定轴转动刚体的转动定律度力矩角动量转动惯量
合集下载
大学物理角动量转动惯量及角动量的守恒定律

方向垂直于轴,其效果是改
变轴的方位,在定轴问题中,
第二项
与轴承约束力矩平衡。
M 2rF
方称为向力平对行于轴的轴矩,,其效表果为代是数改变量绕:轴M 转z 动 状r态,F
即: i j k
Mo rFx y z
Fx FyFz
i yFz zFy jzFxxFzk xFyyFx
Mz xFyyFx
由
rc
i
miri M
rc
i
miri M
ri m ivcM rc vc0
i
质心对自己的位矢
L r c m iv ir i m iv c r i m iv i
i
i
i
与 i 有关
第三项:
rimivi 各质点相对于质心角动量的矢量和
i
反映质点系绕质心的旋转运动,与参考点O的选择无关,
o ri
vi
mi
L io 大 方小 向 Lio : : rimiv沿 i miri2 即 L iomiri2
在轴上确定正方向,角速度 表示为代数量,则
定义质点对 z 轴的角动量为:
LizLiom iri2
刚体对 z 轴的总角动量为:
Lz Liz ri2mi
i
i
ri2mi
i
对质量连续分布的刚体:
02
3
4. 求质量 m ,半径 R 的均匀球体对直径的转动惯量
解:以距中心 r,厚 dr 的球壳
dr
R
r
o
为积分元
dV4r2dr
m
m
4 R3
3
dJ3 2dmr22m R3 4rdr
dm dV
J
R
dJ
刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
练习:1角动量守恒的条件是 。
0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。
一,刚体的定轴转动(运动)二,力矩,刚体定轴转动的转动定律,转动惯量

二、刚体定轴转动的转动定律
~利用力矩定义+牛顿第二定律,研究刚体作定 轴转动的动力学规律。 设:oz为定轴, 为 P 刚体中任一质点 i ,其 质量为 ∆ m i。质点 iv ur 受外力 F i ,内力 F i ′ 的作用,均在与 O z 轴 相垂直的同一平面内。 ①牛顿第二定律: ur r v F i + Fi ′ = ∆ m i a i 建立自然坐标:切向、法向;
三、转动惯量 J 1.转动惯量的物理意义: 当以相同的力矩分别作用于两个绕定轴转动的不同 刚体时,它们所获得的角加速度一般是不一样的,转 动惯量大的刚体所获得的角加速度小,即角速度改变 得慢,也就是保持原有转动状态的惯性大;反之,转 动惯量小的刚体所获得的角加速度大,即角速度改变 得快,也就是保持原有转动状态的惯性小。因此,转 动惯量是描述刚体在转动中的惯性大小的物理量。 2.与转动惯量有关的因素:①刚体的质量;②转轴的 位置;③刚体的形状。 实质与转动惯量有关的只有前两个因素。形状即质量 分布,与转轴的位置结合决定转轴到每个质元的矢径。
R 3
例3、求长为L、质量为m的均匀细棒对图中不同轴的 转动惯量。 B 解:取如图坐标,dm=λdx A
J
A
=
∫
∫
L
0
x 2 λ dx = mL 2 / 3
A
x λ dx = mL
2 2
JC =
L 2 L − 2
L C L/2 L/2
X B X
/ 12
例4. 求质量 m ,半径 R 的球壳对直径的转动惯量 解:取离轴线距离相等的点的 集合为积分元
F i t ri + F i t′ ri = ∆ m i ri 2 α
外力矩 内力矩
③对所有质元的同样的式子求和:
第三章 刚体的定轴转动

令
m r
i 1
n
