函数信号发生器设计报告
电子技术课程设计实验报告--函数信号发生器

电子技术课程设计实验报告--函数信号发生器函数信号发生器一般用于产生基本的常用信号,如正弦波、三角波、方波等,用于生物、医学、通信、音频和模拟电路调试和测量等。
本文介绍了函数信号发生器的结构和特性,以及利用函数信号发生器实验的操作步骤,对这一实验作了详细介绍。
一、结构和特点函数信号发生器是一款多用途的信号发生器,它是由数字电子芯片和模拟元件组成的,具有输出波形数量多、偏差小、功耗低等特点,它的性能特性好,能产生不同波形信号,灵活多变,具有稳定可靠的输出。
二、实验步骤1、打开万用表,将探头连接输出接口,将万用表切换到 AC 档,设置 200mV 档,同时将频率表中频率调节到 10kHz;2、连接信号发生器,打开电源开关,调节波形类型选择按钮使之处于正弦波,将频率表中频率调节到 10kHz;3、调节占空比调节按钮,可将其调节到饱和状态,观察波形并绘图;4、将频率表中频率再次调节到 10kHz,占空比按钮设置为50%,在衰减平调中调节输出信号,观察波形并绘图;5、按此类推,可实现其他波形的输出,可视性观察波形变化,以此可以了解整体系统性质。
三、实验结果实验中,我用函数信号发生器分别调节了正弦波和相应占空比的三角波和方波,用万用表观察波形的变化,为验证系统的性能,我用万用表测量各调试波形的参数,如电压大小、频率和占空比,结果如下:1、测试的正弦波的频率为:10kHz;占空比为:50%;电压大小为:150mV;在本次实验中,我们通过调节函数信号发生器,成功地验证函数信号发生器能够输出基本的常用信号,如正弦波、三角波、方波等,并通过万用表对其调节参数进行测试,得出的结果与理论设计的基本一致,可以表明函数信号发生器的稳定性、可靠性良好,这证实了函数信号发生器的功能设计正确性及其使用的可行性。
信号发生器课程设计报告完整版

信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。
在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。
信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。
它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。
三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。
2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。
3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。
4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。
5、在仿真结果的基础上,实现实际电路。
四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。
(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。
电路实验报告 函数信号发生器

电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。
在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。
信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。
信号发生器用途广泛, 有多种测试和校准功能。
本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。
三种波形的幅值及方波的占空比均在一定范围内可调。
报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。
二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。
3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。
(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。
2.三种输出波形的输出阻抗小于100Ω。
3.用PROTEL软件绘制完整的印制电路板图(PCB)。
(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。
2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。
四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。
简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
函数信号发生器设计报告

函数信号发生器设计报告目录一、设计要求 .......................................................................................... - 2 -二、设计的作用、目的 .......................................................................... - 2 -三、性能指标 .......................................................................................... - 2 -四、设计方案的选择及论证 .................................................................. - 3 -五、函数发生器的具体方案 .................................................................. - 4 -1. 总的原理框图及总方案 ................................................................. - 4 -2.各组成部分的工作原理 ................................................................... - 5 -2.1 方波发生电路 .......................................................................... - 5 -2.2三角波发生电路 .................................................................... - 6 -2.3正弦波发生电路 .................................................................. - 7 -2.4方波---三角波转换电路的工作原理 ................................ - 10 -2.5三角波—正弦波转换电路工作原理 .................................. - 13 -3. 总电路图 ....................................................................................... - 15 -六、实验结果分析 ................................................................................ - 16 -七、实验总结 ........................................................................................ - 17 -八、参考资料 ........................................................................................ - 18 -九、附录:元器件列表 ........................................................................ - 19 -函数信号发生器设计报告一、设计要求1. 用集成运放组成正弦波、方波和三角波发生器。
函数信号发生器设计报告

函数信号发生器设计报告设计要求设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求:(1)输出波形工作频率范围为2HZ-200KHZ且连续可调;(2)输出频率分五档:低频档:2HA 20HZ中低频档:20HZ- 200HZ 中频档:200HQ2KHZ中高频档:2KHZ-20KHZ高频档:20KHZ- 200KHZ(3)输出带LED指示。
设计的作用、目的1. 掌握函数信号发生器工作原理。
2. 熟悉集成运放的使用。
3. 熟悉Multisim软件。
三、设计的具体实现3.1函数发生器总方案采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。
总原理图:正弦波方波三角波3.2单元电路设计、仿真I、RC桥式正弦波振荡电路正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。
根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。
其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz满足本次设计要求,故选用RC 正弦波振荡器。
产生正弦振荡的条件:确定R、C的值为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻叫和输出电阻心的影响,应使R满足下列关系式:R f»R>>。
,一般叫约为几百千欧以上,九仅为几百欧以上。
故确定I =10KQ ,针对不同档位设置不同的C:当f rnajt=20Hz时,由f=而疋,其中R=n血=10K Q,得到8 0.79卩F;再将"』=2Hz, C"0.79卩F代入,得到R=99.5 K Q ,所以将电阻R接成由固定电阻叫鈕=10 K Q 和120 K Q的滑动变阻器串联形式,使电路变成频率由:=2Hz到=20Hz可调的正弦波发生电路;同理可以计算出20Hz〜200Hz. 200Hz〜2kHz、2kHz〜20kHz、20kHz〜200kHz 的R C值。
函数信号发生器课程设计报告

