圆的中心对称性
圆的认识(二)知识点总结

圆的认识(二)知识点总结一、圆的对称性。
1. 轴对称性。
- 圆是轴对称图形,其对称轴是任意一条经过圆心的直线。
圆有无数条对称轴。
- 例如,我们可以将一个圆形纸片沿着任意一条通过圆心的直线对折,对折后的两部分都能完全重合,这就体现了圆的轴对称性。
2. 中心对称性。
- 圆也是中心对称图形,对称中心为圆心。
- 把一个圆绕着圆心旋转任意一个角度后,都能与原来的图形重合。
在圆形的转盘游戏中,转盘绕着圆心旋转后,其位置虽然改变了,但形状和大小不变,这就是圆的中心对称性的体现。
二、弧、弦、圆心角的关系。
1. 定义。
- 圆心角:顶点在圆心的角叫做圆心角。
例如在圆O中,∠ AOB的顶点O 是圆心,所以∠ AOB是圆心角。
- 弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A、B为端点的弧记作overset{frown}{AB}。
- 弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆内最长的弦。
例如在圆O中,线段AB是弦,若AB经过圆心O,则AB是直径。
2. 关系定理。
- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
- 例如,在圆O中,如果∠ AOB=∠ COD,那么overset{frown}{AB}=overset{frown}{CD},AB = CD。
3. 推论。
- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
三、圆周角。
1. 定义。
- 顶点在圆上,并且两边都与圆相交的角叫做圆周角。
例如在圆O中,∠ACB的顶点C在圆上,且AC、BC都与圆相交,所以∠ ACB是圆周角。
2. 圆周角定理。
- 一条弧所对的圆周角等于它所对的圆心角的一半。
- 例如,在圆O中,弧overset{frown}{AB}所对的圆周角∠ ACB和圆心角∠ AOB,则∠ ACB=(1)/(2)∠ AOB。
圆的对称性

圆的对称性温故知新:1.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.求证: ∠OBA=∠OCD1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
【例1】如图,AB、AC、BC是⊙O的弦,∠AOC=∠BOC.∠ABC与∠BAC相等吗?为什么?【例2】如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,DE的度数.CA为半径的圆交AB于点D,交BC与点E.求⌒AD、⌒【例3】如图,在同圆中,若⌒AB=2⌒CD,则AB与2CD的大小关系是( ) .A. AB>2CDB. AB<2CDC. AB=2CDD. 不能确定【例4】如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.【例5】如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?【例6】有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?课堂练习1.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =122°,则∠AOC 的度数为( )A .122°B .120°C .61°D .58°2.下列结论中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .等弧所对的圆心角相等C .相等的圆心角所对的弧相等D .长度相等的两条弧是等弧3.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 等于( )A .40°B .45°C .50°D .60°4.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是________.5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE =________°.6.在⊙O 中,若弦AB 的长恰好等于半径,则弦AB 所对的圆心角的度数为________.7.如图,在⊙O 中,AB ,CD 是两条直径,弦CE ∥AB ,EC ︵的度数是40°,求∠BOD的度数.8.已知:如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3.(1)求⊙O 的半径;(2)若P 是AB 上的一动点,试求OP 的最大值和最小值.9.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D.(1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.10.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为D.要使四边形OACB 为菱形,还需添加一个条件,这个条件可以是( )A .AD =BDB .OD =CDC .∠CAD =∠CBDD .∠OCA =∠OCB11.如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.12.如图,AB是⊙O的直径,AB=4,M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.13.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3 cm,BC=10 cm,以BC 为直径作⊙O交射线AQ于E,F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.14.