数控机床机械系统(工件的定位)
数控机床技术中的工件定位与调整方法

数控机床技术中的工件定位与调整方法工件定位与调整方法在数控机床技术中扮演着至关重要的角色。
准确的工件定位和调整是保证加工质量和工艺精度的关键步骤。
本文将介绍数控机床技术中常用的工件定位与调整方法,并探讨其原理与应用。
工件定位是指将待加工的工件精确定位在数控机床工作台或刀具上,确保工件在加工过程中的稳定性和精度。
常用的工件定位方法包括夹持定位、对刀定位和基准面定位。
夹持定位是最常见的工件定位方法,它通过夹具将工件固定在数控机床工作台上。
夹具的设计和制作需要考虑到工件的形状、尺寸和加工需求,以确保夹紧力的均匀分布和夹紧的稳定性。
常见的夹具类型包括机械夹具、气动夹具和液压夹具。
选择合适的夹具类型要根据工件的材质、形状和加工过程中的力学要求。
对刀定位是数控机床上的一项重要工作。
通过调整刀具与工件之间的相对位置,确保切削刃与工件表面之间的合适间隙,从而保证加工精度。
常见的对刀定位方法包括机械对刀和光电对刀。
机械对刀通过调整刀具位置和刀具长度进行,需要借助专用对刀仪器,准确定位刀具到工件表面。
光电对刀则是利用光电传感器来检测刀具与工件的距离,通过比较预设值和实际值来进行调整。
基准面定位是通过机床上的基准面来确定工件的位置。
通常情况下,数控机床上的基准面可以是工作台上的刀具孔、工件孔或者机械定位孔。
在加工过程中,将工件与基准面接触,通过位置和角度的调整,确保工件与加工轴线或平面的相对位置精确。
基准面定位方法对于加工复杂的形状和高精度的工件非常重要,可以保证整个加工过程的准确性。
工件调整是指在加工过程中对工件位置、姿态和形状的微调。
工件调整的目的是保证工件的尺寸、形状和表面质量达到设计要求。
常用的工件调整方法包括前置调整、后置调整和中心调整。
前置调整是指在工件加工之前对其进行位置和姿态的微调。
通过测量和调整,使工件与刀具的相对位置达到设计要求。
前置调整可以通过数控机床上的调整装置如调整螺杆、调整块等来实现。
后置调整是指在工件加工之后对其位置和形状进行微调。
CNC机床坐标系的确定及工件坐标系

CNC机床坐标系的规定及工件坐标系1进给运动与坐标系数控加工必须准确描述进给运动。
加工过程中,刀具相对工件运动轨迹和位置决定了零件加工的尺寸、形状。
数控加工就是让数控机床按照数控程序所描述的刀具相对工件运动的轨迹进行切削运动,从而加工出零件的表面形状。
把刀具相对工件的进给运动轨迹简称刀轨,数控机床必须确切知道刀轨,编程人员必须准确描述表达刀轨。
刀轨一般由直线段或圆弧段组成,线段起点、终点、交点、切点的位置是表达刀轨的最主要信息。
数学中,点位可以在坐标系里定义为坐标值。
如果在数控机床上规定建立一个笛卡儿直角坐标系的数控机床坐标系,就可以方便地在机床或在工件的图样上描述刀轨。
CNC编程中,使用数字来“翻译”图纸,将图纸的尺寸变成刀轨。
国际数控标准I S0841规定数控机床标准坐标系采用右手笛卡儿坐标系,如图1所示,用右手笛卡儿坐标系来规定数控机床标准坐标系。
图1右手笛卡儿坐标系规定数控机床标准坐标系2机床标准坐标系规定1.机床坐标系基本规定⑴刀具相对工件运动的原则编程人员编程时可以假定机床加工时工件是静止的。
如果能假定刀具是相对于静止的工件进行进给运动,那么,编程人员可以不必考虑具体机床在加工时是刀具移向工件,还是工件移向刀具,可直接依据零件图样,确定机床加工过程及编程。
⑵机床进给运动的名称、方向规定机床进给运动的坐标轴向用X、Y、Z表示。
