中随机抽取2人,不同的抽取方法有10种.其中恰好有1人答对第5题的抽取方法为,,,,,,共6种.所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为.(3)为抽样的10名学生中第题的实测难度,用作为这120名学生第题的实测难度.因为,所以,该次测试的难度预估是合理的.点睛:本题主要考查古典概型概率公式的应用,属于难中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….… 这样才能避免多写、漏写现象的发生;(3)利用组合知识解答.19.四棱锥中,面,底面是菱形,且,,过点作直线,为直线上一动点.(1)求证:;(2)当面面时,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】分析:(1)由平面得,又在菱形中有,故得平面,于是得到.(2)结合题意可得平面,故.根据面面得到,然后根据几何图形的计算得到,于是,,又,由此可得所求的三棱锥的体积.详解:(1)∵,∴直线确定一平面.∵平面,平面,∴.由题意知直线在面上的射影为,又在菱形中有,,∴平面,∵平面,∴.(2)由题意得和都是以为底的等腰三角形,设和的交点为,连接、,则,,又,∴平面.又平面面,平面面,∴面,∴.在菱形中,,,∴.在中,.在中,设,则.∴在中,,又在直角梯形中,,故,解得,即.∴,∴.点睛:(1)用空间中的线面关系的有关定理证明时,要注意解题的规范性,对于定理中的关键词语在证题过程中要体现出来.(2)在求解一些不规则的几何体的体积时,常常需要用到分割法,将不规则的几何体的体积转化为规则的几何体的体积来求解.20.设点、的坐标分别为,直线相交于点,且它们的斜率之积是.(1)求点的轨迹的方程;(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由.【答案】(1);(2)不存在.【解析】试题分析:(1)根据题意,得,整理得的轨迹为;(2)联立,化为:,,得到韦达定理,求出弦长,再求出到直线的距离,写出面积方程,解出,但此时直线方程过、,这两点由(1)知是取不到的,所以不存在。
河北省衡水中学2017-2018学年高三下学期一模考试数学(文)试题 Word版含解析

2017-2018学年一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}|20,|A x x B x x a =-<=<,若A B A ⋂=,则实数a 的取值范围是( ) A .(],2-∞- B .[)2,-+∞ C .(],2-∞ D .[)2,+∞ 【答案】D考点:集合的运算.2.如图,在复平面内,复数12,z z 对应的向量分别是,OA OB,则12z z +=( )A .2B .3C . .【答案】A 【解析】试题分析:由题意得,122,z i z i =--=,所以1222z z +=-=,故选A. 考点:复数的表示与复数的模.3.已知平面直角坐标系内的两个向量,()()1,2,,32a b m m ==-,且平面内的任一向量c 都可以唯一的表示成c a b λμ=+(,λμ为实数),则m 的取值范围是( )A .(),2-∞B .()2,+∞C .(),-∞+∞D .(),2-∞()2,⋃+∞ 【答案】D 【解析】试题分析:由题意得,平面内的任一向量c 都可以唯一的表示成c a b λμ=+(,λμ为实数),则,a b一定不共线,所以1232m m ≠-,解得2m ≠,所以m 的取值范围是(),2-∞()2,⋃+∞,故选D.考点:向量的坐标运算. 4.如图所示的是计算111124620++++ 的值的一个框图,其中菱形判断框内填入的条件是( )A .8i >B .9i >C .10i >D .11i >【答案】C考点:循环结构的程序框图的计算.5.将函数()cos f x x x -的图像向左平移m 个单位(0m >),若所得图像对应的函数为偶函数,则m 的最小值是( ) A .23π B .3π C .8π D .56π【答案】A【解析】试题分析:由题意得,函数()cos sin()6f x x x x π=-=-,将函数()sin()6f x x π=-的图象向左平移m 个单位(0m >),得()sin()6f x x m π=+-,若使得()sin()6f x x m π=+-为偶数,则2,623m k m k k Z πππππ-=+⇒=+∈,当1k =时,23m π=,故选A.考点:三角函数的图象变换与三角函数的性质. 6.已知等比数列{}n a 中,3462,16a a a ==,则101268a a a a --的值为( )A . 2B . 4C . 8D .16 【答案】B 【解析】试题分析:由题意得,246516a a a ==,所以54a =±,因为32a =,所以54a =,所以2532a q a ==,又91141012115768114a a a q a q q a a a q a q--===--,故选B. 考点:等比数列的通项公式的应用.7.某书法社团有男生30名,女生20名,从中抽取一个5人的样本,恰好抽到了2名男生和3名女生①该抽样一定不是系统抽样;②该抽样可能是随机抽样;③该抽样不可能是分层抽样;④男生被抽到的概率大于女生被抽到的概率,其中说法正确的为( ) A .①②③ B .②③ C . ③④ D .①④ 【答案】B考点:抽样的应用.8.已知点Q 在椭圆22:11610x y C +=,点P 满足()112OP OF OQ =+ (其中O 为坐标原点,1F 为椭圆C 的左焦点),则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆 【答案】D 【解析】试题分析:因为点P 满足()112OP OF OQ =+(其中O 为坐标原点,所以点P 是1QF 的中点,设(,)P a b ,由于1F 为椭圆22:11610x y C +=的左焦点,则1(F ,故)2b Q ,由点Q 在椭圆22:11610x y C +=上,则点P 的轨迹方程为2140b C +=,故选D. 考点:椭圆的标准方程及其简单的几何性质.9.