2017年全国高中数学联赛江苏赛区预赛及详解
(完整版)2017年高考数学江苏卷试题解析

绝密★启用前2017 年一般高等学校招生全国一致考试(江苏卷)数学 I参照公式:柱体的体积 V Sh ,此中 S 是柱体的底面积,h 是柱体的高.球的体积 V4πR3,此中 R 是球的半径.3一、填空题:本大题共14 小题,每题 5 分,合计 70 分.请把答案填写在答题卡相应地点上.........1.已知会合 A {1,2} , B { a, a23},若 AI B {1} ,则实数a的值为▲.【答案】1【分析】由题意 1 B ,明显a2 3 3,所以a 1 ,此时a234,知足题意,故答案为1.2.已知复数 z (1i)(12i) ,此中 i 是虚数单位,则z 的模是▲.【答案】10【分析】z(1i)(1 2i)1i 1 2i2510 ,故答案为10 .3.某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为200,400,300,100 件.为查验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行查验,则应从丙种型号的产品中抽取▲件.【答案】 18【分析】应从丙种型号的产品中抽取6030018.18 件,故答案为10004.右图是一个算法流程图,若输入x的值为1 ,则输出y的值是▲.16【答案】2【分析】由题意得 y 2 log 212 ,故答案为 2 .16π1, 则tan▲.5.若 tan()64【答案】75tan()tan 1 177【分析】 tan tan[()]4461.故答案为.441tan()tan5514466.如图,在圆柱O1O2内有一个球 O ,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为 V1,球 O 的体积为 V2,则 V1的值是▲.V2【答案】32V1r 22r3【分析】设球半径为r ,则V24r 3 2 .故答案为3.327.记函数f (x)6 x x2的定义域为 D .在区间[4,5] 上随机取一个数x ,则x D的概率是▲.【答案】5 98.在平面直角坐标系 xOy 中,双曲线x2y21的右准线与它的两条渐近线分别交于点P ,Q,其焦点是3F1 , F2,则四边形 F1 PF2Q 的面积是▲.【答案】 2 3【分析】右准线方程为33103x ,设 P( 3 10,30),则Q(3 10,30),x10,渐近线方程为 y10310101010F 1 ( 10,0) , F 2 ( 10,0) ,则 S 21030 .2 3109.等比数列 { a n } 的各项均为实数,其前n7 63 项和为 S n ,已知 S 3, S 6,则 a 8 = ▲ .44【答案】 3210.某企业一年购置某种货物 600 吨,每次购置 x 吨,运费为 6 万元 /次,一年的总储存花费为4x 万元.要使一年的总运费与总储存花费之和最小,则x 的值是▲ .【答案】 30【分析】 总花费为 4x600 6900 4 2 900240 ,当且仅当 x900 ,即 x 30 时等号成立.x4( x) xx11.已知函数 f ( x)32 x x1 ,此中 e 是自然对数的底数.若f ( a 1)2) 0 ,则实数 a 的取值xee xf (2 a范围是 ▲ .【答案】 [1,1]2【分析】因为f ( x)x 3 2x1e xf ( x) ,所以函数 f ( x) 是奇函数,e x因为f '( x)3x 22 e x e x 3x 2 2 2 e x e x 0 ,所以数 f ( x) 在 R 上单一递加,又 f (a 1) f (2a 2 ) 0 ,即 f (2a 2 )f (1 a) ,所以 2a 2 1 a ,即 2a 2a 10,解得 1a 1 ,故实数 a 的取值范围为 [ 1,1] .2 uuur uuur uuur 21 1 uuur uuur,且 tan=712.如图, 在同一个平面内, 向量 OA ,OB ,OC 的模分别为 , , 2 ,OA 与 OC 的夹角为,uuur uuur 45° uuur uuur uuur (m, n R ) ,则 m nOB 与OC 的夹角为 .若 OC mOA nOB ▲ .【答案】 3【分析】由 tan7 可得 sin7 2, cos2 ,依据向量的分解, 101022 2n cos 45 m cos 2nm5n m 10 5 7 ,即210,即易得m sin5n 7m,即得 m, n,n sin 452 n 7 2 m 0442 10所以 m n 3 .uuur uuur13.在平面直角坐标系xOy 中, A( 12,0), B(0,6), 点 P 在圆 O : x 2y 250 上,若 PA PB ≤ 20, 则点 P 的横坐标的取值范围是▲.【答案】 [ 5 2,1]14 .设 f ( x) 是定义在 R 上且周期为x 2 , x D , n1 1 的函数,在区间 [0,1) 上, f ( x)D , 此中会合 D { x x,x, xnn N*} ,则方程 f (x)lg x0 的解的个数是▲.