如图,某地有一座圆弧形拱桥,圆心为O,桥下水面宽度AB为7.2 m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,则此货船能否顺利通过这座拱桥?15.如图,AB,CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,试求PA+PC的最小值.课后练习1.圆是轴对称图形,____________都是它的对称轴,因此圆有________条对称轴.2.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论中不一定正确的是( )A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE3.在⊙O 中,非直径的弦AB =8 cm ,OC ⊥AB 于点C ,则AC 的长为( )A .3 cmB .4 cmC .5 cmD .6 cm4.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D .若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .55.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .86.如图,AB 是⊙O 的直径,C 是⊙O 上的一点.若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为________.7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.8.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A ,B ,外圆半径OC ⊥AB 于点D 交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径是________cm .。
圆的对称性

圆的对称性〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径.轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆. 集合说:到定点的距离等于定长的点的集合叫做圆.点与圆的位置三种位置关系:________、________、________.〖有关圆的基本性质与定理〗圆的确定:不在同一直线上的三个点确定一个圆.圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.垂径定理的推论:推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧 推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等类型一、判断点和圆的位置关系:【例1】已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判定点P 与圆的位置关系,并说明理由.【例2】若A e 的半径为5,点A 的坐标为(3,4)点P 的坐标为(5,8)则点P 和A e 的位置关系.【搭配练习】1、已知a 、b 、c 是△ABC 的三边长,外接圆的圆心在△ABC 一条边上的是( )A.a=15,b=12,c=1B.a=5,b=12,c=12C.a=5,b=12,c=13D.a=5,b=12,c=142、如图,点A 、B 、C 表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.类型二、垂径定理的应用【例3】1、如图,AB 是⊙O 的一条弦,OC ⊥AB 于点C ,OA = 5,AB = 8,求OC 的长.2、如图,⊙O 的半径为5,圆心O 到弦AB 的距离为3,则圆上到弦AB 所在的直线距离为2的点有( ).A . 1个B . 2个C . 3个D . 4个3、如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为______.4、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为_________.5、如图,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于B 、C 两点,已知B (8,0),C (0,6),则⊙A 的半径为____________.6、在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与交于点,则AD 的长为( ). A. 95 B. 245 C. 185 D. 527、如图,在以点O 为圆心的两个圆中,大圆的弦AB 交小圆于点C 、D ,求证:AC=BD .A B C OC AD B8、如图是一名考古学家发现的一块古代车轮碎片,你能帮他找到这个车轮的半径吗?(画出示意图,保留作图痕迹)【搭配练习】1、如图,AB是⊙O的直径,弦CD⊥AB于点E,已知,CD=8,AE=2,求⊙O的半径.2、如图,⊙O的半径为5,AB为弦,OC⊥AB,交AB于点D,交⊙O于点C,CD=2,求弦AB 的长.3、如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5.求AB的长度.Θ与x轴交于O,A 4、如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ的半径为13,则点P的坐标为 ____________.两点,点A的坐标为(6,0),P类型三、圆中两条弦的问题:【例4】1、如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD 的上方,求AB和CD间的距离.2、AB,AC分别是⊙O中的两条弦,圆的半径为2,且AB=23,AC=22,求BAC3、已知⊙O的半径为13,弦.AB CDP AB=24cm,CD=10cm,求AB和CD的距离。