已知一个几何体的三视图的如图所示,则该几何体的体积为( )A .3272π-B .3182π- C .273π- D .183π- 【答案】B考点:几何体的三视图及体积的计算.10.三棱锥P ABC -中,PA ⊥平面ABC ,,1,AC BC AC BC PA ⊥===外接球的表面积为( )A .5π BC .20πD .4π 【答案】A 【解析】试题分析:由题意得,PA ⊥平面ABC ,AC BC ⊥,所以BC ⊥平面,PAC PB 是三棱锥P ABC -的外接圆的直径,因为Rt PBA ∆中,AB PA =PB =接球的半径为R =,所外接球的表面积为245S R ππ==,故选A.考点:球的组合体及球的表面积公式.【方法点晴】本题主要考查了特殊三棱锥中求外接球的表面积,着重考查了直线与平面垂直的判定与性质、勾股定理和球的表面积公式,同时考查了推理与运算能力,属于中档试题,本题的解答中,根据题意,证得BC ⊥平面,PAC PB 是三棱锥P ABC -的外接圆的直径,利用勾股定理几何体题中数据算得球的直径,得到球的半径,即可求解球的表面积. 11.若函数[])111sin 20,y x x π=∈,函数223y x =+,则()()221212x x y y -+-的最小值为( )A.12 B .()21872π+ C .()21812π+ D.()21572π-【答案】B考点:利用导数研究曲线在某点处的切线;利用导数求闭区间上函数的最值.【方法点晴】本题主要考查了利用导数研究曲线在某点处的切线、利用导数求闭区间上函数的最值,体现了导数的综合应用,其中利用平移切线法求直线和正弦函数距离的最小值是解决本题的关键,同时着重考查了转化与化归思想和数形结合思想的应用,本题的解答中根据平移切线法,求出和直线3y x =+平行的切线或切点,利用点到直线的距离公式即可求解结论.12.已知,x y R ∈,且4300x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则存在R θ∈,使得()4cos sin 0x y θθ-++=的概率为 ( ) A .4π B . 8π C .24π- D .18π-【答案】考点:简单的线性规划的应用.【方法点晴】本题主要考查了简单的线性规划的应用,属于中档试题,着重考查了转化与化归的思想和数形结合思想的应用,本题的解答中作出不等式组表示的平面区域,利用辅助角公式将条件进行化简,转化为()2242x y -+≥,对应的图象是以(4,0)为圆心,半径r =的圆的外部,求出对应饿平面区域的面积即可求得结论.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.已知()22:12,:210,0p x q x x a a -≤-+-≥>,若p ⌝是q 的充分不必要条件,则实数a 的取值范围是 . 【答案】(]0,2考点:充分不必要条件的应用.14.已知函数()f x =[)0,+∞,则实数m 的取值范围是 . 【答案】[][)0,19,⋃+∞ 【解析】试题分析:由题意得,函数()f x =[)0,+∞,则当0m =时,函数()f x =[)0,+∞,显然成立;当0m >时,则2(3)40m m ∆=--≥,解得01m <≤或9m ≥,综上可知实数m 的取值范围是[][)0,19,⋃+∞. 考点:函数的值域及二次函数的性质.15.若点P 是以12,F F 为焦点的双曲线22221x y a b-=上一点,满足12PF PF ⊥,则122PF PF =,则次双曲线的离心率为 .考点:双曲线的定义及简单的几何性质.【方法点晴】本题主要考查了双曲线的定义及其简单的几何性质、离心率的求解,属于中档试题,着重考查了推理与运算能力,解答的关键是抓住要求离心率的定义,利用题设条件建立,,a b c 的关系式,即可求解ca的值,得到双曲线的离心率,本题的解答中根据双曲线的定义和题设条件,可得12,PF PF ,在直角三角形中,利用勾股定理得到,,a b c 的关系式. 16.已知函数()()2cos 10,0,02f x A x A πωϕωϕ⎛⎫=++>><< ⎪⎝⎭的最大值为3,()f x 的图像与y 轴的交点坐标为()0,2,其相邻两条对称轴间的距离为2,则 ()()()()1232016f f f f +++= .【答案】4032 【解析】 试题分析:因为()()21cos(22)cos 112wx f x A x A ϕωϕ++=++=⋅+cos(22)122A Awx ϕ=+++的最大值为3,所以1322A A++=,所以2A =,根据函数相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即24w π=,所以4w π=,故函数的解析式为()cos()2sin 2222f x x x πππ=++=-+,所以()()()()1232016f f f f +++[sin sin(2)sin(3)sin(2015)sin(2016)]2201604032403222222πππππ-+⨯+⨯++⨯+⨯+⨯=+= .考点:二倍角公式;三角函数的图象与性质.【方法点晴】本题主要考查了二倍角公式、三角函数sin()y A wx ϕ=+的图象与性质,着重考查分析问题、解答问题的能力和运算能力,属于中档试题,本题的解答中,由函数的最值求出A 的值,在根据相邻两条对称轴间的距离,求出函数的周期,确定w 的值,根据特殊点的坐标求解ϕ的值,确定函数的解析式,再利用三角函数的周期性求解相应式子的值. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,且首项()113,3n n n a a S n N ++≠=+∈. (1)求证:{}3nn S -是等比数列;(2)若{}n a 为递增数列,求1a 的取值范围.【答案】(1)证明见解析;(2)()9,-+∞.