离心式水泵设计毕业设计

合集下载

离心泵毕业论文

离心泵毕业论文

离心泵毕业论文离心泵毕业论文离心泵是一种常见的工业设备,广泛应用于水处理、石油化工、电力等行业。

它以其高效、可靠的特点,成为工业生产中不可或缺的一部分。

本文将对离心泵的工作原理、设计要点以及应用领域进行探讨,旨在为读者提供关于离心泵的全面了解。

一、离心泵的工作原理离心泵是一种利用离心力将液体输送到高处的设备。

其工作原理可以简单地描述为:泵体内的叶轮通过电机的驱动旋转,液体在叶轮的离心力作用下被抛出,形成一定的压力,从而推动液体流动。

离心泵的工作过程可以分为吸入、压缩和排出三个阶段。

1. 吸入阶段:当泵体内部的叶轮旋转时,叶轮的叶片会在离心力的作用下形成一个低压区域。

此时,液体会通过吸入管道进入泵体,填满叶轮的叶片间隙。

2. 压缩阶段:当液体进入叶轮后,叶轮的旋转速度会使液体产生离心力。

离心力的作用下,液体被抛出叶轮,并沿着泵体的流道逐渐增加压力。

3. 排出阶段:当液体压力达到一定程度后,它会被排出泵体,通过出口管道输送到目标位置。

此时,液体的动能会转化为压力能,从而实现液体的输送。

二、离心泵的设计要点离心泵的设计要点包括叶轮设计、泵体结构、轴承选型等。

下面将分别对这些要点进行详细介绍。

1. 叶轮设计:叶轮是离心泵的核心部件,其设计直接影响着泵的性能。

叶轮的设计应考虑到流体的流动特性、工作条件以及泵的效率要求。

常见的叶轮类型有前后叶片式、开式和闭式叶轮等,设计时应根据具体情况选择合适的叶轮类型。

2. 泵体结构:泵体是离心泵的外壳,承载着叶轮和轴承等关键部件。

泵体的结构应具备良好的刚性和密封性,以保证泵的正常运行。

同时,泵体的内部流道设计也要考虑到流体的流动特性,以减小能量损失和阻力。

3. 轴承选型:离心泵的轴承起到支撑叶轮和传递转矩的作用。

轴承的选型应根据泵的工作条件和负载要求进行,以确保泵的稳定性和可靠性。

常见的轴承类型有滚动轴承和滑动轴承等,选型时应综合考虑摩擦损失、寿命和维护成本等因素。

三、离心泵的应用领域离心泵具有流量大、扬程高、效率高等优点,广泛应用于各个行业。

毕业设计 单级单吸离心泵水力及结构设计

毕业设计  单级单吸离心泵水力及结构设计

目录摘要 (3)1 前言 (4)2 叶轮的水力设计 (5)2.1泵的主要设计参数和结构方案的确定 (5)2.2 叶轮主要参数的选择和计算 (7)2.3 叶轮的绘型 (12)2.4作叶轮进出口速度三角形 (25)3压水室的水力设计 (26)3.1 压水室的作用及螺旋型压水室作用的原理 (26)3.2压水室的设计和计算 (28)4结构设计 (33)4.1 主轴的结构设计 (33)4.2 装配图轮廓尺寸的初定 (33)5强度计算 (34)5.1泵轴的强度及临界转速计算 (34)5.2键的强度计算 (41)6 结论 (44)总结与体会 (44)谢辞 (44)参考文献 (45)摘要本设计是根据给定设计参数完成单级单吸离心泵IS125—100—200的水力及结构设计。

主要包括叶轮、压水室的水力设计和泵的结构设计。

确定出叶轮的几何参数,绘制并检查叶轮轴面投影图,采用方格网保角变换法完成扭曲形叶片绘形。

利用数字积分法,根据蜗壳内速度矩守恒,确定出蜗壳八个断面参数,并进行绘形。

最后对泵进行结构设计,绘制了装配图和部分零件图,并对轴进行了强度校核计算。

关键词:离心泵;叶轮;蜗壳;水力设计;结构设计AbstractAccording to the design parameters at the given point, this paper accomplished the design of the centrifugal pump. It mainly contained the hydraulic design of the impeller, volute casing and structural of pump, structural design of the pump. Based on the resolution method of design of the pump, author obtained the geometric parameters of the impeller. Then author projected and checked the cross-section of impeller, drew the cylindrical blade using methods of grid square conformal transformation. On the basis of constant velocity moment, author calculated parameters of cross-section of volute using digital integral method. Author also drew the spiral curve and diffuser of volute casing. Finally, the structural of the pump was designed and assembly drawing component graphics were drew. In addition, this program has been checked strength of the pump shaft.【Key words】:centrifugal pumps;impeller;volute casing;hydraulic design;structural design1前言水泵是一种应用广泛的水力通用机械,在航天、航空、发电、矿山、冶金、钢铁、机械、造纸、建筑以及农业和服务业等方面都有着广泛的应用。