【答案】 8【分析】因为 f ( x) [0,1) ,则需考虑 1 x 10 的状况,在此范围内,x Q 且 xD 时,设 xq, p, q N * , p 2 ,且 p, q 互质,p若 lg xQ ,则由 lg x(0,1) ,可设 lg xn, m, n N * , m 2 ,且 m, n 互质,mnqnq m所以 10m,则 10 )lg xQ ,p( ,此时左侧为整数,右侧为非整数,矛盾,所以p所以 lg x 不行能与每个周期内x D 对应的部分相等,只要考虑 lg x 与每个周期 x D 的部分的交点,画出函数图象,图中交点除外(1,0) 其余交点横坐标均为无理数,属于每个周期 x D 的部分,且 x 1 处(lg x)111 邻近仅有一个交点,xln101 ,则在xln10所以方程 f ( x) lg x0 的解的个数为 8.二、解答题:本大题共 6 小题,合计90 分.请在答题卡指定地区内作答,解答时应写出文字说明、证明过........程或演算步骤.15.(本小题满分14 分)如图,在三棱锥A-BCD 中, AB ⊥AD, BC⊥ BD,平面 ABD ⊥平面 BCD ,点 E, F(E 与 A, D 不重合 )分别在棱AD, BD 上,且 EF⊥ AD .求证:( 1) EF∥平面 ABC;(2) AD⊥ AC.16.(本小题满分14 分)已知向量 a (cos x, sin x), b (3,3), x[0, π].( 1)若 a∥ b,求 x 的值;( 2)记 f ( x) a b ,求 f (x) 的最大值和最小值以及对应的x 的值.( 2)f (x)a b (cos x,sin x)(3,3)3cos x 3 sin x2π3 cos(x) .6因为,所以 x ππ 7π,进而1cos(xπ3.6[ ,])2 666于是,当 x π π0 时,3;6,即 x取到最大值6当 x π,即 x5π取到最小值 2 3 .6时,617.(本小题满分14 分)如图,在平面直角坐标系xOy 中,椭圆x2y21(a b0) 的左、右焦点分别为F1, F2,离心率为E :2b2a1,两准线之间的距离为8F1作直线 PF1的垂线 l1,过点 F22.点 P 在椭圆 E 上,且位于第一象限,过点作直线 PF2的垂线 l2.(1)求椭圆E的标准方程;(2)若直线 l1, l2的交点 Q 在椭圆E上,求点P的坐标.【分析】( 1)设椭圆的半焦距为c.因为椭圆 E 的离心率为1,两准线之间的距离为8c12a28 ,2,所以2,a c解得 a 2, c 1 ,于是b a2c23,所以椭圆 E 的标准方程是x2y21.43( 2)由( 1)知,F1(1,0) , F2 (1,0).设 P(x0 , y0 ) ,因为 P 为第一象限的点,故x00, y00 .当 x01时, l2与 l1订交于 F1,与题设不符.由①②,解得xx0 , y x021,所以 Q(x0,x21).y0y0因为点 Q 在椭圆上,由对称性,得x021221221 .y0y0,即x0y0或 x0y0又P在椭圆 E 上,故x02y02 1 .43x02y02147, y0 3 7x02y021由x02y02,解得x0;x02y021,无解.4317743所以点 P的坐标为(47,3 7).7718.(本小题满分16 分)如图,水平搁置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线 AC 的长为10 7 cm,容器Ⅱ的两底面对角线EG , E1G1的长分别为14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽视不计)( 1)将 l 放在容器Ⅰ中,l 的一端置于点 A 处,另一端置于侧棱CC1上,求l没入水中部分的长度;( 2)将 l 放在容器Ⅱ中,l 的一端置于点 E 处,另一端置于侧棱GG1上,求 l 没入水中部分的长度.【分析】( 1)由正棱柱的定义,CC1⊥平面ABCD,所以平面 A1 ACC1⊥平面ABCD, CC1⊥ AC .记玻璃棒的另一端落在CC1上点M处.因为 AC 10 7, AM40 ,所以MC402(10 7) 230,进而 sin ∠MAC 3,4记AM 与水面的交点为P ,过P 作P1Q1⊥AC,Q1为垂足,11则 P1Q1⊥平面 ABCD ,故 P1Q1=12,进而 AP1=P1Q116 .sin∠ MAC答:玻璃棒 l 没入水中部分的长度为 16cm.(假如将“没入水中部分”理解为“水面以上部分”,则结果为24cm)过 G 作 GK⊥ E1G1, K 为垂足,则 GK =OO1=32.因为 EG = 14, E1G1= 62,所以 KG 1=62 1424 ,进而GG1KG12GK 224232240 .2设 ∠EGG 1,∠ENG, 则 sinsin(∠ KGG 1 ) cos ∠ KGG 14 .25因为,所以 cos 3 .52在 △ENG 中,由正弦定理可得40 14 ,解得 sin7 .sin sin25因为 0,所以 cos 24 .252于是 sin ∠ NEG sin()sin() sincoscos sin4 24 ( 3) 7 3 .525 5 255记 EN 与水面的交点为 P 22222为垂足,则 2 2,过P 作PQ ⊥EG ,Q P Q ⊥平面 EFGH ,故 P 2Q 2=12,进而 EP 2=P 2Q 2 20 .sin ∠ NEG答:玻璃棒 l 没入水中部分的长度为 20cm .