带电粒子在复合场中的运动专题练习(含答案)
高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
高考物理一轮复习考点规范练30带电粒子在复合场中的运动(含解析)新人教版

考点规范练30带电粒子在复合场中的运动一、单项选择题1.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是()A.①②B.③④C.①③D.②④答案:B解析:①图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定变化,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动;②图中小球受重力、向上的电场力、垂直向外的洛伦兹力,合力与速度一定不共线,故一定做曲线运动;③图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动;④图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动。
故选项B正确。
2.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法正确的是()A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外答案:C解析:由左手定则知,A、B离子均带正电,A错误;两束离子经过同一速度选择器后的速度相同,在偏转磁场可知,半径大的离子对应的比荷小,但离子的质量不一定相同,故选项B错误,C正确;速度选择中,由R=mmmm器中的磁场方向应垂直纸面向里,D错误。
3.右图是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。
现分别加速氘核(12H)和氦核(24He)。
下列说法正确的是( )A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率可能不相同D.仅增大高频电源的频率可增大粒子的最大动能 答案:A 解析:根据qvB=m m 2m ,得v=mmm m 。
物理带电粒子在复合场中的运动练习题及答案

(3)粒子从出发直至到达
P
点经历时间的所有可能取值: t
2a v0
k
m 2qB
(k
1)
3 m 4qB
k=1、2、3……或 t
2a v0
n m 2qB
n 3 m 4qB
n=1、2、3……。
【解析】
【详解】
(1)粒子在电场中做类平抛运动,水平方向:2a=v0t,
穿过 y 轴.
离 x 轴的最大距离 s ' 2R1 2 4R1 2.4m
(3)如图,微粒穿过圆形磁场要求偏转角最大,入射点 A 与出射点 B 的连线必须为磁场圆的
直径.
由牛顿第二定律,有 qvB2
m
v2 R2
所所以最大偏转角为 60°
所以圆心坐标 x 0.30m
eB0 R m
正、负电子进入对撞机时分别具有的能量:
E
1 2
mv02
e2 B02 R2 2m
正、负电子对撞湮灭时动量守恒,能量守恒,则有: 2E 2mc2 hv
正、负电子对撞湮灭后产生的光子频率: v e2B02R2 2mc2
mh
h
(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速 n 次,则有:
2m
【解析】
【详解】
(1)发射源的位置 x0 y0 ,
粒子的初动能: Ek0
qBy0
2m
2
;
(2)分下面三种情况讨论:
(i)如图1, Ek0 2qU0
由
y
mv2 Bq
、R0
mv0 Bq
、R1
mv1 Bq
,
和
1 2
mv12
1 2
mv02
2020届高考回归复习—电学选择之带电微粒在复合场中的运动含答案

高考回归复习一电学选择之带电微粒在复合场中的运动1如图所示,两平行金属板水平放置,板长和板间距均为L ,两板间接有直流电源,极板间有垂直纸面向外的匀强磁场。
一带电微粒从板左端中央位置以速度v 0gL 垂直磁场方向水平进入极板,微粒恰好做匀动,则该微粒在极板间做匀速圆周运动的时间为( )做匀速圆周运动,b 在纸面内向右做匀速直线运动,e 在纸面内向左做匀速直线运动, 下列选项正确的是( )速直线运动。
若保持 a 板不动,让b 板向下移动 0.5L ,微粒从原位置以相同速度进入,恰好做匀速圆周运ngL 3gngL2•如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为 动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场 小球由棒的下端以某一速度上滑的过程中一定有 ( )m 、带电荷量为q ,小球可在棒上滑 (图示方向)中.设小球带电荷量不Xx iXXX s JXX -X X' 5 Ef XX XXXX LA •小球加速度一直减小B. 小球的速度先减小,直到最后匀速C. 杆对小球的弹力一直减小 D .小球受到的洛伦兹力一直减小3•如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上 (与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为 m a 、m b 、m e ,已知在该区域内,a 在纸面内C .X1X JX 1 」 X 1X左只X X X X右XXXXXB . m b m a m eD . m e m b m a4.如图所示,环形塑料管半径为R ,竖直放置,且管的内径远小于环的半径,ab 为该环的水平直径,环的mgab 及其以下部分有水平向左的匀强电场,电场强度的大小E,管的内壁光滑。