2
i i
=J
1 2 Ek Jω 2
转动动能
ω 对应 v
J 对应 m
1 2 Ek mv 2
质点的动能
二 转动惯量 ( moment of inertia ) 质量 质点惯性大小的量度
J 与 m 对应
转动惯量 刚体转动惯性大小的量度
n
J mi ri
i 1
2
体分布
dm =ρdV dm =σdS dm =λdl
面分布 线分布
J r dm
2 m
单位:
kg · 2 m
说明: J r 2dm
m
1. J 与刚体的质量有关; 2. 质量一定,与质量的分布有关;
3. 与轴的位置有关。因此叫作绕轴的
转动惯量。
转动惯量的计算
例1 质量为m,半径为 r 的均匀细圆环, 对通过其中心并垂直环面的转轴的转动惯量。 解: 根据转动惯量的定义求解。
3. 题 3-2,3-8,3-9。
§3-1
刚体的定轴转动
刚体 ( rigid body ) :在任何情况下,其形状和大 小都不发生任何变化的物体 刚体是一种理想模型
一 刚体的运动 刚体的运动
{ 转动
平动
平动 ( translation ) 刚体运动时,其上任意两点的连线 , 在运动过程中始终保持其方向不变 。 刚体的平动遵从质点运动的规律
ω ω0 αt
1 2 θ θ0 ω0t αt 2 2 2 ω ω0 2α(θ θ0 )
切向加速度 ( tangential acceleration )
dv at dt d (rω) dt dω r dt
m r
i 1
n
2
i i
=J
1 2 Ek Jω 2
转动动能
ω 对应 v
J 对应 m
1 2 Ek mv 2
质点的动能
二 转动惯量 ( moment of inertia ) 质量 质点惯性大小的量度
J 与 m 对应
转动惯量 刚体转动惯性大小的量度
n
J mi ri
i 1
2
体分布
dm =ρdV dm =σdS dm =λdl
面分布 线分布
J r dm
2 m
单位:
kg · 2 m
说明: J r 2dm
m
1. J 与刚体的质量有关; 2. 质量一定,与质量的分布有关;
3. 与轴的位置有关。因此叫作绕轴的
转动惯量。
转动惯量的计算
例1 质量为m,半径为 r 的均匀细圆环, 对通过其中心并垂直环面的转轴的转动惯量。 解: 根据转动惯量的定义求解。
3. 题 3-2,3-8,3-9。
§3-1
刚体的定轴转动
刚体 ( rigid body ) :在任何情况下,其形状和大 小都不发生任何变化的物体 刚体是一种理想模型
一 刚体的运动 刚体的运动
{ 转动
平动
平动 ( translation ) 刚体运动时,其上任意两点的连线 , 在运动过程中始终保持其方向不变 。 刚体的平动遵从质点运动的规律
ω ω0 αt
1 2 θ θ0 ω0t αt 2 2 2 ω ω0 2α(θ θ0 )
切向加速度 ( tangential acceleration )
dv at dt d (rω) dt dω r dt
物理-定轴转动刚体的角动量定理和角动量守恒定律

或 Lz = I = 恒量
当刚体相对惯性系中某给定转轴的合外力矩为 零时,该刚体对同一转轴的角动量保持不变。
——对转轴的角动量守恒定律
二、定轴转动中的角动量守恒
说明 1、 关于该守恒定律的条件:
Mz Miz 0
特别地,若每一个力的力矩均为零,即 则
二、定轴转动中的角动量守恒
M iz ri Fi sini 0 的几种情况
10
f
20
O1 R1 A
R2 O2 fB
随堂练习
当两圆柱接触处无相对滑动时,两者转速相反
10
20
O1 R1 A
R2 O2 B
且两者接触点的线速率相等!