(假如将“没入水中部分”理解为“水面以上部分”,则结果为 20cm)19.(本小题满分16 分)对于给定的正整数 k ,若数列 { a n } 知足: a n k a n k 1Lan 1an 1Lan k 1an k2ka n 对随意正整数 n(n k) 总成立,则称数列{ a n } 是“ P(k ) 数列”. ( 1 )证明:等差数列 { a n } 是“ P(3) 数列”;( 2 )若数列 { a n } 既是“ P(2) 数列”,又是“ P(3) 数列”,证明: { a n } 是等差数列.【分析】( 1)因为 { a}是等差数列,设其公差为d ,则 ana( n1)d ,n1进而,当 n4 时, a n ka nk a 1(n k 1)d a 1 (n k 1)d2a 1 2( n 1)d 2a n , k 1,2,3,所以 a n 3 a n 2 +a n 1 +a n 1 a n 2 +a n 3 6a n ,所以等差数列 { a n } 是“ P(3) 数列”.a n2 a n34a n1 ( a n 1 a n ) ,④将③④代入②,得a n 1 a n 12a n,此中n 4 ,所以 a3, a4 , a5 ,L是等差数列,设其公差为 d' .在①中,取在①中,取n4,则 a2a3a5a64a4,所以 a2a3d' ,n3,则 a1a2a4a54a3,所以 a1a32d' ,所以数列 { a n}是等差数列.20.(本小题满分16 分)已知函数 f ( x)32f (x) 的极值点是 f (x) 的零点.(极值点x ax bx 1(a 0,b R ) 有极值,且导函数是指函数取极值时对应的自变量的值)( 1)求 b 对于a的函数关系式,并写出定义域;( 2)证明: b 23a;( 3)若 f (x) , f ( x) 这两个函数的所有极值之和不小于7,求a的取值范围.2当 a3时, f (x)>0(x1),故 f (x) 在R上是增函数, f (x)没有极值;当 a3时, f (x)=0 有两个相异的实根x1=aa23b,x2= aa23b .33列表以下:x(, x1)x1( x1 , x2 )x2(x2 , )f (x)+0–0+f (x)Z极大值]极小值Z故 f (x) 的极值点是 x 1 , x 2 .进而 a 3 .所以 b2a 23(3,) .9,定义域为a( 2)由( 1)知,b = 2a a 3 .设 g (t )= 2t3 ,则 g (t )=2 32t 2 27 .a 9 a a 9t9 t 2 9t 2当t ( 3 6, ) 时, g (t) 0 ,进而 g(t ) 在 ( 3 6 ,) 上单一递加.22因为 a3 ,所以 a a3 3 ,故 g (a a )>g (3 3)= 3 ,即 b > 3 .所以 b 2 >3a .a记 f (x) , f (x) 所有极值之和为 h(a) ,因为 f (x) 的极值为 b a21 a2 3,所以 h(a)=1 a23 , a 3 .39a9 a因为 h (a)=2 a3 0 ,于是 h(a) 在 (3, ) 上单一递减.9 a 2因为 h(6)=7h(6) ,故 a 6 .所以 a 的取值范围为 (3,6] . ,于是 h(a)2数学Ⅱ(附带题)21.【选做题】此题包含A 、B 、C 、D 四小题,请选定此中两题 ,并在相应的答题地区内作答,若多做,....... ............ 则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A . [ 选修 4-1:几何证明选讲 ]( 本小题满分 10 分)如图, AB 为半圆 O 的直径,直线 PC 切半圆 O 于点 C , AP ⊥ PC , P 为垂足.求证:( 1) PACCAB ;( 2) AC 2AP AB .【分析】( 1)因为 PC 切半圆 O 于点 C ,所以 ∠ PCA ∠ CBA , 因为 AB 为半圆 O 的直径,所以 ∠ACB 90 .因为 AP ⊥ PC ,所以 ∠APC90 ,所以 PACCAB .( 2)由( 1)知, △APC ∽△ ACB ,故APAC,即 AC 2AP ·AB .AC ABB . [ 选修 4-2:矩阵与变换 ](本小题满分 10 分 )0 1 1 0 已知矩阵 A, B.121()求 AB ;x 2 y 2 C C21 在矩阵 AB 对应的变换作用下获得另一曲线2 ,求 2 的方程.( )若曲线 C 1 :82C . [ 选修 4-4:坐标系与参数方程](本小题满分 10 分)x 8t在平面直角坐标系 xOy 中,已知直线 l 的参照方程为t( t 为参数 ),曲线 C 的参数方程为y2x 2s 2P 到直线 l 的距离的最小值.y( s 为参数 ).