试题解析:(1)()13nn n a S n N ++=+∈ ,()1+1+1=233=23n n n n n n n SS S S +∴+∴--13a ≠ ,∴数列3n n S -是公比为2,首项为13a -的等比数列;(2)由(1)得()11332nn n S a --=-⨯,()11323n n n S a -=-⨯+2n ≥时,()21113223n n n n n a S S a ---=-=-⨯+⨯{}n a 为递增数列,2n ∴≥时,()()1211132233223n n n n a a ----⨯+⨯>-⨯+⨯2n ∴≥时,2213212302n n a --⎡⎤⎛⎫⨯+->⎢⎥ ⎪⎝⎭⎢⎥⎣⎦12119,3a a a a ∴>-=+> ,1a ∴的取值范围是()9,-+∞.考点:等比数列的定义及等比数列的性质的应用.18.(本小题满分12分)去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[)[)[)[)60,70,70,80,80,90,90,100分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为,,,A B C D 四个等级,等级评定标准如 下表所示.(1)估计该商业集团各连锁店评估得分的众数和平均数;(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A 等级的概率.【答案】(1)75,75.4;(2)35.(2)A 等级的频数为250.082⨯=,记这两家分别为,;a b B 等级的频数为250.164⨯=,记这四家分别为,,,c d e f ,从这6家连锁店中任选2家,共有()()()()()(),,,,,,,,,,,,a b a c a d a e a f b c()()()()()()()()(),,,,,,,,,,,,,,,,,b d b e b f c d c e c f d e d f e f ,共有15种选法.其中至少选1家A 等级的选法有()()()()()(),,,,,,,,,,,,a b a c a d a e a f b c ()()(),,,,,b d b e b f 共9种,则93155P ==,故至少选一家A 等级的概率为35.考点:频率直方图、众数与平均数的计算;古典概型及其概率的计算.19.(本小题满分12分)如图,在斜三棱柱111ABC A B C -,侧面11ACC A 与侧面11CBBC 都是菱形,11160,2ACC CC B AC ∠=∠=︒=.(1)求证:11AB CC ⊥;(2)若1AB =11A BB C C -的体积.【答案】(1)证明见解析;(2)2.试题解析:(1)连接11,AC CB 则1ACC ∆和11BCC ∆皆为正三角形. 取1CC 中点O ,连接1,OA OB则1111,,CC OA CC OB OA OB O ⊥⊥⋂=又 则1CC ⊥平面1OAB ,则11CC AB ⊥;(2)由(1)知,1OA OB =1AB所以1OA OB ⊥,又111,OA CC OB CC O ⊥⋂=,所以OA ⊥平面11BB C C则111sin 60BB C C S BC BB =⨯︒=菱形故1111123A BBC C BB C C V S OA -=⨯=菱形.考点:直线与平面垂直的判定与证明;几何体的体积的计算.20. (本小题满分12分)设抛物线21:4C y x =的准线与x 轴交于点1F ,焦点2F ;椭圆2C 以1F 和2F 为焦点,离心率12e =.设P 是1C 与2C 的一个交点. (1)椭圆2C 的方程;(2)直线l 过2C 的右焦点2F ,交1C 于12,A A 两点,且12A A 等于12PFF ∆的周长,求l 的方程.【答案】(1)22143x y +=;(2))1y x =-或)1y x =-.试题解析:(1)由题得, ()()121,0,1,0F F -是椭圆2C 的两焦点,故半焦距为1,再由离心率为12知,长半轴长为2,从而2C 的方程为22143x y +=;考点:椭圆的标准方程及其简单的几何性质;直线与圆锥曲线综合应用.【方法点晴】本题主要考查了椭圆的标准方程及其简单的几何性质、直线与圆锥曲线综合应用,解题是要认真审题,注意椭圆的弦长公式的合理运用,着重考查了推理与运算能力和分类讨论思想的应用,本题的解答中,利用12PF F ∆的周长为6,得出弦长,可设l 的方程为(1)y k x =-与1C 的方程联立,由此利用弦长公式,即可求解直线的方程.21.(本小题满分12分)已知函数()ln f x ax x x =+的图像在点x e =(e 为自然对数的底数)处的切线的斜率为3. (1)求实数a 的值;(2)若()2f x kx ≤对任意0x >成立,求实数k 的取值范围;(3)当()1,n m m n N+>>∈m n>.【答案】(1)1a =;(2)[)1,+∞;3mn>. 【解析】试题分析:(1)求出()f x 的导数,由切线的斜率为3,解方程,即可得到a ;(2)()2f x kx ≤对任意0x >成立,得1ln x k x +≥对任意0x >成立,令()1ln xg x x+=,则问题转化为求()g x 的最大值,运用导数,求出导数,求得单调区间,得到最大值,令k 不小于最大值即可;(3)令()ln 1x xh x x =-,求出导数,判断其单调性,即得()h x 是(1,)+∞上的增函数,由1n m >>,则()()h n h m >,化简整理,即可得证.试题解析:(1)()()'ln ln 1f x ax x x fx a x =+∴=++又()f x 的图像在点x e =处的切线的斜率为3,()'3f e ∴=,即ln 131a e a ++=∴=(3)令()ln 1x x h x x =-,则()()'21ln 1x xh x x --=- 由(2)知,()()'1ln 0,0x x x h x ≥+>∴≥()h x ∴在区间()1,+∞上增函数,()()'1n m h n h m >>∴> ,即ln ln 11n n m mn m >-- ln ln ln min mn n n n mn m m ∴->-,即ln ln ln ln mn n m m mn m n n ∴+>+ln ln ln ln mn m mn n n m m n +>+,()()ln ln mnn m mn nm >()()mnn nmn m n >,mn>. 考点:利用导数研究曲线上某点切线方程;导数的综合应用和不等式的证明.