初三中考数学圆的弧长和图形面积的计算

合集下载

中考数学复习专题24:圆的有关计算(含中考真题解析)

中考数学复习专题24:圆的有关计算(含中考真题解析)

专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。

2025年四川省聚焦中考数学必备考点透析-第6章 圆6.4 与圆有关的弧长和面积计算

2025年四川省聚焦中考数学必备考点透析-第6章 圆6.4 与圆有关的弧长和面积计算
∵∠ ABA '=120°,
∴∠ BAA '=30°,
返回目录
18
∴ AC = AB ·cos 30°=30×

=15

(厘米),
∴ AA '=2 AC =30 厘米,
∴这条彩带的最短长度是30 厘米.
答案: B
返回目录
19
(河南中考)如下图,将扇形 AOB 沿 OB 方向平移,使点 O 移
时,一般有两种情况,要注意分类讨论,不要漏解.
返回目录
11
(2)圆锥的侧面展开图:圆锥的侧面展开图是一个扇形,这个扇形的半
径是圆锥侧面的⑨
母线长
,弧长是圆锥底面圆的周长,圆心是圆锥
的顶点.
返回目录
12
(3)圆锥的有关计算:设圆锥底面圆的半径为 r ,侧面母线长(扇形半
径)为 l ,底面圆周长(扇形弧长)为 c ,它的侧面积和表面积如下表:
分割时,整个图形也能彻底分割成规则图形,那么利用两种不同分割方
式对整个图形的面积计算的表达式不同,可以建立方程来求解阴影部分
面积.如图4, S阴影+ S扇形 CBC'+ S△ ABC = S△ A' BC'+ S扇形 A' BA .
返回目录
9
1. 圆柱的有关计算
图形
圆柱的侧面积
S侧=④ 2π rh
6
(2)等积转化法:通过等面积转化,将不规则阴影部分的面积转化
为规则图形的面积进行计算.等面积变换主要有两种:一种是三角形
的同底等高(或等底等高)转化,如图1,可将阴影部分的面积转化
为扇形面积进行计算;另一种是将多个小扇形拼成一个圆心角已知的
大扇形进行计算,如图2,可将两个小扇形的面积和转化为四分之一

九年级中考数学复习课(与圆有关的计算)

九年级中考数学复习课(与圆有关的计算)
东东平平县初县中初数学中总数复学习
典型例题
•例1(正多边形与圆) •如图,正方形ABCD内接于⊙O,其边长为4, 则⊙O的内接正三角形EFG的边长为 ______.
东东平平县初县中初数学中总数复学习
练习
•1如图,正六边形ABCDEF内接于 ⊙O,正六边形的周长是12,则⊙O 的半径是_2___
东东平平县初县中初数学中总数复学习
•A.π B.2π C.
D. π
东东平平县初县中初数学中总数复学习
练习
•1.( 202X·兰州) D
如图1是一块弘 扬 “社会主义核
东东平平县初县中初数学中总数复学习
练习
•2.(202X·衢州)已知扇形的半径 为6,圆心角为150°,则它的 面积是(D ) •A.π B.3π C.5π D.15π
练习
•2.如图,A,B,C,D,为一个正多边形的顶 点,O为正多边形的中心,若∠ADB=18º,则
这个正多边形的边数为_1_0_.
东东平平县初县中初数学中总数复学习
典型例题
• 例2(弧长的计算) • 如图,△ABC是正三角形,曲线CDEF…叫做“正 三角形的渐开线”,其中CD,DE,EF,…的圆心按 点A,B,C循环.如果AB=1,那么曲线CDEF的长是
小正方形的边长均为 1,点 A,B,D 均
在小正方形的顶点上,且点 B,C在弧AD
上,∠BAC=22.5°,则弧BC的长
5
B
____4________
C
A
D
东东平平县初县中初数学中总数复学习
典型例题
•例3(计算扇形的面积)
•如图,AB是⊙O的直径,弦CD⊥AB,
∠CDB=30°,CD=2,则S阴影=( D )

考点19与圆有关的计算-中考数学考点一遍过

考点19与圆有关的计算-中考数学考点一遍过

考点19与圆有关的计算-中考数学考点一遍过考点19:与圆有关的计算在中考数学中,与圆有关的计算是一个重要的考点。

掌握了这个考点,可以帮助我们解决与圆相关的各种问题。

一、圆的周长和面积的计算圆的周长C和面积S是圆的两个重要的数学量。

它们可以通过半径r或直径d来计算。

1.圆的周长C的计算:圆的周长C可以通过下面的公式计算:C=2πr或C=πd其中,π取近似值3.142.圆的面积S的计算:圆的面积S可以通过下面的公式计算:S=πr²或S=(π/4)d²其中,π取近似值3.14例题1:一个圆的直径为14cm,求其周长和面积。