现将一质量为 m ,电q荷量为+q 的小球从管中a 点由静止开始释放,则()A .小球到达b 点时速度为零,并在 adb 间往复运动 B. 小球每周的运动过程中最大速度在圆弧 ad 之间的某一位置C.小球第一次和第二次经过最高点 e 时对管壁的压力之比为 1:5D .小球第一次经过最低点 d 和最高点e 时对管壁的压力之比为 4:15. 如图所示,质量为 m ,带电荷量为q 的微粒以速度v 与水平方向成45。
高考物理一轮复习课时规范练31 带电粒子在复合场中的运动(含答案)

课时规范练31带电粒子在复合场中的运动基础对点练1.(感应加速器)(2022安徽宣城期末)无论周围空间是否存在闭合回路,变化的磁场都会在空间激发涡旋状的感应电场,电子感应加速器便应用了这个原理。
电子在环形真空室被加速的示意图如图所示,规定垂直于纸面向外的磁场方向为正,用电子枪将电子沿图示方向注入环形室。
它们在涡旋电场的作用下被加速。
同时在磁场内受到洛伦兹力的作用,沿圆形轨道运动。
下列变化规律的磁场能对注入的电子进行环向加速的是()2.(等离子体发电)下图为等离子体发电机的示意图。
高温燃烧室产生的大量的正、负离子被加速后垂直于磁场方向喷入发电通道的磁场中。
在发电通道中有两块相距为d的平行金属板,两金属板外接电阻R。
若磁场的磁感应强度为B,等离子体进入磁场时的速度为v,系统稳定时发电通道的电阻为r。
则下列表述正确的是()A.上金属板为发电机的负极,电路中电流为BdvRB.下金属板为发电机的正极,电路中电流为BdvR+rC.上金属板为发电机的正极,电路中电流为BdvR+rD.下金属板为发电机的负极,电路中电流为BdvR3.(电磁流量计)有一种污水流量计原理可以简化为如图所示模型:废液内含有大量正、负离子,从直径为d的圆柱形容器右侧流入,左侧流出。
流量值等于单位时间通过横截面的液体的体积。
空间有垂直纸面向里的磁感应强度为B的匀强磁场,下列说法正确的是()A.M点的电势高于N点的电势B.负离子所受洛伦兹力方向竖直向下C.MN两点间的电势差与废液的流量值成正比D.MN两点间的电势差与废液流速成反比4.(霍尔效应)右图为霍尔元件的工作原理示意图,导体的宽度为h、厚度为d,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,CD两侧面会形成电势差U,其,式中比例常数k为霍尔系数,设载流子的大小与磁感应强度B和电流I的关系为U=k IBd电荷量的数值为q,下列说法正确的是()A.霍尔元件是一种重要的电传感器B.C端的电势一定比D端的电势高C.载流子所受静电力的大小F=q UdD.霍尔系数k=1,其中n为导体单位体积内的电荷数nq5.(回旋加速器)右图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场的电场强度大小恒定,且被限制在AC板间,虚线中间不需加电场,如图所示,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动,对这种改进后的回旋加速器,下列说法正确的是()A.加速粒子的最大速度与D形盒的尺寸无关B.带电粒子每运动一周被加速一次C.带电粒子每运动一周P1P2等于P2P3D.加速电场方向需要做周期性的变化6.(多选)(组合场)如图所示,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等。
高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中的运动(含知识目标、五套练习、详细解答)

专题二:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛仑兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛仑兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速.喷入偏转磁场B中.在洛仑兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.3.电磁流量计.电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛仑兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B4.质谱仪如图所示组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.原理:加速场中qU=½mv2选择器中:v=E/B1偏转场中:d=2r,qvB2=mv2/r比荷:122q Em B B d=质量122B B dqmE=作用:主要用于测量粒子的质量、比荷、研究同位素.5.回旋加速器如图所示.组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.关于回旋加速器的几个问题:(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动.