【方法点晴】本题主要考查了导数的综合应用:求切线方程和求单调区间、极值和最值,考查不等式的恒成立问题转化为求解函数的最值,同时考查了与函数有关的不等式的证明,运用构造函数,求得导数的单调性,再由单调性证明,试题有一定的难度属于难题,着重考查了转化与化归的思想方法和构造思想的应用,对于此类问题平时要注意总结和积累. 请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆O 是ABC ∆的外接圆,,AB BC AD =是BC 边上的高,AE 是圆O 的直径. (1)求证:AC BC AD AE ⋅=⋅;(2)过点C 作圆O 的切线交BA 的延长线于点F ,若4,6AF CF ==,求AC 的长.【答案】(1)证明见解析;(2)103.(2)因为FC 为圆的切线,所以2FC FA FB =⋅又4,6AF CF ==,从而解得9,5BF AB BF AF ==-= 因为,ACF CBF CFB AFC ∠=∠∠=∠, 所以AFC CFB ∆∆∽,所以AF AC CF CB =,即103AF CB AC CF ⋅==. 考点:圆的性质及与圆相关的比例线段.23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,O 为极点,点2,,24A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.(1)求经过点,,O A B 的圆C 的极坐标方程;(2)以极点为坐标原点,极轴为x 的正半轴建立平面直角坐标系,圆D 的参数方程为1cos 1sin x a y a θθ=-+⎧⎨=-+⎩(θ 是参数,a 为半径),若圆C 与圆D 相切,求半径a 的值.【答案】(1)4πρθ⎛⎫=-⎪⎝⎭;(2)a =a =试题解析:(1)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,∴点()()()0,0,0,2,2,2O A B ,过,,O A B 三点的圆C 的普通方程是()()22112x y -+-=即22220x x y y -+-=,化为极坐标方程为22cos 2sin ρρθρθ=+即4πρθ⎛⎫=-⎪⎝⎭; (2)圆D 的参数方程1cos 1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数,a 为半径)化为普通方程是()()22211x y a +++=则圆C 与圆D 的圆心距CD ==,当圆C 与圆D 相切时,则有2a +=2a -=解得a =a =考点:参数方程与普通方程的互化;简单曲线的极坐标方程. 24.(本小题满分10分)选修4-5:不等式选讲已知函数()(),4f x x g x x m ==--+. (1)解关于x 的不等式()20g f x m +->⎡⎤⎣⎦;(2)若函数()f x 的图像恒在函数()g x 图像的上方,求实数m 的取值范围. 【答案】(1)()()6,22,6--⋃;(2)(),4-∞.考点:函数的恒成立;函数的值;绝对值不等式的求解.。
2018届河北省衡水中学高三第十七次模拟考试数学(理)试题(解析版)

2018届河北省衡水中学高三第十七次模拟考试数学(理)试题一、单选题1.设集合,集合,则集合()A. B. C. D.【答案】C【解析】分析:解指数不等式可得集合A,求出函数的定义域可得集合B,然后再求出即可.详解:由题意得,,∴,∴.故选C.点睛:本题考查指数函数单调性的应用,对数函数的定义域及集合的运算,考查学生的运算能力及应用所学知识解决问题的能力,属基础题.2.已知复数 (为虚数单位),若复数的共轭复数的虚部为, 则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:先化简复数,根据的共轭复数的虚部为求出复数,再根据复数的几何意义确定复数在复平面内对应的点的位置.详解:由题意得,∴ ,又复数的共轭复数的虚部为,∴,解得.∴,∴复数在复平面内对应的点位于第一象限.故选A.点睛:本题以复数的运算为基础,考查复数的基本概念和复数的几何意义,解题的关键是根据复数的共轭复数的虚部为求得实数,由此得到复数,然后再根据复数对应的点的坐标确定其所在的象限.3.若,,,的平均数为3,方差为4,且,,则新数据,的平均数和标准差分别为()A. -4 -4B. -4 16C. 2 8D. -2 4【答案】D【解析】分析:根据样本的平均数、方差的定义计算即可.详解:∵,,,的平均数为3,方差为4,∴,.又,∴,,∴新数据,的平均数和标准差分别为.故选D.点睛:与平均数和方差有关的结论(1)若x1,x2,…,x n的平均数为,那么mx1+a,mx2+a,…,mx n+a的平均数为;(2)数据x1,x2,…,x n与数据x′1=x1+a,x′2=x2+a,…,x′n=x n+a的方差相等,即数据经过平移后方差不变;(3)若x1,x2,…,x n的方差为s2,那么ax1+b,ax2+b,…,ax n+b的方差为a2s2.4.已知双曲线的左焦点为抛物线的焦点,双曲线的渐近线方程为,则实数()A. 3B.C.D.【答案】C【解析】抛物线的焦点坐标为,则双曲线中,由双曲线的标准方程可得其渐近线方程为,则:,求解关于实数a,b的方程可得:.本题选择C选项.5.运行如图所示程序,则输出的的值为()A. B. C. 45 D.【答案】B【解析】程序是计算,记,,两式相加得.故,故选.6.已知,,则的值为()A. B. C. D.【答案】A【解析】分析:根据同角三角函数关系由求得,于是可得,然后再根据两角和的余弦公式求解即可.详解:∵,,∴,∴,.∴.故选A.点睛:本题属于给值求值的问题,考查同角三角函数关系、倍角公式、两角和的余弦公式的运用,考查学生的计算能力和公式变形能力.7.如图是某几何体的三视图,则该几何体的体积为( )A. 6B. 9C. 12D. 18【答案】B【解析】由已知中的三视图可得:该几何体是两个三棱柱形成的组合体,下部的三棱柱,底面面积为:14362⨯⨯=,高为1,体积为:6;上部的三棱柱,底面面积为:12×2×3=3,高为1,体积为:3;故组合体的体积V=6+3=9,故选:B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8.