解:已知直径d=14cm,半径r=d/2=14/2=7cm。

根据公式可得:C = πd = 3.14 × 14 ≈ 43.96cmS = πr² = 3.14 × 7² ≈ 153.86cm²二、圆的弧长和扇形面积的计算除了圆的周长和面积,还有两个与圆有关的重要计算量:圆的弧长和扇形面积。

1.圆的弧长L的计算:当所给定的角度为α(单位为度)时,弧长L可以通过下面的公式计算:L=(α/360)×2πr其中,α为角度,r为半径。

2.扇形的面积A的计算:当所给定的角度为α(单位为度)时,扇形的面积A可以通过下面的公式计算:A=(α/360)×πr²其中,α为角度,r为半径。

例题2:一个半径为10cm的扇形的角度为72°,求其弧长和面积。

解:已知r=10cm,α=72°。

根据公式可得:L = (α/360)× 2πr = (72/360)× 2 × 3.14 × 10 ≈37.68cmA = (α/360)× πr² = (72/360)× 3.14 × 10² ≈ 157cm²三、圆的坐标计算圆在平面直角坐标系中可以通过圆心的坐标和半径来确定。

九年级上册数学弧长和扇形面积

九年级上册数学弧长和扇形面积

九年级上册数学弧长和扇形面积一、弧长公式。

1. 公式推导。

- 在圆中,圆心角n^∘所对的弧长l与圆周长C = 2π r(r为圆的半径)存在比例关系。

- 因为整个圆的圆心角是360^∘,所以圆心角为n^∘所对的弧长l=(n)/(360)×2π r=(nπ r)/(180)。

2. 应用示例。

- 例:已知圆的半径r = 5cm,圆心角n = 60^∘,求弧长l。

- 解:根据弧长公式l=(nπ r)/(180),将r = 5cm,n = 60^∘代入公式,得到l=(60×π×5)/(180)=(5π)/(3)cm。

二、扇形面积公式。

1. 公式推导。

- 方法一:与弧长公式推导类似,因为扇形面积S与圆面积S=π r^2也存在比例关系,对于圆心角为n^∘的扇形,其面积S=(n)/(360)×π r^2。

- 方法二:由S=(1)/(2)lr(l为弧长,r为半径),把l = (nπ r)/(180)代入可得S=(1)/(2)×(nπ r)/(180)× r=frac{nπ r^2}{360}。

2. 应用示例。

- 例:已知扇形的半径r = 4cm,圆心角n = 90^∘,求扇形面积。

- 解:- 方法一:根据S=(n)/(360)×π r^2,将r = 4cm,n = 90^∘代入,得到S=(90)/(360)×π×4^2=4π cm^2。

- 方法二:先求弧长l=(nπ r)/(180)=(90×π×4)/(180)=2π cm,再根据S=(1)/(2)lr,l = 2π cm,r = 4cm,得到S=(1)/(2)×2π×4 = 4π cm^2。

三、弓形面积。

1. 弓形的定义。

- 弓形是由弦及其所对的弧组成的图形。

2. 弓形面积的计算。

- 当弓形所含的弧是劣弧时,弓形面积S_弓=S_扇-S_(S_扇为扇形面积,S_为三角形面积)。

圆的弧长和面积计算

圆的弧长和面积计算

圆的弧长和面积计算圆是数学中的一个基础几何图形,具有很多重要的性质和特征。

在计算圆的弧长和面积时,我们需要了解一些相关的公式和概念。

本文将介绍如何准确计算圆的弧长和面积,并提供一些实际应用的例子。

1. 圆的弧长计算圆的弧长是指圆周上一段弧与圆心所对的圆心角所对应的弧长。

当我们知道圆的半径r和所对应的圆心角θ时,可以通过以下公式计算圆的弧长:弧长= 2πr(θ/360°)其中,π是一个常数,约等于3.14159。

举个例子,假设有一个半径为5cm的圆,它的圆心角为60°,我们可以计算出这段弧的弧长:弧长= 2π × 5cm × (60°/360°)= 2π × 5cm × (1/6)≈ 5π/3 cm≈ 5.24 cm因此,这段弧的弧长约为5.24 cm。