二、定轴转动中的角动量守恒
由定轴转动的角动量定理
Mz
dLz dt
若刚体所受对转轴的合外力矩 M z 0,则有
dLz d ( I ) 0
dt
dt
二、定轴转动中的角动量守恒
(3) 对共轴非刚体系(其中各质元到转轴的距离可 变则)系:统的转动惯量可变,此时系统对转轴的角动量守恒,
即:I =恒量
• 特别地,若各质元的 保持一致,
Lz =I =恒量
当 I 增大时, 就减小; 当 I 减小时, 就增大 。
二、定轴转动中的角动量守恒
例如:花样滑冰运动员在冰面上旋转时 运动了角动量守恒定律
(1)
(2)
(3)
二、定轴转动中的角动量守恒
2、对转轴的角动量守恒定律的适用范围: • 不仅适用于刚体, • 也适用于绕同一转轴转动的任意质点系。
二、定轴转动中的角动量守恒
3、对转轴的角动量守恒的几种典型表现 (1) 对定轴刚体:I 不变, 大小和方向均不变;
-,-,-,-刚体的定轴转动转动定律转动惯量角动量角动量守恒定律动能定理(forC)

其中 Fz对转 轴的
力矩为零,故 F 对转
轴的力矩 M zk
r
F
z
F
k
O rFz
F
M z rF sin
2019/10/24
shenyuhm44@
16
(2)合力矩等于各分力 矩的矢量和 M M1 M2 M3
(3)刚体内作用力和反作用力的力矩 互相抵消.
杆将在重力作用下由静止开始绕铰链O 转
动.试计算细杆转动到与竖直线成 角时
的角加速度和角速度.
2019/10/24
shenyuhm44@
32
解 细杆受重力和 铰链对细杆的约束力FN
作用,由转动定律得
1 mgl sin J
2
m,l FN
θ mg
O
式中 J 1 ml2 3
盘, 可绕通过盘心 O 垂直盘面的水平轴转动. 转轴与
圆盘之间的摩擦略去不计. 圆盘上绕有轻而细的绳索,
绳的一端固定在圆盘上, 另一端系质量为 m 的物体.
试求物体下落时的加速度、绳中的张力和圆盘的角加速
度.
m
Ro
m
T
m
oR m
T'
Py
解:1)分析受力 2)选取坐标
注意:转动和平 动的坐标取向要一致.
转轴旋转.开始起动时,角速度为零.起动
后其转速随时间变化关系为: m (1 et / )
式中 m 540 r s1, 2.0 s .求: (1)t=6 s时电动机的转速.(2)起动后,电动 机在 t=6 s时间内转过的圈数.(3)角加速度 随时间变化的规律.
刚体定轴转动的角动量定理 角动量守恒定律

典型例子
[例题]如图(a)表示半径为R的放水弧形闸门,可绕图中
左方质点转动,总质量为m,质心在距转轴
7 9
2 处,闸 R 3
门及钢架对质点的总转动惯量为 I mR 2 ,可用钢丝 绳将弧形闸门提起放水,近似认为在开始提升时钢架 部分处于水平,弧形部分的切向加速度为a=0.1g,g为 重力加速度,不计摩擦,不计水浮力.
图(a)
(1)求开始提升时的瞬时,钢丝绳对弧形闸门的拉力 和质点对闸门钢架的支承力. (2)若以同样加速度提升同样重量的平板闸门[图(b)]
需拉力是多少?
FT
W
图(b)
[解](1)以弧形闸门及钢架 为隔离体,受力如图(a)所示. 建立直角坐标系Oxy, 根据质心运动定理 FT FN W mac 向x及y轴投影得
考虑到
t
12v0 dr g 7lg v cos t cos( t) dt 2 24v0 7l
例:圆盘(R,M),人(m)开始静止,人
走一周,求盘相对地转动的角度.
1 I 2 MR 2 2
解: 系统对转轴 角动量守恒
M=0
I11 () I 22 0
I1 mR
2
人— ,盘— (对地的角位移) d d m 1 2 dt dt
I1d I 2 d
1 2 0
2
1 M 2
I d I d
0
2m 2 2m M
例:
圆盘质量M,半径R,J=MR2/2, 转轴光滑,人的质量m,开始时, 两者静止.求:人在盘上沿边 缘走过一周时,盘对地面转过 的角度.
in ex
角动量守恒定律是自然界的一个基本定律.