表示机床进给运动的坐标系中,X,Y,Z轴向的关系符合右手直角笛卡儿坐标系规则,用右手的拇指、食指和中指分别代表X,Y,Z三轴,三个手指互相垂直,所指方向分别为X,Y,Z轴的正方向。
如图1。
围绕平行X、Y、Z旋转坐标轴的圆周进给坐标轴分别用A,B,C表示。
工件在数控机床上的定位与装夹

精基准的选择
Ø 在实际生产中,经常使用的统1基准形式有: 1 轴类零件常使用两顶尖孔作统1基准; 2 箱体类零件常使用1面两孔 1个较大的平面和两个距离较
远的销孔 作统1基准; 3 盘套类零件常使用止口面 1端面和1短圆孔 作统1基准; 4 套类零件用1长孔和1止推面作统1基准
Ø 采用统1基准原则好处: 1 有利于保证各加工表面之间的位置精度; 2 可以简化夹具设计,减少工件搬动和翻转次数
a)
b)
c)
图5-2 粗基准选择比较
粗基准的选择
工序1
工序1
工序2
工序2
图5-3 床身粗基准选择比较
重要表面原则
为保证重要表面的加工余量均匀,应选择重要加 工面为粗基准
精基准的选择原则
应保证加工精度和工件安装方便可靠
基准重合原则 基准统1原则 自为基准原则
选用设计基准作为定位基准,避免因基 准不重合带来的误差
课堂讨论
数控车床的装夹找正
Ø 打表找正 通过调整卡爪,使得工件坐标系 的Z轴与数控车床的主轴回转中心轴线重合
Ø 单件的偏心工件 Ø 使用3爪自动定心卡盘装夹较长的工件 Ø 3爪自动定心卡盘的精度不高
7、数控铣床的装夹
通用夹具的选用
平口钳分固定侧与活动侧,固定侧与底面 作为定位面,活动侧用于夹紧
选择平整、光洁、面积大、无飞边毛刺和浇 冒口的表面以便定位准确、夹紧可靠
作为粗基准的表面粗糙且不规则,多次使用 无法保证各加工表面的位置精度
粗基准的选择
◆保证相互位置要求原则——如果首先要求保证工件上加 工面与不加工面的相互位置要求,则应以不加工面作为粗基 准 ◆余量均匀分配原则——如果首先要求保证工件某重要表 面加工余量均匀时,应选择该表面的毛坯面作为粗基准
数控车床坐标系与工件坐标系的关系

1. 数控车床坐标系数控车床坐标系是数控车床上固有的坐标系是用来确定工件坐标系的基本坐标系,是确定刀具(刀架)位置的参考系,其建立在数控车床原点上。
数控车床坐标系各坐标和运动正方向按前述标准坐标系规定设定。
2. 数控车床原点数控车床都有有一个基准位置,称为机床原点,是数控车床制造商设定在数控车床上的一个物理位置,其作用是使数控车床与控制系统同步,建立测量数控车床运动坐标的起始点。
数控车床上有一些固定的基准线,如主轴中心线;还有固定的基准面。
数控车床原点一般设在主轴位于正极限位置时的基准点上,当数控车床的坐标轴手动返回各自的零点以后,用各坐标轴部件上基准线和基准面之间的给定距离来决定数控车床原点位置。
3. 数控车床参考点与数控车床原点相对应的还有一个机床参考点,它也是数控车床上的一个固定点,通常不同于数控车床原点,为了在数控车床工作时建立机床坐标系,要通过参数精确测量来确定。
一般,数控车床工作前,必须先进行回参考点动作,各坐标轴回零,才可以建立数控车床作坐标系。
参考点的位置可以通过调整机械挡块的位置来改变,改变后必须重新精确测量并修改车床参数。
4. 工件坐标系编程人员在编程时设定的坐标系,也称为编程坐标系,在进行数控编程时,首先要根据被加工零件的形状特点和尺寸,在零件图样上建立工件坐标系,使零件上的所有几何元素都有确定的位置,同时也决定了在数控加工时,零件在数控车床上的安放方向。
工件坐标系的建立,包括坐标原点的选择和坐标轴的确定。