(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:12qBfT mπ==(3)回旋加速器最后使粒子得到的能量,可由公式2222122Kq B RE mvm==来计算,在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M 点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c 和d,外筒的半径为r0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中).ac专题二:带电粒子在复合场中的运动(2)姓名______________1.如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场?A.增大电场强度E,减小磁感强度BB.减小加速电压U ,增大电场强度EC.适当地加大加速电压UD.适当地减小电场强度E2.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内加速后,穿过A'中心的小孔沿中心轴010的方向进入到两块水平正对放置的平行极板P和P/,间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心0点处,形成了一个亮点;加上偏转电压U后,亮点偏离到0'点,(O'与0点的竖直间距为d,水平间距可忽略不计).此时,在P和P/间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到0点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏0点的电子速度的大小.(2)推导出电子的比荷的表达式.3.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.专题二:带电粒子在复合场中的运动(3)姓名______________1.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(H 31)和α粒子(e H 42)比较它们所加的高频交流电源的周期和获得的最大动能的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B .加速氚核的交流电源的周期较大,氚核获得的最大动能较小C .加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D .加速氚核的交流电源的周期较小,氚核获得的最大动能较大2.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n .(2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可). (5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域. (1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.3.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求: (1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.图甲图乙-专题二:带电粒子在复合场中的运动(5)姓名______________1.如图所示,在倾角为30°的斜面OA的左侧有一竖直档板,其上有一小孔P,OP=0.5m.现有一质量m=4×10-20kg,带电量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射向磁感应强度B=0.2T、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径;(2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.2.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(x轴正方向水平向右,y 轴正方向竖直向上).匀强磁场方向与Oxy平面平行,且与x轴的夹角为︒45,重力加速度为g.(1)一质量为m、电荷量为q+的带电质点沿平行于z轴正方向以速度v0做匀速直线运动,求满足条件的电场强度的最小值minE及对应的磁感应强度B;(2)在满足(1)的条件下,当带电质点通过y轴上的点(0,,0)P h时,撤去匀强磁场,求带电质点落在Oxz平面内的位置;(3)当带电质点沿平行于z轴负方向以速度v0通过y轴上的点(0,,0)P h时,改变电场强度大小和方向,同时改变磁感应强度的大小,要使带点质点做匀速圆周运动且能够经过x轴,问电场强度E和磁感应强度B大小满足什么条件?zB专题二:带电粒子在复合场中的运动——参考答案(1) 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+(R 1一d/2)2,R 1=5d/4……④ R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U. 4、解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 带电粒子在复合场中运动1.