2. 圆的面积计算圆的面积是指圆内部的所有点组成的区域的大小。

当我们知道圆的半径r时,可以通过以下公式计算圆的面积:面积= πr²同样地,π是一个常数,约等于3.14159。

举个例子,假设有一个半径为3cm的圆,我们可以计算出这个圆的面积:面积= π × (3cm)²= 9π cm²≈ 28.27 cm²所以,这个圆的面积约为28.27 cm²。

3. 实际应用圆的弧长和面积计算在实际中有广泛的应用。

以下是一些例子:3.1 环形跑道长度计算假设一个田径场有一个内半径为30m,外半径为40m的环形跑道。

我们可以计算出这条跑道的长度:内环长= 2π × 30m≈ 188.5m外环长= 2π × 40m≈ 251.3m环形跑道长度 = 外环长 - 内环长≈ 251.3m - 188.5m≈ 62.8m所以,这个环形跑道的长度约为62.8m。

3.2 扇形面积计算假设你要制作一个扇形形状的餐桌布料,桌子为圆形,半径为80cm,你希望餐桌布料能够覆盖半圆形区域。

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时,主要介绍了弧长和扇形面积的计算方法。

这部分内容是圆的知识的重要组成部分,也是中考的热点。

通过本节课的学习,让学生掌握弧长和扇形面积的计算公式,理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。

二. 学情分析九年级的学生已经学习了平面几何、代数等基础知识,具备一定的逻辑思维能力和空间想象能力。

但是,对于弧长和扇形面积的计算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解概念,掌握计算方法。

三. 说教学目标1.知识与技能目标:让学生掌握弧长和扇形面积的计算公式,能够正确计算弧长和扇形面积。

2.过程与方法目标:通过观察、实验、推理等方法,让学生理解弧长和扇形面积的概念,培养学生的空间想象能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够主动探索数学问题。

四. 说教学重难点1.教学重点:弧长和扇形面积的计算公式。

2.教学难点:理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的创新能力。

2.教学手段:利用多媒体课件、实物模型等,帮助学生直观地理解弧长和扇形面积的概念,提高学生的学习兴趣。

六. 说教学过程1.导入:通过展示生活中的实例,引发学生对弧长和扇形面积的思考,激发学生的学习兴趣。

2.新课导入:介绍弧长和扇形面积的概念,引导学生理解弧长和扇形面积的计算公式。

3.实例讲解:通过具体的例子,讲解弧长和扇形面积的计算方法,让学生加深理解。

4.练习巩固:设计相关的练习题,让学生运用所学的知识进行计算,巩固学习成果。

5.拓展提高:引导学生思考实际问题,运用弧长和扇形面积的知识解决问题,提高学生的应用能力。

圆的面积与弧长

圆的面积与弧长

圆的面积与弧长在几何学中,圆是一种特殊的几何形状,它由所有与中心点距离相等的点组成。

圆的面积和弧长是圆形特有的属性,它们是圆的重要性质之一。

一、圆的面积圆的面积是指圆形所包含的平面区域的大小。

要计算圆的面积,我们需要使用圆的半径(r)这个重要参数。

圆的面积公式为:A = πr²其中,A代表圆的面积,π(pi)是一个数学常数,约等于 3.14159,r代表圆的半径。

以一个半径为5cm的圆为例,通过应用公式A = πr²,我们可以计算出该圆的面积:A = 3.14159 × 5² = 3.14159 × 25 ≈ 78.54 平方厘米因此,该圆的面积约为78.54平方厘米。

二、圆的弧长圆的弧长是指圆周上的某一部分的长度。

同样地,我们需要圆的半径(r)来计算圆的弧长。

圆的弧长公式为:L = 2πr其中,L代表圆的弧长,π为数学常数,r为圆的半径。

举个例子,对于一个半径为8cm的圆,我们可以应用公式L = 2πr 计算其弧长:L = 2 × 3.14159 × 8 ≈ 50.27 厘米因此,该圆的弧长约为50.27厘米。

圆的面积与弧长是紧密相关的。

事实上,我们可以通过圆的弧长来计算圆的面积。

三、圆的面积与弧长的关系圆的面积与弧长之间存在一种重要的关系,就是弧长所对应的圆心角(θ)。

在一个完整的圆中,圆心角的度数为360度,相应的弧长等于圆的周长。

因此,圆的周长公式为L = 2πr。

如果我们只关注圆的一部分,其所对应的圆心角为θ度(θ小于360度),弧长L与圆的周长之间的关系可以由以下公式表示:L = 2πr × (θ/360)根据这个公式,我们可以通过已知弧长和圆的半径来计算圆心角。