已知,点在线段上,且的最小值为1,则 ()的最小值为()A. B. C. 2 D.【答案】B【解析】分析:由可得点O在线段的垂直平分线上,由结合题意可得当C是的中点时最小,由此可得与的夹角为,故的夹角为.然后根据数量积可求得,于是可得所求.详解:∵,∴点O在线段的垂直平分线上.∵点在线段上,且的最小值为1,∴当C是的中点时最小,此时,∴与的夹角为,∴的夹角为.又,当且仅当时等号成立.∴的最小值为3,∴的最小值为.故选B.点睛:求解平面向量最值或范围问题的常见方法(1)利用不等式求最值,解题时要灵活运用不等式.(2)利用函数思想求最值,常利用“平方技巧”找到向量的模的表达式,然后利用函数思想求最值,有时也常与三角函数知识结合求最值.(3)利用数形结合思想求最值,利用平面向量“形”的特征,挖掘向量的模所表示的几何意义,从图形上观察分析出模的最值.9.函数的图像大致是()A. B.C. D.【答案】A【解析】分析:先判断函数为奇函数,可排除选项C;然后求导可得函数在上单调递增,可排除B和D,从而可得答案.详解:由题意可得,∵,∴函数为奇函数,其图象关于原点对称,∴排除选项C.又,∴当时,单调递增,∴排除选项B和D.故选A.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.10.若抛物线的焦点是,准线是,点是抛物线上一点,则经过点、且与相切的圆共()A. 0个B. 1个C. 2个D. 4个【答案】D【解析】分析:由于圆经过点、且与相切,故圆心在线段的垂直平分线上,且圆心到点和准线的距离相等,故圆心在抛物线上.结合条件可得满足条件的点有两个,且每条线段的垂直平分线与抛物线都有两个交点,故可得圆心有4个.详解:因为点在抛物线上,所以可求得.由于圆经过焦点且与准线l相切,所以由抛物线的定义知圆心在抛物线上.又圆经过抛物线上的点M,所以圆心在线段FM的垂直平分线上,故圆心是线段FM的垂直平分线与抛物线的交点.结合图形知对于点M(4,4)和(4,−4),线段FM的垂直平分线与抛物线都各有两个交点.所以满足条件的圆有4个.故选D.点睛:解答本题要抓住两点:一是圆心在线段FM的垂直平分线上,二是圆心到焦点和准线的距离相等,结合抛物线的定义可得圆心应在抛物线上,故可得圆心的个数取决于点M的个数,且每条线段FM的垂直平分线与抛物线都各有两个交点.11.设函数.若,且,则的取值范围为()A. B. C. D.【答案】B【解析】分析:采用取特殊值的方法求解,画出函数的图象,根据图象找到使得且的的值,并由此得到所求的范围.详解:(特殊值法)画出的图象如图所示.结合图象可得,当时,;当时,,满足.由此可得当,且时,.故选B .点睛:本题考查三角函数图象的画法和图象的应用,考查学生运用数形结合解决问题的能力,有一定难度.解题的关键值确定满足条件的临界位置,并在此基础上得到满足条件的最小值,然后将此结论推广可得所求的范围.12.对于函数()f x 和()g x ,设(){}0x f x α∈=,(){}0x g x β∈=,若存在,αβ,使得1αβ-≤,则称()f x 与()g x 互为“零点相邻函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点相邻函数”,则实数a 的取值范围是( )A .[]2,4B .72,3⎡⎤⎢⎥⎣⎦C .7,33⎡⎤⎢⎥⎣⎦D .[]2,3【答案】D【解析】试题分析:根据题意,1α=,满足()f x 与()g x 互为“零点相邻函数”, 02β≤≤,又因为函数()23g x x ax a =--+图像恒过定点(1,4)-,要想函数在区间[0,2]上有零点,需22(0)30()30242g a a a a g a =-+≥⎧⎪⎨=--+≤⎪⎩,解得23a ≤≤,故选D . 【考点】新定义,函数零点问题.二、填空题13.若数列是等差数列,对于,则数列也是等差数列.类比上述性质,若数列是各项都为正数的等比数列,对于时,数列也是等比数列,则【答案】【解析】试题分析:等差数列中的和类别为等比数列中的乘积,是各项的算术平均数,类比等比数列中是各项的几何平均数,因此【考点】归纳类比点评:类比题目要通过比较给定的已知条件与所要类比的结论之间的相似点,通过相似点找到其满足的性质14.函数()y f x =的图象在点()()2,2M f处的切线方程是28y x =-,则()()'22f f =__________.【答案】12-【解析】 由导数的几何意义可知()22f '=,又()22284f =⨯-=-,所以()()12f x f x =-'.15.已知是区间上的任意实数,直线与不等式组表示的平面区域总有公共点,则直线的倾斜角的取值范围为__________.【答案】【解析】分析:先画出当和时不等式组表示的平面区域,根据题意可知只要该区域包含在不等式组表示的平面区域内即可满足条件,由此可得的取值范围,进而得到直线的倾斜角的范围. 详解:由题意直线直线的方程即为,∴直线的斜率为,且过定点.画出不等式组表示的可行域如图所示.由解得,故点,此时.当时,直线的方程为,即,由解得,故点,如图所示.结合图形可得要使直线与不等式组表示的平面区域总有公共点,只需满足.∴直线的斜率∴直线的倾斜角的取值范围为.点睛:本题考查不等式组表示的平面区域的画法,考查数形结合在解题中的应用以及学生运用所学知识解决问题的能力.解答本题的关键是对题意的正确理解和准确画出图形.16.设锐角三个内角所对的边分别为,若,则的取值范围为__________.【答案】【解析】分析:由题意得,然后根据正弦定理得,结合为锐角三角形可得,于是可得的取值范围.详解:由及余弦定理得,∴,∴.又为锐角三角形,∴.由正弦定理得,∴.由得,∴,∴.∴的取值范围为.点睛:解答本题时容易出现的错误是忽视“为锐角三角形”这一条件,导致角的取值范围增大而出现错误的结果.三、解答题17.已知数列{}n a为公差不为0的等差数列,23a=,且21log a,23log a,27log a 成等差数列.