一个质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷做匀速圆周运动,磁场方向垂直于它的运动平面,作用在负电荷上的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是:( )A .4qBmB .3qBmC .2qBmD .qB m2.如图11-4-5所示,足够长的光滑三角形绝缘槽,与水平面的夹角分别为α和β(α<β),加垂直于纸面向里的磁场.分别将质量相等、带等量正、负电荷的小球 a 、b 依次从两斜面的顶端由静止释放,关于两球在槽上运动的说法正确的是( )A .在槽上,a 、b 两球都做匀加速直线运动,且a a >a bB .在槽上,a 、b 两球都做变加速运动,但总有a a >a bC .a 、b 两球沿直线运动的最大位移是s a <s bD .a 、b 两球沿槽运动的时间为t a 和t b ,则t a <t b3.一带正电的小球沿光滑水平桌面向右运动,飞离桌面后进入匀强磁场,如图11-4-6所示,若飞行时间t 1后落在地板上,水平射程为s 1,着地速度大小为v 1,撤去磁场,其他条件不变,小球飞行时间t 2,水平射程s 2,着地速度大小为v 2,则( )A .s 2>s 1B .t 1>t 2C .v 1>v 2D .v 1=v4.用绝缘细线悬挂一个质量为m 、带电量为+q 的小球,让它处于右图11-4-7所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在如图位置,这时悬线与竖直方向夹角为α,并被拉直,则磁场运动的速度和方向是( )A .v =mg /Bq ,水平向右B .v =mg /Bq ,水平向左C .v =mg tan α/Bq ,竖直向上D .v =mg tan α/Bq ,竖直向下5.如图11-4-8所示,有一电量为q ,质量为m 的小球,从两竖直的带等量 异种电荷的平行板上方高h 处自由下落,两板间有匀强磁场,磁场方向垂直纸面向里,那么带电小球在通过正交电磁场时( ) A .一定做曲线运动 B .不可能做曲线运动 C .可能做匀速直线运动 D .可能做匀加速直线运动6.如图11-4-9所示,带电平行板间匀强电场竖直向上,匀强磁场方向垂直纸面向里,某带电小球从光滑轨道上的a 点自由下落,经轨道端点P 进入板间后恰好沿水平方向做直线运动.现使小球从稍低些的b 点开始自由滑下,在经过P 点进入板间后的运动过程中,以下分析中正确的是( )A .其动能将会增大B .其电势能将会增大C .小球所受的洛伦兹力将会逐渐增大D .小球受到的电场力将会增大7.如图11-4-4-10所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2=L ,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从b c 边的中点P 射出,若撤去磁场,则粒子从C 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 8.如图11-4-11所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,已知a 静止,b向右匀速运动,c 向左匀速运动,比较它们的质量应有( )A .a 油滴质量最大B .b 油滴质量最大C .c 油滴质量最大D .a 、b 、c 质量一样图11-4-6图图11-4-8d 图11-4-10v 图11-4-11 图11-4-5B 图11-4-7a9.如图11-4-12中所示虚线所围的区域内,存在电场强度为E 的匀强电场和磁感应强度为B的匀强磁场,已知从左侧水平射入的电子,穿过这一区域时未发生偏转,设重力忽略不计,则在这个区域中的E 和B 的方向可能是( ) A .E 和B 都沿水平方向,并与电子运动方向相同 B .E 和B 都沿水平方向,并与电子运动方向相反C .E 竖直向上,B 垂直于纸面向外D .E 竖直向上,B 垂直于纸面向里10.设空间存在竖直向下的匀强电场和垂直纸面向内的匀强磁场,如图11-4-13所示.已知一离子在电场力和洛仑兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 时速度为零.C 是曲线的最低点,不计重力.以下说法正确的是( )A .离子一定带正电B .A 、B 两点位于同一高度C .离子在C 点速度最大D .离子到达B 点后将沿曲线返回A 点11.如图11-4-14所示,在真空中一个光滑的绝缘的水平面上,有直径相同的两个金属球A 、C .质量m A =0.01 kg ,m C =0.005 kg .静止在磁感应强度B =0.5 T 的匀强磁场中的C 球带正电,电量q C =1×10-2 C .在磁场外的不带电的A 球以速度v 0=20 m/s 进入磁场中与C 球发生正碰后,C 球对水平面压力恰好为零,则碰后A 球的速度为 ( )A .10 m/sB .5 m/sC .15 m/sD .-20 m/s12.三种粒子(均不计重力):质子、氘核和 粒子由静止开始在同一匀强电场中加速后,从同一位置沿水平方向射入图11-4-15中虚线框内区域,虚线框内区域加有匀强电场或匀强磁场,以下对带电粒子进入框内区域后运动情况分析正确的是:( )A .区域内加竖直向下方向的匀强电场时,三种带电粒子均可分离B .区域内加竖直向上方向的匀强电场时,三种带电粒子不能分离C .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均可以分离D .