同时,我们也可以利用圆心角来计算圆的面积。

四、通过弧长计算圆的面积如果我们知道圆的弧长L和半径r,想要计算圆的面积A,可以采用以下步骤:1. 计算圆心角θ:θ = (L / 2πr) × 3602. 根据已知的半径r和得到的圆心角θ,计算圆的面积A:A = πr² × (θ/360)通过以上步骤,我们可以利用圆的弧长L和半径r来计算圆的面积A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪训练28 圆的弧长和图形面积的计算一、选择题 1.(2011·潜江)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作△ABC 的外接圆⊙O ,则AC 的长等于( )A.34π B.54π C.32π D.52π 答案 D解析 如图,易知AC =BC ,AC ⊥BC ,所以AB 是⊙O 的直径,连OC ,则∠AOC =90°,A C 的长等于90180π×5=52π .2.(2010·丽水)小刚用一张半径为24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10 cm ,那么这张扇形纸板的面积是( )A .120π cm 2B .240π cm 2C .260π cm 2D .480π cm 2 答案 B解析 根据圆的周长公式,得圆的底面周长=2π ×10=20π ,即扇形的弧长是20π ,所以扇形的面积=12lr =12×20π ×24=240π ,故选B.3.(2011·广安)如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点,且PC =23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(4+6π) cm B .5 cmC .3 5cmD .7 cm答案 B解析 如图,将圆柱的侧面展开,可求得AC =12×6=3,PC =23BC =23×6=4.在Rt △P AC 中,P A =32+42=5,所以从A 点到P 点的最短距离是5.4.(2011·常德)已知圆锥底面圆的半径为6 cm ,高为8 cm ,则圆锥的侧面积为( )cm 2. A .48 B .48π C .120π D .60π 答案 D解析 ∵r =6,h =8,又r 2+h 2=l 2,∴l =62+82=10, ∴S 圆锥侧=πrl =π×6×10=60π. 5.(2011·泉州)如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ′,则图中阴影部分的面积是( )A .3πB .6πC .5πD .4π 答案 B解析 设AB ′与半圆周交于C ,半圆圆心为O ,连接OC .∵∠B ′AB =60°,OA =OC ,∴△AOC 是等边三角形,∠AOC =60°,∠BOC =120°,S 扇形ABB ′=60360π×62=6π,∴S阴影=S 半圆AB ′+S 扇形AB ′B -S 半圆AB =S 扇形AB ′B =6π.二、填空题 6.(2011·德州)母线长为2,底面圆的半径为1的圆锥的侧面积为___________. 答案 2π解析 S 圆锥侧=π×1×2=2π. 7.(2011·绍兴)一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为______.答案 1解析 圆锥展开图扇形面积为90360π×42,圆锥的侧面积为π×r ×4,∴90360π×42=π×r ×4,r =1.8.(2011·重庆)在半径为4π的圆中,45°的圆心角所对的弧长等于________.答案 1解析 据弧长公式,l =n πr180=45×π×4π180=1.9.(2011·台州)如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为点M ,AB =20.分别以DM 、CM 为直径作两个大小不同的⊙O 1和⊙O 2,则图中所示的阴影部分面积为___________.(结果保留π)答案 50π解析 ∵直径DC ⊥AB ,∴AM =BM =12×20=10.由相交弦定理,得CM ·DM =AM ·BM =10×10=100,∴S 阴影=π×⎝⎛⎭⎫12CD 2-π×⎝⎛⎭⎫12DM 2-π×⎝⎛⎭⎫12CM 2 =14π×(CD 2-DM 2-CM 2) =14π×[(CM +DM )2-DM 2-CM 2] =14π×(2CM ×DM ) =12π×CM ×DM =12π×100=50π.10.(2011·泉州)如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形AB C.那么剪下的扇形ABC (阴影部分)的面积为______;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r =______.答案 2π;33解析 连接OA 、OB ,画OD ⊥AC 于D .∵扇形ABC 为最大圆心角为60°的扇形, ∴点B 、O 、D 在同一条直线上,BD ⊥AC . ∵OA =OB ,∴∠ABD =∠BAO =30°,∠OAD =30°. 