泵毕业设计

泵毕业设计

泵毕业设计泵毕业设计700字一、设计背景和目的:泵是工业生产中常用的设备之一,广泛应用于各个行业,既可以作为液体的输送装置,又可以作为压力增加装置。

因此,设计一个高效、稳定、可靠的泵具有重要意义。

本设计旨在设计一种高效的离心泵,以满足工业生产中对液体输送的要求。

二、设计内容:1.设计基本参数:根据实际需求,确定泵的流量、扬程、效率等基本参数。

2.选用合适的材料:根据输送液体的性质,选择合适的泵体材料、叶轮材料等,以确保泵的稳定性和耐腐蚀性。

3.设计叶轮和轴承:根据流体力学原理,设计合适的叶轮形状和叶轮叶片数量,以提高泵的效率。

同时,选用合适的轴承和密封装置,以确保泵的运行稳定。

4.设计驱动装置:选用合适的电机或发动机作为泵的驱动装置,并确定合适的传动方式,如皮带传动或联轴器传动等。

5.设计控制系统:为泵设计合适的控制系统,如压力传感器、液位传感器等,以实现自动控制和保护。

三、设计步骤和方法:1.确定泵的流量、扬程等基本参数,并结合实际需求对泵的类型进行选择。

2.根据流体力学原理,设计合适的叶轮形状和叶轮叶片数量,以提高泵的效率。

同时,选用合适的轴承和密封装置,以确保泵的运行稳定。

3.选用合适的材料,使泵具有良好的耐腐蚀性和耐磨性。

4.选用合适的驱动装置,并确定合适的传动方式,以满足泵的工作要求。

5.设计控制系统,实现泵的自动控制和保护功能。

四、设计结果和意义:通过设计,我们成功设计出了一种高效、稳定、可靠的离心泵,满足了液体输送的要求。

该设计具有以下意义:1.提高了液体运输的效率,减少了能源消耗。

2.提高了泵的稳定性和可靠性,降低了运行故障的风险。

3.选用合适的材料,延长了泵的使用寿命。

4.设计了自动控制和保护功能,提高了操作的便利性和安全性。

综上所述,本设计成功设计出了一种高效、稳定、可靠的离心泵,满足了液体输送的要求,在工业生产中具有重要的应用前景和意义。

毕业设计(论文)-IS125-100-250型单级单吸离心泵的设计

毕业设计(论文)-IS125-100-250型单级单吸离心泵的设计

目录摘要 (4)1前言 (5)1.1毕业设计的目的和意义 (6)1.2设计的主要任务 (6)2叶轮的设计 (6)2.1叶轮主要参数的确定和结构方案的确定 (7)2.1.1确定泵进出口直径 (7)2.1.2汽蚀计算 (7)2.1.3比转速的计算 (8)2.1.4确定效率 (8)2.1.5确定功率 (9)2.1.6初步确定叶轮的主要尺寸 (10)2.1.7精算叶轮外径 (12)2.2叶轮轴面投影图绘制中的相关计算 (14)2.2.1叶轮出口速度 (14)2.2.2流道中线检查 (14)2.2.3中间流线的划分 (15)2.2.4叶片进口边的确定 (16)2.2.5叶轮进口速度 (17)2.2.6编程计算A、B、C三点的叶片安放角 (20)2.3叶片绘型 (22)2.3.1绘型原理 (22)2.3.2绘型步骤 (22)2.3.3绘制叶片进出口三角形 (24)3汽蚀验算 (26)3.1计算清水中的必需汽蚀余量 (26)4压水室的计算及绘型 (26)4.1涡室的主要结构参数 (27)4.2涡室绘型步骤 (29)5离心泵结构设计及部分零件的强度校核 (30)5.1离心泵结构特点 (30)5.1.1叶轮 (31)5.1.2泵体 (31)5.1.3泵轴 (31)5.1.4轴承 (31)5.1.5密封环 (31)5.1.6填料函 (31)5.2部分零件的强度计算与校核 (32)5.2.1最小轴径的计算 (32)5.2.2键的计算及强度校核 (32)5.2.3轴向力的计算 (33)5.2.5轴承寿命的计算 (35)5.2.6填料的计算 (37)结论 (38)总结与体会 (38)谢辞 (38)参考文献 (39)摘要本次设计是进行IS125-100-250型单级单吸离心泵的设计,根据给定的主要设计参数,主要完成了叶轮、泵壳的水力设计,以及泵的总体结构设计,并验算泵的抗汽蚀性能,绘制泵的总装图及叶轮、泵壳、泵轴等零件图,对叶轮、泵体、泵轴、轴承、键、法兰盘和联结螺栓等泵的主要零部件进行强度校核。