圆的对称性作图方法有哪些

圆的对称性作图方法有哪些
圆的对称性作图方法有以下几种:
1. 中心对称法:圆具有中心对称性,即圆心是对称中心。
通过将圆心的两侧相等部分进行对称绘制,可以得到圆的完整图形。
2. 轴对称法:圆通过旋转轴对称性得到图形。
在圆上任选两点作为轴,将轴上每个点与圆心连线的两侧相等部分进行对称绘制,即可得到圆的完整图形。
3. 线对称法:除了圆心,圆的任意一点也可以作为对称中心。
选定一点作为对称中心,将该点与圆上每个点连线的两侧相等部分进行对称绘制,即可得到完整的圆的图形。
4. 高度对称法:圆的直径是圆的最长线段,也是圆的对称轴。
通过在圆上取一直径,并将直径两侧的相等部分进行对称绘制,即可得到完整的圆的图形。
5. 弧对称法:圆的弧是圆上的一段连续的弯曲线。
通过在圆上取一段弧,并将该弧两侧的相等部分进行对称绘制,即可得到完整的圆的图形。
6. 正方形对称法:正方形具有四个对称轴,其中两条对角线相交于圆心。
通过以圆心为中心,将正方形的四个顶点与圆的每个点连线,对称绘制四个相等部分,即可得到完整的圆的图形。
这些对称性作图方法可以通过在纸上使用铅笔和直尺进行实际操作,也可以通过计算机绘图软件进行虚拟绘制。
无论使用哪种方法,都可以准确地绘制出圆的对称图形。
2022年九年级数学上册第3章对圆的进一步认识3.1圆的对称性教案新版青岛版

3.1圆的对称性教学目标【知识与能力】(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.【过程与方法】(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.【情感态度价值观】经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.教学重难点【教学重点】对圆心角、弧和弦之间的关系的理解.【教学难点】能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.课前准备多媒体课件教学过程一、创设情境,导入新课问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.二、探究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:垂径定理按下面的步骤做一做:1.在一张纸上任意画一个⊙O ,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD .3.在⊙O 上任取一点A ,过点A 作CD 折痕的垂线,得到新的折痕,其中,点M 是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B ,如上图.师:老师和大家一起动手.(教师叙述步骤,师生共同操作)师:通过第一步,我们可以得到什么?学生齐声:可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.师:很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?生:我发现了,AM =BM ,AC BC =,AD BD =.师:为什么呢?生:因为折痕AM 与BM 互相重合,A 点与B 点重合.师:还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?师生共析:如下图示,连接OA 、OB 得到等腰△OAB ,即OA =OB .因CD ⊥AB ,故△OAM 与△OBM 都是Rt △,又OM 为公共边,所以两个直角三角形全等,则AM =BM .又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC 重合,AD 与BD 重合.因此AM =BM ,AC =BC ,AD =BD .师:在上述操作过程中,你会得出什么结论?生:垂直于弦的直径平分这条弦,并且平分弦所对的弧.结论:垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧.例1:如教材69页图3-4,以△OAB 的顶点O 为圆心的⊙O 交AB 于点C ,D ,且AC =BD .求证:OA =OB .例2:1400多年前,我国隋唐时期建造的赵州石拱桥的桥拱近似于圆弧形,它的跨度为37.02m ,拱高(弧的中点到弦的距离,也叫弓形的高)为7.23m.求拱桥所在圆的半径(精确到0.1m).知识点三:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.知识点四:同圆或等圆中圆心角、弧、弦之间的关系做一做:在等圆⊙O 和⊙O '中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.小红认为''=AB A B ,''=AB A B ,她是这样想的:∵半径OA 重合,'''∠∠=AOB A O B ,∴半径OB 与OB '重合,∵点A 与点A '重合,点B 与点B '重合,∴AB 与A B ''重合,弦AB 与弦A B ''重合,∴AB =A B '',AB =A B ''.生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,谈谈各自想法,教师点拨.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.例3:如书本71页图3-11,AB 与DE 是⊙O 的两条直径,C 是⊙O 上一点,AC ∥DE .求证:(1)弧AD =弧CE ;(2)BE =EC .