在Rt △OAD 中,OA =2,∴OD =1,AD =3,AC =2AD =2 3.∴S 阴影=60360π×(2 3)2=2π.∵弧BC 的长=60180π×2 3,∴2πr =60180π×2 3,∴r =33. 三、解答题 11.(2011·汕头)如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿着x 轴向右平移4个长度单位得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴、y 轴正半轴的交点为A 、B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).解 (1)如图所示,两圆外切.(2)劣弧的长度l =90π·2180=π.劣弧和弦围成的图形的面积为S =14π·4-12×2×2=π-2.12.(2011·杭州)在△ABC 中,AB =3,AC =2,BC =1. (1)求证:∠A ≠30°;(2)将△ABC 绕BC 所在直线旋转一周,求所得几何体的表面积.解 (1)证明:在△ABC 中,∵AB 2=3,AC 2+BC 2=2+1=3,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴sin A =BC AB =3≠12,∴∠A ≠30°.(2)将△ABC 绕BC 所在直线旋转一周,所得的几何体为圆锥,由题意得r =2,l = 3. ∴S 圆锥侧=π×2×3=6π,S 底=π×(2)2=2π. ∴S 表面积=6π+2π.13.(2011·湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC =60°,OC =2.(1)求OE 和CD 的长;(2)求图中阴影部分的面积. 解 (1)在△OCE 中, ∵∠CEO =90°,∠EOC =60°,OC =2,∴OE =12OC =1,∴CE =32OC = 3.∵OA ⊥CD ,∴CE =DE ,∴CD =2 3.(2) ∵S △ABC =12AB ·CE =12×4×3=2 3,∴S 阴影=12π×22-2 3=2π-2 3.14.(2011·泉州)如图,在△ABC 中,∠A =90°,O 是BC 边上一点,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,连接OD .已知BD =2,AD =3.求:(1)tan C ;(2)图中两部分阴影面积的和.解 (1)如图,连接OE .∵AB 、AC 分别切⊙O 于D 、E 两点, ∴∠ADO =∠AEO =90°. 又∵∠A =90°,∴四边形ADOE 是矩形. ∵OD =OE ,∴四边形ADOE 是正方形. ∴OD ∥AC ,OD =AD =3. ∴∠BOD =∠C .在Rt △BOD 中,tan ∠BOD =BD OD =23.∴tan C =23.(2)如图,设⊙O 与BC 交于M 、N 两点. 由(1)得,四边形ADOE 是正方形, ∴∠DOE =90°.∴∠COE +∠BOD =90°.∵在Rt △EOC 中,tan C =23,OE =3,∴EC =92.∴S 扇形DOM +S 扇形EON =S 扇形DOE =14S ⊙O =14π×32=94π.∴S 阴影=S △BOD +S △COE -()S 扇形DOM +S 扇形EON =12×2×3+12×3×92-94π=394-94π. ∴图中两部分阴影面积的和为394-94π.15.(2011·怀化)如图,已知AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于E ,OF ⊥AC 于F ,BE =OF .(1)求证:OF ∥BC ;(2)求证:△AFO ≌△CEB ;(3)若EB =5 cm ,CD =103cm ,设OE =x ,求x 值及阴影部分的面积. 解 (1)∵AB 为⊙O 的直径, ∴∠ACB =90°.又∵OF ⊥AC 于F ,∴∠AFO =90°, ∴∠ACB =∠AFO . ∴OF ∥BC .(2)由(1)知,∠CAB +∠ABC =90°. ∵AB ⊥CD 于E , ∴∠BEC =90°,∠BCE +∠ABC =90°, ∴∠BCE =∠CAB .又∵∠AFO =∠BEC ,BE =OF , ∴△AFO ≌△CEB .(3)∵AB 为⊙O 的直径,CD 是弦,AB ⊥CD ,∴∠OEC =90°,CE =12CD =12×10 3=5 3.在Rt △OCE 中,OE =x ,则OB =5+x =OC , 由勾股定理得:OC 2=OE 2+EC 2, ∴(5+x )2=()5 32+x 2,解得x =5. 在Rt △OCE 中,tan ∠COE =5 35= 3.∵∠COE 为锐角, ∴∠COE =60°.由圆的轴对称性可知阴影部分的面积为: S 阴影=2(S 扇形OBC -S ΔOEC )=2×(60π×102360-12×5 3×5)=100π3-25 3(cm 2).。

相关文档
最新文档