200D多段离心式清水泵结构设计

200D多段离心式清水泵结构设计

摘要泵作为一种通用机械,在国民经济中各个领域都有广泛的应用。

农业的灌溉和排涝,城市的供水和排水都需要泵。

在工业的各个部门泵更是不可缺少的。

本人此次设计的是200D型离心式清水泵。

此类泵是利用叶片和液体相互作用来输送液体的叶片泵的一种,输送清水(含杂质量小1%,颗粒度小于0.1mm),物理化学性质类似于水的其他液体。

它输送介质温度小于80C,适用于矿山排水、工厂和城市给排水等场合。

离心泵具有结构简单,系统无需卸压装置,运行安全可靠和性能优良等特点。

本文介绍200D型离心泵的各部分结构和几何参数对泵性能的影响,分段式多级泵的用途比较广泛,产量也比较大,这种泵实际上等于将几个叶轮装在一根轴上,串联的工作,所以扬程一般比较高,每个叶轮均有相应的导叶。

关键词:离心泵导叶叶轮平衡装置Abstractpump is as one kind of general machinery, and all there is the extensive application in each domain in national economy. The agriculture irrigates and draining flooded fields, and the water supply of city and draining off water all needs the pump. Each department pump in industry more cannot lack. What I this time designed is 200D's mould being at odds with the community or the leadership type clear water pump. This kind of pump is using leaf blade and liquid to interact to carry a kind of liquid vane pump, and carries clear water ( keeping in the mouth the miscellaneous quality small 1%, the granulation is smaller than 0.1mm ), similar other liquid in water of physicochemical property. Its transport medium temperature is smaller than 80, occasions such as is suitable in the mine draining off water and factory and city plumbing etc. It is simple that the centrifugal pump possesse s the structure, and the system need not the decompression device, the characteristics such as to run safe and reliable(ly) with the function fine etc.This book is introduced the various part of structure of 200D's mould centrifugal pump and how much influences to the pump function of parameter, extensive, and output is also fairly greatly, in fact this kind of pump is equaled to to load several impellers on an axle, tandem work, so the lift is generally fairly higher, that every impeller all has corresponding(ly) leads.Key words:centrifugal pump, impeller, the leaf is led by the leaf, the balance installing目录摘要 (1)ABSTRACT (2)目录 (3)第1章诸论 (7)第2章泵的概述 (8)2.1泵及其在国民经济中的应用 (8)2.2泵的分类 (8)2.3叶片式离心泵的型式 (9)2.3.1按主轴方向 (9)2.3.2 按液体从叶轮流出的方向 (9)2.3.3 按吸入方式 (9)2.3.4 按级数 (9)2.3.5 按叶片安装方法 (10)2.3.6 按壳体分开方式 (10)2.3.7 按泵体形式 (10)第3章离心泵的基本理论知识及主要部件 (11)3.1离心泵的结构形式 (11)3.2泵的基本参数 (11)3.2.1 流量 (11)3.2.2 扬程 (12)3.2.3 转速 (13)3.2.4 汽蚀余量 (13)3.2.5 功率和效率 (14)3.3泵的各种损失及泵的效率 (14)3.4离心泵主要零部件及结构型式 (16)3.4.1 吸入室及其结构型式 (17)3.4.2 叶轮及其结构型式 (17)3.4.3 压出室及其结构型式 (18)3.4.4 轴封机构及其结构型式 (19)3.4.5 轴向力平衡机构及其结构型式 (20)3.4.6 其它零部件 (20)第4章 离心泵结构设计 (21)4.1离心泵结构方案的选择 (21)4.1.1原电机的选择 (21)4.1.2确定电机转数n 、比转数n s 和级数i (22)4.1.3初步确定吸入口直径D 、流速V s 和吐出口直径D ' (24)4.1.4确定泵的最小汽蚀余量Δh min 和汽蚀比转数C (25)4.2轴径的初步设计 (27)4.3离心泵叶轮的设计 (28)4.3.1确定叶轮入口直径D 0 (29)4.3.2 确定叶片入口边直径D 1 (31)4.3.3 确定叶片入口处绝对速度V 1 (31)4.3.4 确定叶片入口宽度b 1 (32)4.3.5确定叶片入口处圆周速度1u (32)4.3.6 确定叶片数Z (32)4.3.7 确定叶片入口轴面速度1m v ............................................................. 33 4.3.8 确定叶片入口安放角1β .. (33)4.3.9确定叶片厚度S 1 (34)4.3.10确定叶片排挤系数1ε (35)4.3.11 叶片包角ϕ的确定 (36)4.3.12确定叶轮外径2D (36)4.3.13 确定叶片出口安放角2β (37)4.3.14 确定叶轮出口宽度2b (37)4.3.15 确定叶轮出口绝对速度和圆周速度的夹角α2 (39)4.4径向导叶的设计计算 (41)4.4.1 确定基圆直径D3 (41)α (41)4.4.2 确定导叶入口角34.4.3 确定导叶入口宽度b3 (42)4.4.4 确定导叶喉部面积和形状 (42)4.4.5 确定导叶入口厚度S (43)4.4.6 确定导叶扩散角θ (44)4.4.7 确定导叶扩散段长度L (44)α (45)4.4.8 确定反导叶入口角54.4.9 确定反导叶叶片数 (46)α (46)4.4.10 确定反导叶出口角64.5吸入室的设计 (46)4.6平衡装置的设计计算 (46)4.6.1 确定平衡盘两侧压差 (47)4.6.2 计算平衡盘半径'r (48)4.6.3 计算轴向间隙长度0L和平衡盘外圆半径r (49)4.6.4 确定轴向间隙0b和径向间隙b (50)4.6.6 计算平衡盘的泄漏量0q (51)第5章离心泵主要零部件的强度计算 (52)5.1叶轮盖板强度计算 (52)5.2叶片厚度计算 (53)5.3轮毂的强度计算 (54)5.4分段式多级泵中段计算 (55)5.5泵体密封面连接螺栓计算 (55)5.6泵轴的校核 (57)5.7键的强度校核 (59)第6章离心泵主要通用零部件的选择 (61)6.1轴封结构的选择 (61)6.1.1轴封的作用 (61)6.1.2填料密封 (61)6.2轴承部件的选择 (62)6.3联轴器的选择 (62)第7章离心泵材料的选择 (63)7.1壳体 (63)7.2轴 (63)7.3叶轮 (63)第8章经济分析 (65)8.1泵经济工作条件 (65)8.2技术经济分析的性质 (65)参考文献 (67)第1章诸论D型离心式清水泵在国内外有了很大的发展。