2.91刚体的定轴转动力矩 转动定律 转动惯量

Fi 0 , M i 0
M r F
d
P
F
F
Fi 0 , M i 0
F
F
2.9刚体的定轴转动定律
讨论
第二章 守恒定律
1)若力 F 不在转动平面内,把力分解为平行和垂
直于转轴方向的两个分量 其中 Fz 对转轴的力 矩为零,故 F 对转轴的 力矩
代入初始条件积分 得
3g d sind 2l
3g (1 cos ) l
考虑到
7lg 12 v0 dr g cost cos( t) dt 2 24 v0 7l
t
2.9刚体的定轴转动定律
第二章 守恒定律
例4 一长为 l 质量为 m 匀质细杆竖直放置,其 下端与一固定铰链 O 相接,并可绕其转动 . 由于此 竖直放置的细杆处于非稳定平衡状态,当其受到微小 扰动时,细杆将在重力作用下由静止开始绕铰链O 转 动 .试计算细杆转动到与竖直线成 角时的角加速度 和角速度 .
刚体定轴转动的角动量定理
第二章 守恒定律
t2
t1
Mdt J 2 J1
3 刚体定轴转动的角动量守恒定律 若M 讨论 若 J 不变, 不变;若 J 变, 也变,但 L 内力矩不改变系统的角动量.
守 恒条件
0 ,则 L J 常量
M 0
J 不变.
在冲击等问题中
L mi ri vi (
i
2 mi ri )
L J
i
ri
mi
z
2 刚体定轴转动的角动量定理 dL d( J ) M dt dt
O
vi
t1
M r F
d
P
F
F
Fi 0 , M i 0
F
F
2.9刚体的定轴转动定律
讨论
第二章 守恒定律
1)若力 F 不在转动平面内,把力分解为平行和垂
直于转轴方向的两个分量 其中 Fz 对转轴的力 矩为零,故 F 对转轴的 力矩
代入初始条件积分 得
3g d sind 2l
3g (1 cos ) l
考虑到
7lg 12 v0 dr g cost cos( t) dt 2 24 v0 7l
t
2.9刚体的定轴转动定律
第二章 守恒定律
例4 一长为 l 质量为 m 匀质细杆竖直放置,其 下端与一固定铰链 O 相接,并可绕其转动 . 由于此 竖直放置的细杆处于非稳定平衡状态,当其受到微小 扰动时,细杆将在重力作用下由静止开始绕铰链O 转 动 .试计算细杆转动到与竖直线成 角时的角加速度 和角速度 .
刚体定轴转动的角动量定理
第二章 守恒定律
t2
t1
Mdt J 2 J1
3 刚体定轴转动的角动量守恒定律 若M 讨论 若 J 不变, 不变;若 J 变, 也变,但 L 内力矩不改变系统的角动量.
守 恒条件
0 ,则 L J 常量
M 0
J 不变.
在冲击等问题中
L mi ri vi (
i
2 mi ri )
L J
i
ri
mi
z
2 刚体定轴转动的角动量定理 dL d( J ) M dt dt
O
vi
t1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Iz Ix Iy
z
定理证明:
对于质量平面分布的刚体, 绕 x 轴的转动惯量为:
o
yy
Ix y2dm
x
dm
绕 y 轴的转动惯量为:
I y x2dm
x
绕 z 轴的转动惯量为:
19
z
Iz z2dm (x 2 y2 )dm
y2dm x 2dm I x I y 证毕
o
yy
x z dm
0
M
绕圆环质心轴的转动惯量为
dm
oR
I MR2
例2:在无质轻杆的 b 处 3b 处各系质量为 2m 和 m 的 质点,可绕 o 轴转动,求:质点系的转动惯量I。
解:由转动惯量的定义
I
2
mi ri 2
2mb 2
m
(3b)2
11mb 2
i 1
9
例3: 如图所示,一质量为m、长为l的均质空心圆柱
体(即圆筒圆筒)其内、外半径分别为R1和R2。试求
的质元受阻力矩大,
细杆的质量密度 m
l
质元质量 dm dx
o
xl dm m dx
x
质元受阻力矩:
dM 阻 dmgx
细杆受的阻力矩
m l
M阻
dM
阻
0l
gxdx
1 2
gl 2
1 2
mgl
4
二、定轴转动刚体的角动量
1 .质点对点的角动量
L
r
P
r
mv
作圆周运动的质点的角动量L=rmv;
l
x2dm
L
x2dx
1 L3
0
1 mL2
0
3
A
o
x
dm
dx L
l
B
3
(2)对于通过棒的中心的轴 A
C dm B
L/2
L/2
Ic x2dm x2dx
o
L2
x dx
L2
L/2
L / 2
1 L3 1 mL2
12
12
IA
IC
m(
L)2 2
11
上例中IC表示相对通过质心的轴的 转动惯量, IA表示相对通过棒端 的轴的转动惯量。两轴平行,相距
强调:对于刚体的定轴转动,我们只能用角动量来 描述,而不能用动量来描述。
6
三、定轴转动刚体的转动惯量
1 .定义 刚体对固定轴的转动惯量等于各质元质量与其至
转轴的垂直距离的平方的乘积之和。
I (Δmiri2 )
I是描述刚体转动惯性大小的物理量。
刚体的转动惯量与哪些物理量有关?