淮海工学院课程设计报告书课程名称:电子技术课程设计题目:函数信号发生器学院:电子工程学院学期: 2012-2013-2 专业班级:通信工程111 姓名:彭孟瑶学号: 2011120688函数信号发生器1.引言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量需要。
波形发生器就是信号源的一种,能够给被测电路提供所需要的波形,传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。
随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。
与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。
2.设计要求设计一个能够输出正弦波、三角波和矩形波的信号源电路,电路形式自行选择。
输出信号的频率可通过开关进行设定,具体要求如下:输出信号的频率范围为1000~2000Hz,步进为50Hz。
要求输出信号无明显失真,特别是正弦波信号。
图1函数信号发生器方框图3.函数信号发生器的方案3.1 方案一由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,最后用低通滤波器将方波转化为正弦波。
图2 方波、三角波、正弦波、信号发生器的原理框图但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。
3.2方案二先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。
图3 正弦波、方波、三角波信号发生器的原理框图此电路具有良好的正弦波和方波信号。
函数信号发生器实验报告

函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。
本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。
一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。
二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。
常见的信号形式包括正弦波、方波、三角波等。
三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。
2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。
3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。
4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。
四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。
通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。
在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。
观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。
五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。
我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。
在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。
此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。
通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数信号发生器设计报告
一、 设计要求
设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求:
(1) 输出波形工作频率范围为2HZ ~200KHZ ,且连续可调;
(2) 输出频率分五档:低频档:2HZ ~20HZ ;中低频档:20HZ ~200HZ ;
中频档:200HZ ~2KHZ ;中高频档:2KHZ ~20KHZ ;高频档:20KHZ ~200KHZ 。
(3) 输出带LED 指示。
二、 设计的作用、目的
1. 掌握函数信号发生器工作原理。
2. 熟悉集成运放的使用。
3. 熟悉Multisim 软件。
三、 设计的具体实现
3.1函数发生器总方案
采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。
总原理图:
3.2单元电路设计、仿真
Ⅰ、RC桥式正弦波振荡电路
图1:正弦波发生电路
正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。
根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。
其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz,满足本次设计要求,故选用RC 正弦波振荡器。
产生正弦振荡的条件:
确定R、C的值
为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻和输出电阻的影响,应使R满足下列关系式:>>R>>,一般约为几百千欧以上,仅为几百欧以上。
故确定=10KΩ,针对不同档位设置不同的C:
当=20Hz时,由f=,其中R=10KΩ,得到C≈0.79μF;再将=2Hz,C≈0.79μF代入,得到R=99.5 KΩ,所以将电阻R接成由固定电阻=10 KΩ和120 KΩ的滑动变阻器串联形式,使电路变成频率由=2Hz 到=20Hz可调的正弦波发生电路;
同理可以计算出20Hz~200Hz、200Hz~2kHz、2kHz~20kHz、20kHz~200kHz 的R、C值。
确定、
RC选频网络对于频率f的放大倍数为F=1/3,而回路起振条件为>=1。
故放大电路的电压放大倍数A=(+)/>=3,即/>=2,取/=2。
而=+//,其中,为二极管的正向动态电阻。
实验证明,取≈时,既能够减少二极管特性的非线性而引起的波形失真,又能起一定的稳幅作用,取=5.1KΩ,=24 KΩ,=45.5 KΩ。
Multisim仿真电路与结果:
Ⅱ.方波发生电路
从一般原理来分析,可以在滞回比较器电路的基础上,靠正反馈和RC充放电回路组成矩形波发生电路,由于滞回比较器的输出只有两种可能的状态,高电平或低电平,两种不同的输出电平式RC电路进行充电和放电,于是电容上的电压降升高或降低,而电容的电压又作为滞回比较器的输入电压,控制其输出端状态发生跳变,从而使RC电路由充电过程变成放电过程或相反,如此循环往复,周而复始,最后在滞回比较器的输出端即可得到一个高低电平变化周期性交替的方波信号。
Multisim仿真电路与结果:
Ⅲ.三角波发生电路
在产生方波之后,输入到一个积分电路便可得到三角波。
图中滞回比较器的输出电压=±,他的输入电压时积分电路的输出电压,根据叠加原理,集成运放同相输入端电位
令,则阈值电压
因此,滞回比较器的电压传输特性如图所
示。
积分电路的输入电压时滞回比较器的输出
电压,而且不是+,就是-,所以
输出电压的表达式为
式中为初态时的输出电压。
设初态时正好从-跃变为+,则上式应写成
积分电路反向积分,随时间的增长线性下降,根据图2的电压传输特性一旦,再稍减小,将从+跃变为-。
使得上式变为
为产生跃变时的输出电压。
积分电路正向
积分,随时间的增长线性增大,根据图2的电压
输出特性,一旦,再稍增大,将从-
跃变为+,回到初态,积分电路又开始反向积分。
电路重复上述过程,因此产生自激震振荡。
由以上分析可知,是三角波,幅值为±;
是方波,幅值为±,如图所示,因此也可称图所示电路为三角波—方波发生电路。
由于积分电路引入了深度电压负反馈,所以在负载电阻相当大的变化范围里,三角波电压几乎不变。
Multisim仿真电路与结果:
3.3总电路图
四、心得体会及建议
本课设根据设计中要实现的功能,经过认真地分析、实践,确立方案,书写文档,设计出电路,在设计过程中翻阅了大量资料,通过对所得的各种资料的分析,提炼出自己需要的信息,从而提高自己的分析能力;通过对主要技术指标的分析,认真体会了设计时的各项技术政策;通过对设计时出现的各种问题的分析与解决,锻炼了独立分析,进行工程设计的能力;
通过对电路设计中的某些问题的较为深入的探索,培养了自己的科研工作能力;通过课设报告的书写,进一步锻炼了文字表达能力和对工作的认真态度。
在设计中遇到了一些实际困难,通过自己与同组同学多次查找参考资料,以及指导老师的点拨,终于豁然开,感受到了完成作品时那种学以致用的成就感,并且加深了对老师课上内容的理解。
五、附录
六、参考文献。