离心式泵设计论文

离心式泵设计论文

摘要本文以一台低比转速离心泵为例,进行内部流场的数值模拟和结构优化。

利用计算流体力学(CFD)技术,采用RNGκε-湍流模型和雷诺时均N-S方程,对比转速为30.5的4长叶片和4长4短叶片两种不同结构情况下泵的内部流动状态进行数值模拟,基于模拟结果对泵的水力性能进行预测及比较。

本文介绍了离心泵内部流动数值模拟的基本理论和方法,详细阐述了在通用CFD 模拟软件环境下的叶片造型、网格生成、边界条件、求解方法等实用技术的设置方法;介绍了离心泵内部流动的详细模拟计算过程和方法,以及基于内流场数值模拟的外特性预测方法。

为特殊用途低比转速离心泵的设计与性能提高提供一个有效的思路,同时丰富了低比转速离心泵的理论研究结果,具有理论意义和工程应用价值。

从模拟结果可以看出:两个叶轮内部的静压力都是由叶片进口到出口逐渐升高,等静压曲线几乎是沿圆周方向的。

具有分流叶片的叶轮出口的压力系数较高,通过计算理论扬程,得出具有分流叶片的叶轮扬程高,说明分流叶片可以提高离心泵的性能。

关键词:低比转速离心泵数值模拟结构优化分流叶片性能曲线AbstractThe flow field of a low specific speed centrifugal pump was simulated using of computational fluid dynamics (CFD) technology to analyze the pump performance and to optimize pump structure. The RNGκε-turbulence model and the Reynolds-Averaged Navier—Storkes equations were used to study the flow field of pump. The structure effect on the flow condition was analyzed by simulating two different low specific speed pump with four-long blades and four-long four-short blades were simulated. Hydraulic performance of the pump was compared and predicted based on the simulation results.The basic theory and methods in numerical simulation of centrifugal pump flow were introduced in this paper, the setting methods of CFD simulation software in the general environment of the blade shape, mesh generation, boundary conditions, solution of practical skills were detailed;And the process and methods of simulation of the centrifugal flow were introduced, and the forecasting methods based on the numerical simulation of flow field characteristics was contained in it. And an effective line of thought for special use of low specific speed centrifugal pump designing and performance improving were provided, at the same time, the low specific speed centrifugal pump of the theoretical results with theoretical and engineering application value were enriched.From the simulation results ,we can observed that: Two impeller static pressure within the blades are gradually increased from inlets to outlets, and static pressure curve is almost along circular direction. The impeller with splitter blades have a higher pressure coefficient, by calculating the theoretical head we know that impeller with splitter blades have high head,so the splitter blades can improve the performance of centrifugal pump.Key words:low specific speed centrifugal pump numerical simulation structural optimization splitter blade performance curve目录1.绪论 (1)1.1课题的研究目的和意义 (1)1.2国内外研究现状及发展概况 (1)1.3离心泵优化设计方法 (3)1.3.1 速度系数法优化设计 (4)1.3.2 损失极值法优化设计 (4)1.3.3 准则筛选法优化设计 (4)1.3.4 基于流场研究的优化设计 (4)1.4低比速离心泵叶轮优化设计趋势 (5)1.5本文主要研究工作 (6)2.数值模拟基本理论 (7)2.1计算流体力学基础 (7)2.2流场计算的基本方程 (10)2.2.1 质量守恒方程 (10)2.2.2 动量守恒方程 (11)2.2.3 能量守恒方程 (11)2.3FLUENT软件介绍 (12)2.3.1 程序的结构 (12)2.3.2 FLUENT程序可以求解的问题 (14)3.3用FLUENT程序求解问题的步骤 (15)3.低比转速离心泵模型建立及网格划分 (18)3.1低比转速离心泵的特点 (18)3.2分别建立两种叶轮结构的计算模型 (19)3.3G AMBIT划分网格 (21)3.4边界条件类型设定 (23)3.5输出网格 (25)4.FLUENT模拟计算 (26)4.1不带分流叶片FLUENT计算 (26)4.2带分流叶片FLUENT计算 (38)5.计算结果分析 (40)5.1创建等值面 (40)5.2绘制压力分布图 (41)5.3绘制速度云图 (43)5.4绘制速度矢量图 (45)5.5绘制湍动能图 (47)5.6计算理论扬程 (49)5.7结论 (51)6.绘制优化后泵的性能曲线 (52)6.1泵在变工况情况下的压力分布 (52)6.2绘制性能曲线 (54)6.3结论 (55)7.总结与展望 (56)致谢 (57)参考文献 (58)1.绪论1.1 课题的研究目的和意义泵作为一种提供流体能量的通用机械,在各种类型的泵中,离心泵的应用最广,它是利用离心力的作用增加水体压力并使之流动的一种泵。