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均不可以分离13.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O 在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图11-4-16所示,若小球运动到A 点时,由于某种原因,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是( )A .小球仍做逆时针匀速圆周运动,半径不变B .小球仍做逆时针匀速圆周运动,但半径减小C .小球做顺时针匀速圆周运动,半径不变D .小球做顺时针匀速圆周运动,半径减小14.质量为m ,带正电为q 的小物块放在斜面上,斜面倾角为α,物块与斜面间动摩擦因数为μ,整个斜面处在磁感应强度为B 的匀强磁场中,如图11-4-17所示,物块由静止开始沿斜面下滑,设斜面足够长,物块在斜面上滑动能达到的最大速度为多大?若物块带负电量为q ,则物块在斜面上滑动能达到的最大速度又为多大?15.如图11-4-18所示,套在很长的绝缘直棒上的小圆环,其质量为m ,带电量是+q ,小圆环可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小圆环与棒的动摩擦因数为μ,求小圆环由静止沿棒下落的最大加速度和最大速度.A CB 图11-4-13EBe 图11-4-12 v 0 A CBE 图11-4-18 Bα 图11-4-17A Ov 图11-4-1516.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直纸面向里.若此液滴在垂直于磁感应强度的平面内做半径为R 的匀速圆周运动,设液滴的质量为m ,求:(1)液滴的速度大小和绕行方向;(2)若液滴运行到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液滴仍在原来的平面内做半径为3R 的圆周运动,绕行方向不变,且此圆周的最低点也是A ,另一滴将如何运动?17.质量为m ,带电量为q 的液滴以速度v 沿与水平成45 角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求:(1)电场强度E 和磁感应强度B 各多大? (2)当液滴运动到某一点A 时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的磁场的影响,此时液滴加速度多少?说明此后液滴的运动情况. 18.如图11-4-21所示,匀强磁场垂直纸面向里,磁感应强度B =1T ,匀强电场水平向右,电场强度E =103N/C ,有一带正电的微粒m =2×10-6kg ,电量q =2×10-6C ,在纸面内做匀速直线运动.g 取10m/s 2,问:(1)微粒的运动方向和速率如何?(2)若微粒运动到P 点时突然撤去磁场,经过时间t 后运动到Q 点,P 、Q 连线与电场线平行,那么t 为多少?19.如图11-4-22所示,一质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图15-76所示.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积;(2)c 点到b 点的距离s . 21.如图11-4-24所示,在空间有水平方向的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,在磁场中有一长为L 、内壁光滑且绝缘的细筒MN 竖直放置,筒的底部有一质量为m 、带电荷量为+q 的小球,现使细筒MN 沿垂直磁场的方向水平向右匀速运动,设小球带电荷量不变.(1)若使小球能沿筒壁上升,则细筒运动速度v 应满足什么条件?(2)当细筒运动速度为v 0(v 0>v )时,试求小球在沿细筒上升高度h 时小球的速度大小.22.如图11-4-25所示,一质量为0.4kg 的足够长且粗细均匀的绝缘的细管置于水平地面上,细管内表面粗糙,外表面光滑;有一质量为0.1kg ,电量为0.1C 的带正电小球沿管的水平向右的速度进入管内,细管内径略大于小球直径,已知细管所在处有沿水平方向且与细管相垂直的匀强磁场,磁感应强度为1T ,g 取10m/s 2. (1)当细管被固定时,小球在管内运动的末速度的可能值为多少?(2)若细管未被固定时,带电小球以20m/s 的初速度进入管内,且整个运动过程中细管没有离开水平地面,则系统最终产生的内能是多少?图11-4-19Pv 图11-4-22图11-4-25图11-4-24图11-4-2023.如图11-4-26所示,水平方向的匀强电场的场强为E (场区宽度为L ,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B 和2B .一个质量为m 、电量为q 的带正电粒子(不计重力),从电场的边界MN 上的a 点由静止释放,经电场加速后进入磁场,经过t=qBm6π时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b (虚线为场区的分界面).求: (1)中间磁场的宽度d ;(2)粒子从a 点到b 点共经历的时间t ab ;(3)当粒子第n 次到达电场的边界MN时与出发点a 之间的距离S n .24.