知识点五:圆心角的度数与它所对弧的度数之间的关系思考:(1)把顶点在圆心的周角等分成360份,每份圆心角的度数是多少?(2)把顶点在圆心的周角等分成360份时,整个园被分成了多少份?每一份的弧是否 相等?为什么? 师:整个圆1360的叫做1°的弧.1°的圆心角所对的弧是多少度;反之,1°的弧所对的圆心角是多少度.圆心角与它所对的弧有什么关系?生:1°的圆心角所对的弧是1°;1°的弧所对的圆心角是1°.结论:圆心角的度数与它所对弧的度数相等.例4:如书本73页图3-14,OA ,OC 是⊙O 中两条垂直的直径,D 是⊙O 上的一点.连接AD 并延长与OC 的延长线相交于点B ,∠B =25°.求弧AD ,弧CD 的度数.例5:如书本73页图3-15,在⊙O 中,弦AB 所对的劣弧为圆的31,圆的半径为2cm ,求AB 的长. 三、随堂练习1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形但不是轴对称图形;(3)既是轴对称图形又是中心对称图形.3.已知,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB 的中点,试确定四边形OACB 的形状,并说明理由.四、自我小结,获取感悟1.对自己说,你在本节课中学习了哪些知识点?有何收获?2.对同学说,你有哪些学习感悟和温馨提示?3.对老师说,你还有哪些困惑?。
圆的定义及对称性

圆的定义与圆的对称性【知识要点】(1)在同一平面内,一条线段OP 绕它固定的一个端点O 旋转一周,另一个端点P 所经过的封闭曲线叫做圆.定点O 就是圆心,线段OP 就是圆的半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 说明:①这是圆的描述性定定义,由定义可以看出:确定圆的两个条件是圆心和半径,圆心确定圆的位置,圆的半径确定圆的大小;②要注意圆是指“圆周”,而非“圆面”.(2)在同一个平面内,圆是到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径. 说明:这是圆的点集定义,它包括两个方面的含义:①圆上各点到定点(即圆心)的距离等于定长(即半径);②.到定点的距离等于定长的点都在圆上点和圆的位置关系有点在圆内、点在圆上、点在圆外三种,点和圆的位置关系是由这个点到圆心的距离与圆的半径的大小关系决定的.如果圆的半径是r ,这个点到圆心的距离为d ,那么点在圆外d r ⇔>;点在圆上d r ⇔=;点在圆内d r ⇔<圆是轴对称图形,其对称轴是任意一条过圆心的直线(通过折叠可发现此性质) 圆是中心对称图形,对称中心是圆心(利用旋转的方法可以得到此性质)圆具有旋转不变性:一个圆绕着它的圆心旋转任意角度,都能与原来的图形重合.(1)中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
轴对称图形是指沿对称轴对折后完全重合的图形.。
(2)圆的对称轴是直线,不能说直径是它的对称轴,而应说直径所在的直线是它的对称轴;圆的对称轴有无数条(1)经过圆心的弦叫做直径,直径等于半径的2倍(2A 、B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”大于半圆的弧叫做优弧(用三个字母表示);小于半圆的弧叫做劣弧(3提示:①同圆是指同一个圆;等圆、同心圆是指两个圆的关系,等圆是指能够重合,圆心不同的两个圆 ②等弧必须是同圆或等圆中的弧,因为只有在同圆或等圆中,两条弧才可能互相重合,长度相等的弧不一定是等弧(4垂直与弦的直径平分这条弦,并且平分弦所对的两条弧如图所示,∵ CD 是直径, C D ⊥AB∴ AE=BE,AC = BC, AD =BD 若一条直线①过圆心,②垂直于一条弦,则此直线①平 分此弦②平分此弦所对的优弧和劣弧(1)平分弦(不是直径)的直径垂直于弦,并 且平分弦所对的两条弧;(2)弦的垂直平分线经过圆 心,并且平分弦所对的两条弧;(3)平分弦所对的一 条弧的直径垂直平分弦,并且平分弦所对的另一条弧提示:(1)对于一个圆和一条直线来说,如果以①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧这五个条件中任何两个作为题设,那么其它三个就是结论 (2)在应用垂径定理与推论进行计算时,往往要构 造如图所示的直角三角形 ,根据垂径定理与勾股定 理有222()2ard =+根据此公式,在,,a r d 三个量中,知道任何两个量就可以求出第三个量在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组相等,那么它们所对应的其余各组量都分别相等.说明:(1)注意在“同圆或等圆中”这个条件(2)注意理解“所对应”的含义【典型例题】ABOC 2a rAdD例1、下列语句中不正确的是( )①直径是弦;②弧是半圆;③经过圆内一顶点可以作无数条弦;④长度相等的弧是等弧 A.①③④ B. ②③ C. ②④ D. ①④例2、由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为( ) A 、2或3 B 、3 C 、4 D 、2 或4例3、在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是例4、在△ABC 中,∠ACB=90°,AC=2cm,BC=4cm,CM 是AB 边上的中线,以点C为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .例5、在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,O D ⊥AB,O E ⊥AC 垂足分别为D 、E ,若AC=2cm ,则⊙O 的半径为 cm例6、如下图,菱形ABCD 的对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,那么E 、F 、G 、H 是否在同一个圆上?