5. 工件坐标系原点工件坐标系原点也称为工件原点或编程原点,一般用G92或G54~G59指令指定。
编程原点是由编程人员根据编程计算方便性、数控车床调整方便性、对刀方便性、在毛柸上位置确定的方便性等具体情况定义在工件上的几何基准点,一般为零件图上最重要的设计基准点。
不按成人员以零件图上的某一固定点为原点建立工件坐标系,编程尺寸均按工件坐标系中的尺寸给定,编程按工件坐标系进行。
数控机床的基本构造及工作原理

数控机床的基本构造及工作原理数控机床是一种利用计算机控制的自动化机械设备。
它是在传统机床的基础上发展而来,具有高精度、高效率和多功能特点。
下面将对数控机床的基本构造和工作原理进行详细介绍。
一、数控机床的基本构造1.机床主体部分:机床主体通常由床身、立柱、横梁和工作台等组成。
床身是整个机床的基础,用于安装和支撑其他各个部件。
立柱起支撑和导向作用,横梁用于支撑和传递载荷,工作台用于支撑工件。
2.传动系统:传动系统将电机产生的动力传递给刀具或工件,实现切削加工。
常见的传动方式包括电机驱动螺杆、齿轮传动和皮带传动等。
3.控制系统:控制系统是数控机床的核心部分,用于实现机床的自动化操作。
它由计算机、数控装置、伺服控制器和编码器等组成。
计算机是控制系统的主控部分,负责接收和处理指令。
数控装置将计算机的指令转化为电信号,控制伺服控制器和驱动器工作。
伺服控制器接收数控装置的信号,输出相应的电流给驱动器,驱动刀具或工件运动。
4.动力系统:动力系统提供机床的驱动力,通常由电机提供动力。
根据不同的切削工况和需求,可以采用不同类型的电机,如交流伺服电机、直流伺服电机和步进电机等。
5.刀具或工件换刀系统:刀具或工件换刀系统用于实现自动化换刀操作,提高生产效率。
根据不同的切削任务和工艺要求,可以配置不同的换刀方式,如手动换刀、自动换刀和带刀库的换刀等。
二、数控机床的工作原理1.编程:要进行数控加工,首先需要编写加工程序。
加工程序是由一系列指令组成的文本文件,用于描述切削路径、刀具换向、进给速度、切削深度等参数。
2.坐标系转换:在编写加工程序时,需要定义一个坐标系,用于描述刀具或工件的位置和运动。
通常使用直角坐标系或极坐标系。
在实际运行时,数控系统会将编程坐标转换为机床坐标,以控制机床的运动。
3.运动控制:数控系统根据加工程序生成的指令,通过伺服控制器控制电机运动,实现刀具或工件在空间中的运动。
伺服控制器接收数控装置发出的指令,输出相应的电流给驱动器,驱动电机旋转。
数控机床的坐标系统

3、编程坐标系(工件坐标系)
又称工件坐标系,是编程时用来定义工 件形状和刀具相对工件运动的坐标系。 工件装夹到机床上时,应使工件坐标系 与机床坐标系的坐标轴方向保持一致。
14
3、工件原点
工件原点(编程原点):由编程人员在工件上根据编程 方便性自行设定的编制加工程序的原点。
15
设置工件原点的一般原则
工件原点与设计基准或装配基准重合,以利于编程。
工件原点尽量选在尺寸精度高、表面粗糙度小的表 面上。
工件原点最好选在工件的对称中心上。
要便于测量和检验。
16
4
坐标轴方向的确定
(1)Z坐标
Z坐标的运动方向是由传递切削动力的主轴所 决定的,即平行于主轴轴线的坐标轴即为Z坐标,Z 坐标的正向为刀具离开工件的方向。
注意:1、当机床有几个 主轴时,选一个与工件装 夹面垂直的主轴为Z坐标。 2、当机床无主轴时,选 与工件装夹面垂直的方向 为Z坐标。(牛头刨床)
思考:立式铣床中钻头钻孔 时为Z轴的哪个方向?卧式 车床Z轴正方向如何确定?