①.与刚体质量有关。
②.与质量对轴的分布有关。
例:半径为 R 质量为 M 的圆盘,求绕x 直径轴转动的转
动惯量Jy。
解:圆盘绕垂直于盘面的质心 z
轴转动的转动惯量为:
Iz
1 2
MR2
y
动 画
Iz Ix Iy 2Iy
z
Iy
1 2
Iz
1 MR2 4
x
20
计算变力对某一转轴的力矩则应当采取分小段的 办法,将每一小段的力视为恒力,再按照恒力矩的计 算方法进行计算,最后求和。
3
例1:一匀质细杆,长为 l 质量为 m ,在摩擦系数为
的水平桌面上转动,求摩擦力的力矩 M阻。
解:杆上各质元均受摩擦力作用,但各质元受的摩
擦阻力矩不同,靠近轴的质元受阻力矩小,远离轴
3. 具有瞬时性,是力矩的瞬时效应。
4. 转动惯量I是刚体转动惯性大小的量度。
5.刚体转动定律的地位与牛顿第二定律相当。
15
例6 一个质量为M、半径为R的定滑
轮(当作均匀圆盘)上面绕有细绳,
绳的一端固定在滑轮边上,另一端挂
一质量为m的物体而下垂。忽略轴处
摩擦,求物体m由静止下落高度h时 mg
的速度和此时滑轮的角速度。
解: 对M:M = TR=Iβ
I=1 MR2 2
对m : mg T ma a Rβ
解 方 程 得 : a
m
m M
2
g
v
2ah
4mgh 2m M
ω
v R
1 R
4mgh 2m M
16
例7 两个匀质圆盘,同轴地粘结在一起,构成一个组合轮。小
圆盘的半径为r,质量为m;大圆盘的半径r’=2r,质量m’ = 2m。
质量的线密度、面 密度和体密度。
质量均匀分布且形状以规则对称的,可利用上 面的公式计算转动惯量,对于形状复杂的刚体通 常通过实验测得其转动惯量。
8
例2:半径为 R 质量为 M 的圆环,绕垂直于圆环平面 的质心轴转动,求转动惯量I。
解:分割质量元 dm圆环上各质量元到轴的距离相等,
M
I R2dm R 2 0M dm MR 2
对几何轴oz的转动惯量。
z
解:在半径为r( R1 r R2 )处,取一薄圆
R1
dr
r
柱壳形状的质元,其长为l半径为r厚度为dr, R2
则该质元的质量为dm dV ( 2 rdr )l
l
I
r2dm
m
R2 R1
2
l
r 3dr
l
2
(
R24
R14
)
圆筒的体密度
m (R22 R12 )l
I
1 2
m(R22
R12 )
o
若R1
0,
R2
R,
I
1 2
mR 2
若R1 R2 R, I mR 2
10
例4 求长度为L,质量为m的均匀细棒AB的转动惯量。
(1)对于通过棒的一端与棒垂直的轴。
x x
(2)对于通过棒的中心与棒垂直的轴。
解(1)细杆为线质量分布,单位长度的质量为: m
I A
该力对转轴的力矩为零。 M r F
大小:M Fr sin
z
F∥
or
F θ F⊥
转轴
转动平面 2
说明: a)力的作用线与转轴相交或平行时力对该转轴的矩为0;
b)同一个力对不同的转轴的矩不一样;
c)当所给的力在转动平面内,力对转轴的矩与力对交 点O的矩等值。但不能说完全相同。
d)在定轴转动中,如果有几个外力同时作用在刚体上, 它们的作用可以与某一个力矩相当这个力矩叫做这几 个力的合力矩。合力矩与合力的矩是不同的概念,不 要混淆。 在研究力对轴的矩时,可用正负号来表示力矩的方向。 3 .力矩的计算
刚体定轴
合外力矩 内力矩之和 转动定律!