例7、如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B,与y 轴交于点C 、D,试求出点A 、B 、C 、D 的坐标.例8、海军部队在灯塔A 的周围进行爆破作业,A 的周围3km 的水域为危险水域,有一渔船误入离灯塔2km 的某处B ,为了尽快驶离危险区域,该船应按什么方向航行?请给予证明.EGBACDF H O例9、矩形的四个顶点是否能在同一个圆上,若在同一个圆上,请你指出来并加以证明例10、已知⊙O 的直径为10cm ,弦AB=6cm ,求圆心O 到弦AB 的距离.例11、在直径为650mm 的圆柱形油槽中装入一些油后,截面如图所示,如油面宽AB=600mm ,求油的最大深度【经典练习】1.下列命题中错误的命题有( )(1)弦的垂直平分线经过圆心;(2)平分弦的直径垂直于弦;(3)•梯形的对角线互相平分;(4)圆的对称轴是直径.A .1个B .2个C .3个D .4个2.点A 的坐标为(3,0),点B 的坐标为(0,4),则点B 在以A 为圆心, 6 为半径的圆的_______.3.已知⊙O 的半径为6cm,P 为线段OA 的中点,若点P 在⊙O 上,则OA 的长()A.等于6cmB.等于12cm ;C.小于6cmD.大于12cm 4.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短弦长是_______,最长的弦长_______.5.如图1,已知⊙O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP •的取值范围是_______.(1) (2)6.如图2,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE=3厘米,则OD=•___cm .7.如图3,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D ,若AC=8cm ,DE=2cm ,则OD 的长为________cm .8.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB •的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B 2CD .5:4BB(3) (4)9.如图4,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中错误的是( )A .∠COE=∠DOEB .CE=DEC .AE=BED . BDBC 10.如图,在以O 为圆心的两个同心圆的圆中,大圆弦AB 交小圆于C 、D 两点,•试判断AC与BD的大小关系,并说明理由.11.如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长.。
苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。
圆形对称图形的知识点总结

圆形对称图形的知识点总结
1. 圆的对称中心: 圆形是一种高度对称的图形,因此它的对称中心即为圆心。
无论是将圆
形沿着任何轴线进行翻转、旋转或倒影,都将得到一致的图形,因为圆形的每一点到圆心
的距离都相等。
2. 圆的轴对称: 圆形具有无数个轴对称轴线,这是因为圆形的任意一条直径都是它的轴对
称轴线。
将圆形沿着任意直径进行翻转、旋转或倒影,所得到的图形都与原图形完全一致。
3. 圆的中心对称: 圆形具有中心对称性,也就是说如果将圆形沿着圆心进行旋转180度,
那么所得到的图形与原图形将完全一致。
这是因为圆形的每一点到圆心的距离都相等,因
此无论如何旋转,都将得到一致的图形。
4. 圆形的旋转对称: 圆形在任意角度的旋转下都具有对称性,也就是说无论将圆形旋转多
少度,所得到的图形都与原图形完全一致。
这是因为圆形的每一点到圆心的距离都相等,
因此无论如何旋转,都将得到一致的图形。
5. 圆形的对称性质: 圆形的对称性质使得我们能够更好地理解和描述它的特征和性质。
通
过对称性的分析,我们可以得到许多重要的结论,例如圆形的面积公式和周长公式,圆形
的切线性质和弦的性质等等。
总之,圆形对称图形具有高度的对称性,包括轴对称、中心对称和旋转对称等多种对称性质。
这些对称性质使得我们能够更好地理解和描述圆形的特征和性质,为解决各种几何问
题提供了重要的理论基础。
因此,对圆形的对称性进行深入的研究和分析,有助于我们更
好地掌握几何学知识,提高解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∠ COD . 那么____________, AOB =∠ AB = CD,那么 AB=CD ,_____________.
,那么_____________, AB=CD . (3)如果∠AOB=∠COD,那么 AB = CD ,_________. )如果∠
1.如如,如 如
C D O
圆是中心对称图形, 一、圆是中心对称图形,具有旋转不变性
请回答:圆的对称中心,对称轴,对称轴有 几条?
圆中的圆心角、 二、圆中的圆心角、弧、弦关系定理
问题1:如图 ,将圆心角∠ 绕圆心O旋转到 问题 :如图1,将圆心角∠AOB绕圆心 旋转到 绕圆心 的位置, ∠A’OB’的位置,你能发现哪些等量关系?为什么? 的位置 你能发现哪些等量关系?为什么? 问题2:在⊙O与⊙O’中,∠AOB=∠A’O’B’,则 问题 :
圆圆圆圆圆圆 圆圆圆圆圆圆圆圆圆圆圆 。
例1:如如如 ABC中, ∠ C=90°, ∠ B=28°,以C为圆圆, : 中 为 以CA为为为圆圆 为AB于于D,为BC于于E, 为 于 , 于 , 求 AD, DE圆圆圆。 , 圆
B
D
E
A
C
例2:如如,AB,AC,BC都都 O圆的, ∠ AOC=∠ BOC, : 都 圆 , 圆 圆 ∠ ABC圆∠ BAC圆圆相?为为为?