③ 对于没有回转轴或没有回转工件的机床,X轴平行于主要切削方 向,且以该方向为正方向。(牛头刨床)
8
坐标轴方向的确定
(3)Y坐标
在确定X、Z坐标的正方向后,可以用根据X和Z坐标的方向,按照右 手直角坐标系来确定Y坐标的方向。
9
数控机床的两种坐标系
机床坐标系 机床原点
机床零点
编程坐标系 编程原点
10
1、机床原点
机床原点(机械原点):是指机床坐标系的原点,是机床 上的一个固定点.它不仅是在机床上建立工件坐标系的基准 点,而且还是机床调试和加工时的基准点.随着数控机床种类 型号的不同其机床原点也不同,通常车床的机床原点设在卡 盘端面与主轴中心线交点处,而铣床的机床原点则设在机床X、 Y、Z三根轴正方向的运动极限位置.
工件的定位原理及方法简介

工件以一面两孔定位时,为什么要用一个圆柱销和一个菱形销且菱形销怎么是限制一个自由度?一个零件有六个自由度,平移四向、上下两向、旋转两向。
一销可消除平移四向、旋转一向和向下移动三个自由度,再加一销会产生过定位问题,所以,改用菱形销,只留一个向上的自由度。
自由度有计算公式,点、线接触为高付,面接触为低付。
平面自由度计算公式F=3n-(2p+3q),n为自由构件数目(不含支架),p为低副数,q为高副数目数控机床上工件定位的原理在机械加工过程中为确保加工精度,在数控机床上加工零件时,必须先使工件在机床上占据一个正确的位置,即定位,然后将其夹紧。
这种定位与夹紧的过程称为工件的装夹。
用于装夹工件的工艺装备就是机床夹具。
1 工件定位的基本原理六点定位厦理工件在空问具有六个自由度,即沿x、y、z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度因此,要完全确定工件的位置,就必须消除这六个自由度,通常用六个支承点(即定位元件)来限制关键的六个自由度,其中每一个支承点限制相应的一个自由度,在如y平面上,不在同一直线上的三个支承点限制了工件的王、于三个自由度,这个平面称为主基准面;在平面上沿长度方向布置的两个支承点限制了工件的拿两个自由度,这个平面称为导向平面;工件在xoz乎面上,被一个支承点限制了,一个自由度,这个平面称为止动平面。
工件的六个自由度综上所述,若要使工件在央具中获得唯一确定的位置.就需要在夹具上合理设置相当于定位元件的六个支承点.使工件的定位基准与定位元件紧贴接触,即可消除工件的所有六个自由度.这就是工件的六苣定位原理。
工件的六点定位(2)六点定位原理的应用六点定位原理对于任何形状工件的定位都是适用的,如果违背这个原理,工件在央具中的位置就不能完全确定。
然而.用工件六点定位原理进行定位时,必须根据具体加工要求灵活运用.工件形状不同t定位表面不同,定位点的分布情况会各不相同,宗旨是使用最简单的定位方法,使工件在夹具中迅速获得正确的位置。
数控车床的对刀、坐标系确定及数控加工编程技巧

题目:数控车床的对刀、坐标系确定及数控加工编程技巧毕业论文(设计)任务书论文题目:数控车床的对刀、坐标系确定及数控加工编程巧学号:姓名:专业:数控技术指导教师:系主任:一、主要内容及基本要求:数控车床对刀基本方法,建立合理工件坐标系,要求数控加工可获得精度高、质量德定的产品,因而在机械制造领城得到了越来越广泛的应角,数控编程是应用数控机床进行零件加工的前提,因而如何合理地编制数控程序成为数控加工的关健。
二.重点研究的问题:数控车床虽然加工柔性比普通车床优越,但单就某一种零件的生产效率而言,与普通车床还存在一定的差距。
因此,提高数控车床的效率便成为关键,而合理运用编程技巧,编制高效率的加工程序,对提高机床效率往往具有意想不到的效果。
三、进度安排序号各阶段完成的内容完成时间1 论文名称 09年2月23日2 摘要及关键词 09年2月23日3 正文 09年2月28日4 参考文献 09年3月1日5 封面 09年3月2日6 毕业论文任务书 09年3月3日7 学生登记表 09年3月3日四、应收集的资料及主要参考文献资料: 1.车床与车削运动2.刀具材料和切削用量3.数控编程的方法主要参考文献: 1车工工艺与技能训练2 数控机床的编程3 机械制造工艺基础五、文献综述1.车工工艺与技能训练车工工艺是根据技术上先进、经济上合理的原则,研究将毛坯车削合成格工件的加工方法和过程的一门学科,是广大车工人员和科技作者在长期的车削实践中不断总结、长期积累、逐渐升华而成的专业理论知识。