(1)求数列{}n a的通项公式;(2)若数列{}n b满足11nn nba a+=,求数列{}n b的前n项和n S.【答案】(1) =1na n+;(2)()22nnSn=+.【解析】试题分析:(1)由题意可得数列的公差为1d=,则数列{}n a的通项公式是=1na n+;(2)结合(1)中求得的通项公式裂项求和可得数列{}n b的前n项和()22n nS n =+.试题解析:(1)设数列{}n a 的公差为d由23a =,且21log a , 23log a , 27log a 成等差数列,得2321272log log log a a a =+, 即()()()2222log 3log 3log 35d d d +=-++, 得()()()2222log 3log 335d d d +=-+,得()()()23335d d d +=-+,解得1d =或0d =(舍去).所以数列{}n a 的通项公式为()()2=23211n a a n d n n +-⋅=+-⋅=+. (2)因为()()11111=1212n n n b a a n n n n +==-++++, 所以1111111111112334451112n S n n n n n n =-+-+-++-+-+--+++ ()112222n n n =-=++. 点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18.在测试中,客观题难题的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;(3)定义统计量,其中为第题的实测难度,为第题的预估难度().规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.【答案】(1)见解析;(2);(3)见解析.【解析】分析:(1)根据统计表中的数据,可得每道题实测的答对人数及相应的实测难度表,由表可知估计120人中有人答对第题;(2)这人中随机抽取2人,不同的抽取方法有10种,其中恰好有1人答对第题共6种,由古典概型概率公式可得结果;(3)根据方差公式可得,从而可得该次测试的难度预估是合理的.详解:(1)每道题实测的答对人数及相应的实测难度如下表:所以,估计120人中有人答对第5题.(2)记编号为的学生为,从这5人中随机抽取2人,不同的抽取方法有10种.其中恰好有1人答对第5题的抽取方法为,,,,,,共6种.所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为.(3)为抽样的10名学生中第题的实测难度,用作为这120名学生第题的实测难度.因为,所以,该次测试的难度预估是合理的.点睛:本题主要考查古典概型概率公式的应用,属于难中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生;(3)利用组合知识解答.19.四棱锥中,面,底面是菱形,且,,过点作直线,为直线上一动点.(1)求证:;(2)当面面时,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】分析:(1)由平面得,又在菱形中有,故得平面,于是得到.(2)结合题意可得平面,故.根据面面得到,然后根据几何图形的计算得到,于是,,又,由此可得所求的三棱锥的体积.详解:(1)∵,∴直线确定一平面.∵平面,平面,∴.由题意知直线在面上的射影为,又在菱形中有,,∴平面,∵平面,∴.(2)由题意得和都是以为底的等腰三角形,设和的交点为,连接、,则,,又,∴平面.又平面面,平面面,∴面,∴.在菱形中,,,∴.在中,.在中,设,则.∴在中,,又在直角梯形中,,故,解得,即.∴,∴.点睛:(1)用空间中的线面关系的有关定理证明时,要注意解题的规范性,对于定理中的关键词语在证题过程中要体现出来.(2)在求解一些不规则的几何体的体积时,常常需要用到分割法,将不规则的几何体的体积转化为规则的几何体的体积来求解.20.设点、的坐标分别为,直线相交于点,且它们的斜率之积是. (1)求点的轨迹的方程;(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由.【答案】(1);(2)不存在.【解析】试题分析:(1)根据题意,得,整理得的轨迹为;(2)联立,化为:,,得到韦达定理,求出弦长,再求出到直线的距离,写出面积方程,解出,但此时直线方程过、,这两点由(1)知是取不到的,所以不存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017~2018学年度高三年级十七模考试数学试卷(文) 第Ⅰ卷(共60分)一、选择题:(每小题5分,共60分.下列每小题所给选项只有一个项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合{041}x A x =<,集合()2{|lg 2}B x y x x ==--,则集合()R AC B =( )A . (]02,B .[)0,+∞C .[)1,-+∞D .()(),10,∞-+∞2. 已知复数3a i z a i +=+- (a R ∈为虚数单位),若复数z 的共轭复数的虚部为12-, 则复数z 在复平面内对应的点位于( )A . 第一象限B .第二象限C . 第三象限D .第四象限 3. 若1x ,2x ,,2018x 的平均数为3,方差为4,且()22i i y x =--,1i x = ,2x ,,2018x ,则新数据1y ,2y 的平均数和标准差分别为( )A . -4 -4B . -4 16C . 2 8D . -2 44. 已知双曲线22221(0,0)x y a b a b-=>>的左焦点为抛物线212y x =-的焦点,双曲线的渐近线方程为y =,则实数a =( )A . 3B ..5. 运行如图所示程序,则输出的S 的值为( ) A . 1442 B . 1452 C. 45 D .14626. 已知sin α=(0,)2a π∈,则cos 26a π⎛⎫+ ⎪⎝⎭的值为( )A .10 B.10C. 410- D.410 7. 如图是某几何体的三视图,则该几何体的体积为( )A .6B . 