A
C O D
B
4.如在圆 中,若 AB=2CD,则AB圆2CD圆的的 的的都( 如 , 圆 圆 (A)AB>2CD ) > (B)AB <2CD (C) AB=2CD =
B )
(D) 不不不 不
A C
B
O
D
概念: 三、概念:弧的度数
C D
1°圆圆
1°圆圆圆圆
O
n°圆圆圆圆
B A
n°圆圆
n°圆圆圆 圆圆的n °圆圆, n °圆圆圆 的n °圆圆圆 圆。
O中, AC =BD , ∠ AOB=50°,求 ∠ COD圆圆圆。 中 圆
B A
小试牛刀
2.如如,如 如
A
O中, AB =AC, ∠ A=40°,求 ∠ ABC圆圆圆。 中 , 圆
O B C
拓展提高
3.如如,如在圆中,若 ∠ AOB=2∠ COD,则 AB圆2CD圆的的的的都( 如 , 圆 圆 (A) AB >2CD ) (B)AB <2CD ) (C) AB=2CD = (D) 不不不不
∴ 与A' B' 重合,AB与A′B′重合. 重合, 与 重合. 重合 ABAB = AFra bibliotek B',
AB = A' B'.
定理 三、归纳
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等. 所对的弦也相等.
在同圆或等圆中,相等的弧所对的圆心角 在同圆或等圆中,相等的弧所对的圆心角 相等 , 所对的弦________; _____, 所对的弦 相等 ; 在同圆或等圆中, 在同圆或等圆中,相等的弦所对的圆心角 相等 ,所对的弧 相等 ______,所对的弧_________. .
A′ B B′ B′
A′ B
O
·
A
O
·
A
根据旋转的性质,将圆心角∠ 绕圆心O旋转到 根据旋转的性质,将圆心角∠AOB绕圆心 旋转到∠A′OB′的位 绕圆心 旋转到∠ 的位 置时, ∠AOB=∠A′OB′,射线 OA与OA′重合,OB与OB′重 置时, = , 与 重合, 与 重 重合 而同圆的半径相等, 合.而同圆的半径相等,OA=OA′,OB=OB′,∴点 A与 A′重 , , 与 重 重合. 与 重合 合,B与B′重合.
同圆或等圆中, 同圆或等圆中, 两个圆心角、 两个圆心角、两 条弧、 条弧、两条弦中 有一组量相等, 有一组量相等, 它们所对应的其 余各组量也相 等.
口答:如图, 、 是 的两条弦. 口答:如图,AB、CD是⊙O的两条弦. 的两条弦
小试 牛刀
∠AOB =∠COD . (1)如果 )如果AB=CD,那么 AB = CD ,_________________. ,那么___________,
解: ∠ ABC=∠ BAC
∵ ∠ AOC=∠ BOC
O
∴ AC=BC
∴ ∠ ABC=∠ BAC
A C B
小结: 小结: 1.圆是中心对称图形,圆心是它的对称中心。 圆是中心对称图形,圆心是它的对称中心。 圆是中心对称图形
2.在同圆或等圆中, 在同圆或等圆中 如果两个圆心角 两条弧 两条弦中有一组量相等, 圆心角, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。 那么它们所对应的其余各组都分别相等。 3. 圆圆圆圆圆圆 圆圆圆圆圆圆圆圆圆圆圆 。
,
在数量上存在什么关系? 在数量上存在什么关系 AB与 A ' B ,AB与A’B’在数量上存在什么关系? '
图1
探究
如图,将圆心角∠ 绕圆心O旋转到 的位置, 如图,将圆心角∠AOB绕圆心 旋转到∠A’OB’的位置, 绕圆心 旋转到∠ 的位置 你能发现哪些等量关系?为什么? 你能发现哪些等量关系?为什么?