毕业设计(论文)-离心泵的设计及其密封(含图纸) 1模板

毕业设计(论文)-离心泵的设计及其密封(含图纸) 1模板

题目离心泵的设计及其密封摘要:在当今社会离心泵的应用是很广泛的,在国民经济的许多部门要用到它。

在供给系统中几乎是不可缺少的一种设备。

在泵的实际应用中损耗严重,特别是化工用泵在实际应用中损耗,主要是轴封部分,在输送过程中由于密封不当而出现泄漏造成重大损失和事故。

轴封有填料密封和机械密封。

填料密封使用周期短,损耗高,效率低。

本设计使用机械密封。

主要以自己设计的离心泵为基础,对泵的密封进行改进,以减少损耗,提高离心泵寿命。

本设计其主要工作内容如下,自己设计一台扬程为40m,流量为100m3/h的离心泵。

电机功率为7.5kw,转速为2900r/min,.在0—800C工作环境下输送带杂质液体的离心泵的机械密封。

关键词:泵填料密封离心泵机械密封Centrifugal pump design and sealingAbstract: In today's society, the centrifugal pump is applied widely in the national economy, many departments should use it. In the supply system is almost an indispensable equipment. The practical application in pump industry, especially with serious loss in actual application of pump shaft seals, mainly is loss in the process of conveying, due to improper seal leakage caused heavy losses and accidents. Shaft seals have packing seal and mechanical seal. Packing seal use short cycle, the loss is high. Efficiency is low. This design USES mechanical seal. Mainly in their design based on centrifugal pump, and the improved seal pump, in order to reduce loss, improve the centrifugal pump life. This design is the main content of work, design a head for 40 MB, flow 100m/h of centrifugal pump. Electric power is 7.5 kw, speed for 2900r/min, the 0-80 C work environment impurity liquid conveyer belt of centrifugal pump mechanical seal.Keywords: pump packing seal centrifugal pump mechanical seal二离心泵的工作原理以及方案选择2.1 离心泵的工作原理离心泵工作前,先将泵内充满液体,然后启动离心泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时候液体的动能与压能均增大。

单级单吸离心泵设计毕业设计

单级单吸离心泵设计毕业设计

x x x x x x x大学毕业设计(论文)题目单级单吸离心泵设计学院 xxxxxxxxxxxxxxx专业班级 xxxxxx学生姓名 xxxxxxxxxxxxxxx指导教师 xxxxxxxxxxxxx成绩x 年x月x 日摘要离心泵是一种用量最大的水泵,在给水排水及农业工程、固体颗粒液体输送工程、石油及化学工业、航空航天和航海工程、能源工程和车辆工程等国民经济各个部门都有广泛的应用。