9 C. 12 D .188. 已知2OA OB ==,点C 在线段AB 上,且OC 的最小值为1,则OA tOB - (t R ∈)的最小值为()A9. 函数22sin 33y ([,0)(0,])1441xx xππ=∈-+的图像大致是( ) A . B .C. D .10. 若抛物线24y x =的焦点是F ,准线是l ,点()4M m 是抛物线上一点,则经过点F 、M 且与l 相切的圆共( )A . 0个B .1个 C. 2个 D .4个 11. 设函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭.若120x x <,且()()120f x f x +=,则21x x -的取值范围为( ) A . (,)6π+∞ B . (,)3π+∞ C. 2(,)3π+∞ D .4(,)3π+∞ 12. 对于函数()f x 和()g x ,设(){}/0x f x α∈=;(){/0}B x g x ∈=,若所有的α,β,都有1αβ-≤,则称()f x 和()g x 互为“零点相邻函数”.1 ()2x f x e x -=+-与()23g x x ax a =--+与互为“零点相邻函数”,则实数a 的取值范围是( ) A . []2,4 B .72,3⎡⎤⎢⎥⎣⎦ C. 7,33⎡⎤⎢⎥⎣⎦D .[]2,3第Ⅱ卷(非选择题90分)二、填空题(每题5分,共20分,把每小题的答案填在答卷纸的相应位置) 13. 若数列{}n a 是等差数列,对于121()n n b a a a n=+++,则数列{}n b 也是等差数列.类比上述性质,若数列{}n c 是各项都为正数的等比数列,对于0n d >时,数列{}n d 也是等比数列 .14. 函数()y f x =的图象在点(2,(2))M f 处的切线方程是28y x =-,则(2)(2)f f ' . 15. 已知a 是区间[]1,7上的任意实数,直线1:220l ax y a ---=与不等式组830x m x y x y ≥⎧⎪+≤⎨⎪-≤⎩表示的平面区域总有公共点,则直线:30(,)l mx y n m n R -+=∈的倾斜角α的取值范围为 .16. 设锐角ABC ∆三个内角A B C 、、所对的边分别为a b c 、、,若)cos cos 2sin ,1a B b A c C b +==,则c 的取值范围为 .三、解答题(共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 为公差不为0的等差数列,23a =,且21log a ,23log a ,27log a 成等差数列(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n S . 18. 在测试中,客观题难题的计算公式为ii R P N=,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率; (3)定义统计量()()()22211221]n n S P P P P P P n ⎡⎤=-+-++-⎣⎦,其中1P 为第i 题的实测难度,i P 为第i 题的预估难度(1,2,,i n =).规定:若0.05S =,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.19. 四棱锥P ABCD -中,PD ⊥面ABCD ,底面ABCD 是菱形,且2PD DA ==,60CDA ∠=︒,过点B 作直线//l PD ,Q 为直线l 上一动点.(1)求证:QP AC ⊥;(2)当面PAC ⊥面QAC 时,求三棱锥Q ACP -的体积.20. 设点A 、B 的坐标分别为()2,0(2,0)-,直线,AM BM 相交于点M ,且它们的斜率之积是12-. (1)求点M 的轨迹C 的方程;(2)直线:1l y kx =+与曲线C 相交于,D E 两点,若(0,2)Q 是否存在实数k ,使得DEQ ∆的面积为43?若存在,请求出k 的值;若不存在,请说明理由. 21. 已知函数()ln ,f x x ax a a R =-+∈. (1)求函数()f x 的单调区间;(2)当1x ≥时,函数()()()1ln g x x f x x =+-的图象恒不在x 轴的上方,求实数a 的取值范围.二选一:请考生在22、23两题中任选一题作答,并在相应题号前的方框中涂黑. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线C的参数方程为11x y αα⎧=-+⎪⎨=+⎪⎩ (α为参数,2a <)(Ⅰ)当2a =-时,若曲线C 上存在,A B 两点关于点(0,2)M 成中心对称,求直线AB 的斜率;(Ⅱ)在以原点为极点,x轴正半轴为极轴的极坐标系中,极坐标方程为sin 04πρθ⎛⎫++= ⎪⎝⎭的直线l 与曲线C 相交于,C D 两点,若4CD =,求实数a 的值. 23.选修4-5:不等式选讲已知函数()5f x x =-,()523g x x =-- (Ⅰ)解不等式()()f x g x <;(Ⅱ)设()()22-312F f x y g y =++,求证:2F ≥.试卷答案一、选择题1-5: CADCB 6-10: ABBAD 11、12:BB 二、填空题12- 15.[0,](,)42πππ16.2⎛⎝三、解答题17.(1)设数列{}n a的公差为d由23a=,且21log a,23log a,27log a成等差数列,得23 2 1272log log loga a a=+,即()()()2222log3103log35d g d d+=-++,得()()2222log3log3(35)d d d+=-+,得()()()23335d d d+=-+,解得1d=或0d=(舍去)所以数列{}n a的通项公式为()()223211na a n d n n=+-⋅=+-⋅=+.(2)因为11111(1)(2)12nn nba a n n n n+===-++++所以1111111111112334451112nSn n n n n n=-+-+-++-+-+--+++11222(2)nn n=-=++18.