I
用M表示∑Fit ri (合外力矩),有: M I
刚体所受的对于某一固定转动轴的合外力矩等于刚 体对此转轴的转动惯量与刚体在此合外力矩作用下所 获得的角加速度的乘积。
注意几点:
1. 是矢量式(在定轴转动中力矩只有两个方向)。
2. M、I、是对同一轴而言的。
例8 如图所示,一均匀细棒,可绕通过其端点并与棒垂直的 水平轴转动。已知棒长为l,质量为m,开始时棒处于水平位 置。令棒由静止下摆,求:(1)棒在任意位置时的角加速度;
(2) 角为300,900时的角速度。
解 : (1) 棒在任意位置时的重力 矩
M mg l cos
2
M I 1 ml2
3g cos
组合轮可以绕通过其中心且垂直于盘面的光滑水平固定轴o转
动,对o轴的转动惯量J=9mr2/2 。两圆盘边缘上分别绕有轻质
细绳,细绳下端各悬挂质量为m的物体A和B,这一系统从静止
开始运动,绳与盘无相对滑动且长度不变。已知r =10cm 。 求:
(1)组合轮的角加速度;(2)当物体上升h=0.4m时,组合轮
定轴转动刚体的 转动定律度 力矩 角动量 转动惯量
1
一、作用于定轴刚体的合外力矩
1 .力对固定点的矩
M
r F
2 .力对固定轴的矩
(1)力垂直于转轴
这种情况相当于质点绕固定
点O转动的情形。
M
F
Or
d
Pr
(2)力与转轴不垂直 可以把力分解为平行于转轴的
分量和垂直于转轴的分量。
平行转轴的力不产生转动效果,
解:绕细杆质心的转动惯量为: IC
绕杆的一端转动惯量为 I 1 ml2
1 ml2
12
m
l
2
1
ml
2
12
2 3
13
四、定轴转动的转动定律
取刚体内任一质元i,它所受合外力为 Fi,内力为 f。i
只考虑合外力与内力均在转动平面 内的情形。
z (, )
对mi用牛顿第二定律: Fi fi miai
的角速度。
解: T mg ma 解得: 2g (19r )
o
mg T ma
T (2r) Tr 9mr 2
a r
10.3rads2
2
a
m, r
T
m, r
T
A
T
T
B a
a (2r)
mg
mg
(2) 设 为组合轮转过的角度 ,则: h r
2 2 (2 h r)1 2 9.08 rad s1 17
5
L Li (riΔmivi) (Δmiri2 )ω
令:I (Δmiri2 )
刚体绕OZ轴转动的转动惯量
L Iω
注意:
刚体绕OZ轴转动的角动量
a)力矩、角动量都是瞬时量,它们只能针对某一时 刻而言,它们都不是时间的累积效应。
b)力矩、角动量都是相对量,都必须指明它们是相 对于哪个轴或哪个点。
3
2l
(2) mg 1 cos 1 ml2 d
2