在此设计中,主要包括单级单吸清水离心泵的方案设计,离心泵基本参数选择、离心泵叶片的水力设计、离心泵压水室的水利设计、离心泵吸水室的水利设计。

以及进行轴向力及径向力的平衡,最后要进行强度校核。

泵设计的最大难点就是泵的密封,本次设计采用的新式的填料密封,它可以根据压力的改变来改变密封力的装置。

关键词:离心泵;叶片;压水室;吸水室AbstractCentrifugal pump is a kind of the most consumable in pumps, water drainage and in agricultural engineering, solid particles liquid transportation engineering, oil and chemical industry, aerospace and Marine engineering, energy engineering and vehicle engineering, etc all departments of national economy is widely used.In this design, including single-stage single-suction clean water centrifugal pump design, the basic parameters centrifugal pump, centrifugal pump hydraulic design of leaves, water pump pressurized water chamber design, the water pump suction chamber design. As well as axial force and radial force balance, and finally to the strength check.The biggest difficulty pump design is the design of the pump seal, the new packing seal it can according to the change of the pressure to change the device sealing force.Keywords:Centrifugal pump;Leaves; Pressurized water chamber; Suction chamber目录摘要.............................................................................................................................................. Abtract (II)第1章绪论 01.1 选此课题的意义 01.2 本课题的研究现状 01.3 本课题研究的主要内容 0第2章泵的基本知识 (2)2.1 泵的功能 (2)2.2 泵的概述 (2)2.2.1 离心泵的主要部件 (2)2.2.2 离心泵的工作原理 (3)2.3 泵的分类 (3)第3章离心泵的水力设计 (4)3.1 泵的基本设计参数 (4)3.2 泵的比转速计算 (4)3.3 泵进口及出口直径的计算 (4)3.4 计算空化比转速 (4)3.5 泵的效率计算 (5)3.5.1 水力效率 (5)3.5.2 容积效率 (5)3.5.3 机械效率 (5)3.5.4 离心泵的总效率 (5)3.6 轴功率的计算和原动机的选择 (5)3.6.1 计算轴功率 (5)3.6.2 确定泵的计算功率 (6)3.6.3 原动机的选择 (6)3.7 轴径与轮毂直径的初步计算 (6)3.7.1 轴的最小直径 (6)3.7.2 轮毂直径的计算 (7)3.8 泵的结构型式的选择 (8)第4章叶轮的水力设计 (9)4.1 确定叶轮进口速度 (9)4.2 计算叶轮进口直径 (9)4.2.1 先求叶轮进口的有效直径D0 (9)4.2.2 叶轮进口直径 (10)4.3 确定叶轮出口直径 (10)4.4 确定叶片厚度 (10)4.5 叶片出口角的确定 (11)4.6 叶片数Z的选择与叶片包角 (11)4.7 叶轮出口宽度 (11)4.8 叶轮出口直径及叶片出口安放角的精确计算 (12)4.9 叶轮轴面投影图的绘制 (12)4.10 叶片绘型 (13)第5章压水室的水力设计 (16)5.1 压水室的作用 (16)5.2 蜗型体的计算 (16)5.2.1 基圆直径的确定 (16)5.2.2 蜗型体进口宽度计算 (17)5.2.3 舌角 (17)5.2.4 隔舌起始角 (17)5.2.5 蜗形体各断面面积的计算 (17)5.2.6 扩散管的计算 (18)5.2.7 蜗形体的绘型 (18)第6章吸水室的设计 (20)6.1 吸水室尺寸确定 (20)第7章径向力轴向力及其平衡 (21)7.1 径向力及平衡 (21)7.1.1 径向力的产生 (21)7.1.2 径向力的计算 (21)7.1.3 径向力的平衡 (21)7.2 轴向力及平衡 (22)7.2.1 轴向力的产生 (22)7.2.2 轴向力计算 (22)7.2.3 轴向力的平衡 (23)第8章泵零件选择及强度计算 (24)8.1 叶轮盖板的强度计算 (24)8.2 叶轮轮毂的强度计算 (24)8.3 叶轮配合的选择 (25)8.4 轮毂热装温度计算 (26)8.5 轴的强度校核 (26)8.6 键的强度计算 (28)8.6.1 工作面上的挤压应力 (28)8.6.2 切应力 (29)8.7 轴承和联轴器的选择 (29)第9章泵体的厚度计算 (31)9.1 蜗壳厚度的计算 (31)9.2 中段壁厚的计算 (31)第10章泵的轴封 (32)10.1 常用的轴封种类及设计要求 (32)10.2 填料密封的工作原理 (32)10.3 传统填料密封结构及其缺陷 (33)10.3.1 传统填料密封结构 (33)10.3.2 传统填料密封的不足 (33)10.4 填料密封的结构改造 (33)结论 (34)参考文献 (36)致谢 (38)第1章绪论1.1 选此课题的意义泵是一种应用广泛、耗能大的通用流体机械,我国每年各种泵的耗电量大约占全国总耗电量的20%,耗油量大约占全国总耗油量的50%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心式水泵设计毕业设计目录摘要............................................................................ 错误!未定义书签。

Abstract ...................................................................... 错误!未定义书签。