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图11-4-27所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴O 1O 的方向进入到两块水平正对放置的平行金属极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点,O '与O 点的竖直间距为d ,水平间距可以忽略不计.此时,在P 点和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为L 1,极板间距为b ,极板右端到荧光屏的距离为L 2(如图所示).(1)求打在荧光屏O 点的电子速度的大小.(2)推导出电子比荷的表达式.25.如图11-4-28所示,在直角坐标xoy 的第一象限中分布着指向-y 轴方向的匀强电场,在第四象限中分布着垂直纸面向里方向的匀强磁场,一个质量为m 、带电+q 的粒子(不计重力)在A 点(0,3)以初速v 0=120m/s 平行x 轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且只通过x 轴上的P 点(6,0)和Q 点(8,0)各一次,已知该粒子的荷质比为q/m =108C/kg . (1)画出带电粒子在电场和磁场中的运动轨迹.(2)求磁感强度B 的大小.26.如图11-4-29所示,oxyz 坐标系的y 轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x 轴平行.从y 轴上的M 点(0,H ,0)无初速释放一个质量为m 、电荷量为q 的带负电的小球,它落在xz 平面上的N (c ,0,b )点(c >0,b >0).若撤去磁场则小球落在xy 平面的P (l ,0,0)点(l >0).已知重力加速度为g. (1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;(2)求电场强度E 的大小;(3)求小球落至N 点时的速率v .L dEM Ba 2B图11-4-26 _ L 1 L 2O′ O+ _O 1KAA′bP P′图11-4-27dy x z o M(0,H ,0)N (c ,0,b )P (l ,0,0) 图11-4-29f图11-4-21.分析与解:在带电小球下滑的过程中,小球受重力、电场力、支持力、摩擦力和f 洛,受力分析如图11-4-2所示. 在y 方向 ma =f mg摩擦力N μ=f ,压力Eq +Bqv =N 解得:m )qE +qvB (μmg =a随着小球速度v 增加时,小球加速度减小.所以,小球向下做加速度逐渐减小的加速运动,最后加速度减小到零,小球做匀速直线运动.开始时0=v 时,此时加速度最大,m qEμg=a m ; 匀速时,0=a 时,速度最大,m mg(qv BqE)0 所以BE qBμmg=v m . 2分析与解:根据题意可知,两金属板间的匀强电场是间断存在的.有电场时,电场方向由上板指向下板,场强大小为E =U /d =1.56V/0.3m=5.2V/m .粒子进入板间在0~1.0×104s 内受向下的电场力Eq 和向下的磁场力Bqv 作用,由于电场力与磁场力之比1=10×4×10×3.12.5=Bqv qE 33 粒子作匀速直线运动,它的位移34s vt410110m0.4m在接着的1.0×104s ~2.0×10-4s 时间内,电场撤消,α粒子只受磁场力作用,将作匀速圆周运动,轨道半径为273319mv6.6410410Rcm6.38cm Bq1.310 3.210轨道直径d ′=2R =12.76cm<d /2, 可见,粒子在作圆周运动时不会打到金属板上,粒子作匀速圆周运动的周期为2432r 2 3.14 6.3810T s 1.010s v 410由于粒子作匀速圆周运动的周期恰好等于板间匀强电场撤消的时间,所以粒子的运动将是匀速直线运动与匀速圆周运动交替进行,其运动轨迹如图11-4-4所示,经过时间443l 3s 1.430.4t 3T 3210 6.510s v 410从两板的正中央射离.【参考答案】1.AC 2.ACD 3.BD 4.BC 5.A 6.ABC 7.C 8.C 9.ABC 10.ABC 11.A 12.B 13.ACD14.qB μ)αcos μα(sin mg ,qB αcos mg . 15.g ;qB μEq μ+mg . 16.(1)ERB,顺时针方向;(2)顺时针方向,R ′=R17.(1)qvmg2=B ,q /mg =E ;(2)a ,222v v R a2g,gvπ2=v R π2=T 18.(1)v =20m/s ,θ=60°;(2)t =23s 19.(1)22202q B 4v m π3;(2)Eqmv 2034 20.(1)7.5m/s 和8.25m/s ;(2)24.84J 21.v >Bq mg;v ′=200v +m )mg B qv (h 2 22.(1)v 0≥10m/s 时,v =10m/s , v 0<10m/s 时,v =0;(2)Q =13.75J 23.d =qmEL B 21,t ab =2qE L m2+qB 3m π2,s n =q 2mEL B n )34( 24.Bb U ,m e=)2/L +L (bL B Ud 1212 25.(1)略;(2)1.2×1010T 26.(1)磁场方向为-x 方向或-y 方向;(2)qHmgl=E ;(3)22H c v2g H图11-4-4。