(1)每道题实测的答对人数及相应的实测难度如下表:所以,估计120人中有1200.224⨯=人答对第5题.(2)记编号为i的学生为()1,2,3,4,5iA i=,从这5人中随机抽取2人,不同的抽取方法有10种.其中恰好有1人答对第5题的抽取方法为12(,)A A,13(,)A A,24(,)A A,25(,)A A,25(,)A A ,45(,)A A ,共6种.所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为63105P ==. (3)1P 为抽样的10名学生中第i 题的实测难度,用i P 作为这120名学生第i 题的实测难度.()()()()222221S (0.80.9)0.80.80.70.70.70.60.20.40.0125⎡⎤=-+-+-+-+-=⎣⎦因为0.0120.05S =<,所以,该次测试的难度预估是合理的.19. (1)由题意知直线QP 在面ABCD 上的射影为DB ,又菱形ABCD 中DB AC ⊥,由三垂线定理知QP AC ⊥.(2)PAC ∆和QAC ∆都是以AC 为底的等腰三角形,设AC 和BD 的交点为O ,连接OP 、OQ ,则OP AC ⊥,OQ AC ⊥,∴AC ⊥面POQ ,面PAC ⊥面QAC 知:OP OQ ⊥.在Rt POD ∆中,OP =,设QB x =,则Rt OBQ ∆中,OQ =直角梯形PDBQ 中,PQ ==POQ ∆中,PQ ==解得32x =,即32QB =.同时2OQ =1224POQ S ∆==∴13Q ACP A POQ C POQ POQ V V V S AC ---∆=+=⋅=20.(1)设点M 的坐标为(),x y ,因为点A 的坐标是()2,0,所以直线AM 的斜率(2)2AM y k x x =≠-+同理,直线BM 的斜率(2)2BM yk x x =≠-所以1222y y x x ⋅=-+-化简得点M 的轨迹方程C 为()221242x y x +=≠± (2)设()11,D x y ,()22,E x y 联立22124y kx x y =+⎧⎨+=⎩,化为:()2212420k x kx ++-= 0∆>,∴122412k x x k -+=+,122212x x k -=+, ∴DE ===Q到直线l 的距离d =1122QAB S d DE ∆==43==,解得:214k =,解得12k =±,因为当12k =时直线l 过点()2,0-, 当12k =-时直线l 过点()2,0,因此不存在实数k ,使得DEQ ∆的面积为43. 21.(1)()f x 的定义域为(0,)+∞,()11axf x a x x-'=-=①当0a ≤时,则()0f x '>,所以()f x 在(0,)+∞上单调递增; ②当0a >时,则由()0f x '>知10x a <<,由()0f x '<知1x a>, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 的单调递增区间为(0,)+∞,当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭. (2)由题意知:()()1ln 0x f x x +-≤恒成立,而()()()()()21ln 01ln ln 0ln 10x f x x x x ax a x x x a x +-≤⇔+-+-≤⇔--≤, 由()()()2ln 11g x x x a x x =--≥,得:()'ln 12g x x ax =+-.令()ln 12h x x ax =+-,则112()2ax h x a x x-'=-=, ①若0a ≤,()0h x '>,() g x '在[1,)+∞上单调递增,故()'(1)120g x g a '≥=-≥, 所以()g x 在[1,)+∞上单调递增,所以()(1)0g x g ≥=,从而()2ln 10x x a x --≥,不符合题意;②若102a <<,当11,2x a ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()0g x '>在11,2a ⎛⎫ ⎪⎝⎭上单调递增, 从而()(1)120g x g a '>=->,所以()g x 在11,2a ⎡⎫⎪⎢⎣⎭上单调递增,所以()(1)0g x g ≥=, 从而在11,2a ⎡⎫⎪⎢⎣⎭上()2ln 10x x a x --≥,不符合题意; ③若12a ≥,()0h x '≤在[1,)+∞上恒成立, 所以()g x '在[1,)+∞上单调递减,()(1)120g x g a ''≤=-≤, 从而()g x 在[1,)+∞上单调递减,所以()(1)0g x g ≤=,所以2ln (1)0x x a x --≤恒成立,综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.22.(Ⅰ)由题意,得曲线C 的参数方程为12cos 12sin x y αα=-+⎧⎨=+⎩(α为参数),消去参数,得()()22114x y ++-=,圆心C 的坐标为()1,1-,因为曲线C 上存在,A B 两点关于点()0,2M 成中心对称,所以CM AB ⊥,则由2110(1)CM k -==--,得直线AB 的斜率11AB CMk k =-=-.(Ⅱ)消去参数,得曲线C 的普通方程为()()22112x y a ++-=-,圆心C 的坐标为()1,1-l 的极坐标方程可化为sin cos 20ρθρθ++=,其直角坐标方程为20x y ++=,所以,2222a +=-,∴4a =-.23.(Ⅰ)原不等式即5235x x -+-<,∴55235x x x ≥⎧⎨-+-<⎩或3525235x x x ⎧≤≤⎪⎨⎪-+-<⎩或325325x x x ⎧<⎪⎨⎪-+-<⎩, 所以x φ∈或332x ≤<或312x <<,即13x <<,原不等式的解集为()1,3. (Ⅱ)()2222523123556215F x y y x y y =+-++--=+-++-()()22222256215375322x y y x y x y ≥+-++-=+++-=+++≥。