本课程的任务是使学生获得中级车工应具备的专业理论,具体要求如下:(1)了解常用车床的结构、性能和传统,掌握常用车厂的调整方法,掌握车削的有关计算。
(2)了解车工常用工具和量具的结构,熟练掌握其使用方法。
掌握常用刀具的使用方法,能合理地选择切削用量和切削液。
(3)能合理地选择工件饿定位基准和中等复杂工件的装夹方法,掌握常用车床夹具的结构原理。
能独立制定中等复杂工件的车削工艺,并能根据实际情况采用先进工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)圆孔表面定位元件 主要有:定位销、刚性心轴和小锥度心轴 1、定位销 固定式定位销:
可换式定位销:
锥面定位销
削边定位销: D<3mm; 3< D<50mm;
D > 50mm
标准菱形定位销
2、刚性心轴:常用于套类零件的定位元件 刚性心轴一般由导向、定位及传动三部分组成
3、小锥度心轴:小锥度心轴可消除工件与心 轴之间的配合间隙,提高定心精度。锥度一 般取 K=1/5000~1/1000
2-5 工件的定位
一、工件定位原理 工件定位,就是要使工件在夹具中占据某个 确定的正确加工位置。 工件定位可归纳为以下三点: 1、一个工件在空间有六个自由度; 2、运用各种定位元件限制工件某一方向上的 自由度,工件在该方向上的位置就确定了。 3、通过多个定位元件的组合,限制一定数目 的自由度,才可满足该工序的加工精度要求。
工件Biblioteka 位一般有下述四种情况: 完全定位 部分定位 欠定位 重复定位
在工件定位分析中,常将定位元件抽象 为定位支承点。
(一)完全定位:工件在夹具中定位时,六个 自由度均被限制,称为完全定位。
(二)部分定位:工件在夹具中定位时,六个 自由度没有被全部限制,称为部分定位。 此时可能有两种情况: 1、由于工件结构特点,不必限制所有自由度
(2)可调支承:定位支承点的位置可以调节 的定位元件,称为可调支承。 主要用于以制造精度不高的毛坯面定位的场合。
(3)自位支承:定位支承点的位置随工件定位 基准位置变化而自动与之适应的定位元件, 称为自位支承。 自位支承一般只起一个定位支承点的作用。
2、辅助支承:只起提高工件支承刚性或辅助 定位作用的定位元件,称为辅助支承。
(四)锥面定位元件;当轴类零件要求精确定 心时,可以工件上的锥孔作为定位基准。 长锥心轴限制五个不定度:
两个顶尖配合使用,限制五个自由度。
(三)外圆表面定位元件:常用的有三类 定位套:实现定心定位 支承板:给外圆定位 V型块:实现外圆表面定心、对中定位
(1)定位套: 长套限制四个不定度,短套限制二个不定度, 锥套限制三个不定度,半圆套长四、短二。
2、支承板: 长板限制二个不定度,短板限制一个不定度。
3、V型块:长V型块限制四个不定度; 短V型块限制二个不定度。
当以两个或两个以上的组合表面定位时,重 复定位可能造成不良后果。
为减少重复定位造成的加工误差,可采取如 下措施: (1)改变定位元件结构
(2)撤消重复定位的定位元件:
(3)提高工件定位基准之间、定位元件定位 面之间的位置精度
二、定位元件的选择 定位表面不同,应选择不同的定位元件 (一)平面定位元件 1、主要支承:工件定位时起主要定位支承作 用 (1)固定支承:定位支承点的位置固定不变 的定位元件,称为固定支承。
2、由于加工精度要求,不必限制所有自由度
(三)欠定位:工件在夹具中定位时,若定位 支承点数目少于工序加工所要求的数目,工 件定位不足,称为欠定位。
(四)重复定位:工件在夹具中定位时,若几 个定位支承点重复限制一个或几个不定度, 称为部分定位。
*当以形、位精度较低的毛坯面定位时,不允 许重复定位。 *为提高定位稳定性和刚度,以加工过的表面 定位时,可以出现重复定位。