第一章绪论 . (1)1.1课题研究的背景及意义 (1)1.2USB简介 (1)1.2.1 USB优点 (1)1.2.2 国内外应用现状及发展趋势 (2)1.3离心泵测试 (3)1.4虚拟仪器技术及相关知识 (4)1.4.1 虚拟仪器简述 (4)1.4.2 虚拟仪器的优势 (4)1.4.3 虚拟仪器系统的构成 (5)1.5课题研究的主要内容 (6)1.6课题意义 (7)第二章基于USB数据采集系统整体设计 (8)2.1USB数据采集系统的性能指标 (8)2.2USB数据采集系统的硬件构成 (8)2.3USB数据采集系统的软件设计 (8)第三章数据采集系统硬件电路设计 (10)3.1USB2.0协议 (10)3.1.1 USB系统组成 (10)3.1.2 USB设备组成 (10)3.1.3 USB2.0数据帧 (12)3.1.4 USB2.0端点缓冲区 (13)3.1.5 USB插头插座 (14)3.2主要芯片介绍 (14)3.2.1为何选择CY7C68013 (15)3.2.2 CY7C68013 芯片简介 (16)3.1.3 ADS7825P简介 (22)3.2USB采集系统原理电路设计 (24)3.2.1主芯片外围电路设计 (24)3.2.2 A/D转换电路设计 (25)3.2.3 传感信号处理电路设计 (27)3.2.4 电源电路设计 (30)3.2.5 EEPROM电路设计 (32)第四章 USB数据采集系统软件设计 (34)4.1固件程序开发 (34)4.1.1 固件功能及编程 (34)4.1.2 列举和重列举 (36)4.1.3 USB 描述符 (38)4.2驱动程序开发 (40)4.2.1 使用Driver Development Wizard创建INF 文档 (40)4.2.2 安装INF文档和USB设备 (43)4.2.3 使用VISA Interactive Control测试通讯情况 (44)4.3数据采集程序设计 (46)4.4上位机程序开发 (47)第五章结论与展望 (49)参考文献 (50)致谢 (51)第一章绪论1.1 课题研究的背景及意义信息技术与电子技术的迅猛发展,使得计算机和外围设备也得到飞速发展和应用,在科学研究领域和许多生产场合中常用到数据采集技术,并且对数据采集的各种要求也越来越高。

传统的通信方式由于传输速度慢、抗干扰能力弱、安装麻烦等原因严重阻碍了数据采集设备的发展,新一代通用串行总线(Universal Serial Bus,简称USB)具有传输线少、速度快、支持热插拔以及易于扩展等优点,很好的解决了以上问题,因此串行总线技术在计算机系统及通信设备中迅速得到了广泛的应用。

文中分析了USB总线的体系结构和特点,针对传统总线不足之处,在此基础上研究了基于USB的数据采集系统,根据系统应该达到的技术指标,从而确定系统的整体框架和各个部分芯片的选择。

而且USB接口芯片价格低廉,大大促进USB设备的开发和应用。

所以目前基于USB的数据采集卡已经成为一种流行趋势[12]。

通常开发USB系统时,先用Windows DDK(设备驱动程序开发包)或第三方开发工具(如Driver Studio)开发USB驱动程序,然后用Visual C++编写DLL(动态连接库),最后再调用DLL 来开发应用程序,这对不熟悉Windows编程的人有一定的难度;而USB应用程序也大都是使用Visual C++来编写的,过程繁琐,调试麻烦,花费的时间也比较长。

美国国家仪器NI(National Instrument)公司开发的LabⅥEW(Laboratory Virtual Instrument Engineering Workbeneh)语言是一种基于图形程序的编程语言,含有丰富的数据采集、数据信号分析以及控制等子程序,易于调试和维护,且程序编程简单、直观口。

可以直接在LabⅥEW环境下通过NI—VISA(Virtual Instrument Software Architeeture,以下简称为“VISA”)开发驱动程序,完全避开了以前开发USB驱动程序的复杂性,大大缩短了开发周期。

用它来开发应用程序,把采集来的数据传送到主机上,再通过LabⅥEW的模块实现数据的实时显示、分析和存储。

1.2USB简介1.2.1USB优点USB(universalSerialBus)是一种通用串行总线USB是1995年康柏、微软、mM、DEC等公司为解决传统总线不足而推广的一种新型的快速双向同步传输并可热插拔数据传输总线。

该总线接口具有以下优点[4]:(l)低成本。

为了把外设连接到计算机上,USB提供了一种低成本的解决方案,即所有系统的智能机制都驻留在主机并嵌入芯片组中,方便了外设的制造。

(2)可以热插拔。

这就让用户在使用外接设备时,不需要重复“关机将并口或串口电缆接上再开机”这样的动作,而是直接在PC开机时,就可以将USB电缆插上使用。

(3)携带方便。

USB设备大多以“小、轻、薄”见长,对用户来说,同样20G的硬盘,USB硬盘比roE硬盘要轻一半的重量,在想要随身携带大量数据时,当然USB设备会是首要之选。

(4)标准统一。

大家常见的是DE接口的硬盘,串口的鼠标键盘,并口的打印机扫描仪,可是有了USB之后,这些应用外设统统可以用同样的标准与PC连接,这时就有了USB硬盘、USB鼠标、USB打印机。

(5)单一连接器类型。

USB定义了一种简单的连接器,仅适用一个四芯电缆即可链接任何一个USB设备。

(6)独立供电。

USB通过集线器向设备提供电源,当外设的电源要求电压5v电流小于5OOmA时,可以直接从USB总线获取电源,这样USB无需专用电源线,从而降低成本。

(7)错误检测和恢复。

USB事务处理包括错误检测机制,他们可以确保数据无错误发送了(8)USB系统在设计保持了向上的继承性。

1.2.2 国内外应用现状及发展趋势USB设备的应用目前在国外处于高速发展阶段,国外有些企业也已经推出了很多适应不同条件、不同精度的USB数据采集系列产品。

典型的是美国国家仪器有限公司(National Instruments,NI)公司研制的一系列USB数据采集卡,NI于2005年8月退出了八款最新USB2.0高速数据采集设备,从而扩展了其业界领先的高性能USB数据采集设备USB-9000系列产品,实现了高达800ks/s的采样率。

此后新推出的USB2.0高速设备包含免费的交互式数据记录软件,以供分析之用。

USB设备在国内的应用已经起步,并速度快,水平不断提高。

市场上国内产品有北京优采公司UA300系列、四川拓普公司的UDAQ,UBOX,UCARD等系列。

国内在USB数据采集,USB工业控制等领域已经取得了一定的成果,在现实中的得到成功的应用。

USB2.0协议,数据传输速率高达480Mbps,如此高的传输速率能用于1.0的传输速率所无法满足的地方,如高实时性要求的工业设备控制,动态图像实时传输等,随着时代的进步和技术的发展,USB必将在更广阔的领域得到更深层次的应用。

国内有一些厂商为USB设备研发提供软硬件支持,这很大程度上降低了开发难度,减少了开发时间,提高了开发质量和效率USB2.0接口凭借低成本,高性能,可靠稳定,方便灵活的特点,将逐步成为微型计算机的主要输入输出方式。

总的来说,目前国内对 USB 数据采集设备的研制已经取得了可喜的发展,但是与国外的情况相比,在开发和应用的深度和广度而言,还有一段距离现场数据采集要求比较高的场合多是采用的国外产品。

因此,随着计算机对 USB 接口的普及和实际应用中对数据采集卡要求的提高,利用 USB2.0 协议规范开发出符合多种场合要求的数据采集系统,以及此领域内先进产品的国产化等都成了急待解决的现实问题1.3离心泵测试离心泵由于具有结构简单,紧凑,重量轻,造价低,排量大以及供液均匀等优点,因而获得了广泛的应用。

由于泵类产品在结构上和在运行过程中特有的复杂性,对泵的性能测试是泵研制、开发以及生产中必不可少的重要环节[1]。

传统的测试系统存在硬件集成复杂、界面不友好、开发周期长和对开发人员编程能力要求高等缺点[2]。

本文基于LabVIEW 虚拟仪器平台,运用USB 总线技术,开发的离心泵性能测试系统很好的解决了上述缺点,系统硬件简单,可移动性强,操作方便,实用性强,具有十分重要的现实意义。

水泵要测量的主要参数有流量,水泵转速,电机转速,电机功率,电机电流,水泵轴功率。

水泵流量的检测有多种方法与传感器,比如水堰法,差压式流量计,涡轮流量计,电磁流量计,超声波流量计,但相比较而言超声波流量计不破坏管路于管外安装,且简单实用,安装方便,。

由于不和流体接触,对流体无阻力,因此在煤矿生产中应用日益广泛。

超声波流量计可以适用于不同大小管径的流量测量,解决了大管径流量的测量问题。

转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T 法(测周期法)和MPT法(频率周期法),我们采用和测频法。

根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。

电机转速的检测同水泵转速。

功率通常是指机械的回转功率,即在稳定状态下原机轴端的扭矩与转速的乘积。

测量的方法主要有:用转矩速传感器与转矩转速功率仪配套测量、扭矩法测功率和电测法等。

也可以用功率传感器直接测量。

功率传感器也称功率计探头,它把高频电信号通过能量转换为可以直接检测的电信号。

水泵的轴功率是电动机传递给水泵轴的功率。

水泵轴功率的测定实质上是通过测定拖动电机的输入功率和功率损耗来确定拖动电机的输出功率,对于联轴器直连传动机组,电动机输出功率与传动效率之积为水泵轴功率。

1.4虚拟仪器技术及相关知识虚拟技术、计算机通信技术与网络技术是信息技术的重要组成部分,它们被称为21世纪科学技术中的三大核心技术。

虚拟技术的出现大大改变了人类现有的思维模式工作模式和生活模式。

虚拟仪器技术是计算机技术和仪器技术深层次结合的产物,是一种全新的仪器形式。

它的出现使仪器与计算机之间的界限开始消失,是仪器发展史上的一场革命。

相关文档
最新文档