设 P 为曲线 C 上的动点,求点2 2s【分析】直线 l 的一般方程为x 2 y 8 0.因为点 P 在曲线 C 上,设 P(2 s 2 , 22s) ,进而点 P 到直线 l 的的距离d | 2s242s 8 | 2( s2) 242时,d min 4 5 .2(2)25,当s15所以当点 P 的坐标为 (4, 4)时,曲线 C 上点P到直线 l 的距离取到最小值45 .5D .[选修 4-5:不等式选讲](本小题满分10 分)已知 a,b,c,d 为实数,且a2b24,c2 d 216, 证明: ac bd ≤ 8.【必做题】第22 题、第 23 题,每题10 分,合计20 分.请在答题卡指定地区内作答,解答时应写出文字.......说明、证明过程或演算步骤.22.(本小题满分10 分)如图,在平行六面体ABCD-A 1B1C1D1中, AA1⊥平面 ABCD ,且 AB=AD =2, AA1 = 3 ,BAD 120 .(1)求异面直线 A1B 与 AC1所成角的余弦值;(2)求二面角 B-A1D-A 的正弦值.【分析】在平面ABCD 内,过点 A 作 AE AD ,交 BC 于点 E.因为 AA1平面ABCD,所以AA1AE,AA 1AD .uuur uuur uuur如图,以 { AE , AD , AA1} 为正交基底,成立空间直角坐标系A-xyz.因为 AB=AD =2,AA 1=3,BAD 120.则A(0,0,0), B( 3, 1,0), D(0,2,0), E( 3,0,0), A1(0,0,3), C1 ( 3,1, 3) .uuur (1)A1B ( 3, uuur uuuur 则cos A1 B, AC1uuuur1, 3), AC1(3,1,3),uuur uuuur(3,1, 3) ( 3,1, 3)1 A1B AC1uuur uuuur.| A1B || AC1 |77所以异面直线A1B 与 AC1所成角的余弦值为 1 .7设二面角 B-A1D-A 的大小为,则 | cos|3.4因为[0,] ,所以sin1cos2717 ..所以二面角B-A D-A 的正弦值为4423.(本小题满分10 分)已知一个口袋中有 m 个白球, n 个黑球(m,n N*,n ≥ 2 ),这些球除颜色外所有同样.现将口袋中的球随机地逐一拿出,并放入以下图的编号为1,2, 3,L , m n 的抽屉内,此中第 k 次拿出的球放入编号为 k 的抽屉 (k 1, 2, 3,L , m n) .123L m n( 1)试求编号为 2 的抽屉内放的是黑球的概率p ;( 2 )随机变量X 表示最后一个拿出的黑球所在抽屉编号的倒数, E ( X ) 是X的数学希望,证明:E(X )n.n)( n(m1)【分析】( 1)编号为2 的抽屉内放的是黑球的概率C m n 1n 1n p 为: p.C m n nm n( 2)随机变量 X 的概率散布为1 1 111 Xn 1n 2nkm nC n n 11PCnm n随机变量 X 的希望为C n n1 C n n11C m nnC m nnmn1C k n11E(X)k n kC m nnC k n11C n n 1m 1C m nnC m n n1m n1(k 1)!.C m n n k n k (n 1)!(kn)!1m n(k 2)!1m n(k 2)!所以 E(X)C m nn ( n1)!( k n)! (n1)C mnn k n(n2)!( kn)!n k1n 2n 2 n 2 1n 1 n 2n 2 n 2(n 1)C m n (1 C n 1C nL C m n 2 )(C n 1Cn 1C n L C m n 2 )n( n 1)C m n n1n 1 n 2 Ln 2L1n 1n 2(n 1)C m n (C nC nCm n 2)(Cm n 2Cm n 2)n( n 1)C m nnC m n 1n 1n ,(n 1)C mn( m n)( n 1)n即E(X)n.n)(n 1)(m。
2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)

2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)1.2017年全国高中数学联赛江苏赛区预赛试卷及详解2.填空题1.已知向量$\overrightarrow{AP}=\begin{pmatrix}1\\3\end{pmatrix}$,$\overrightarrow{PB}=\begin{pmatrix}-3\\1\end{pmatrix}$,则向量$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角等于$\frac{\pi}{4}$。
2.已知集合$A=\{x| (ax-1)(a-x)>0\}$,且$a\in A$,$3\notin A$,则实数$a$的取值范围是$1\leq a<2$或$2<a\leq 3$。
3.已知复数$z=\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})$,则$z^3+z^2=\frac{1}{2}-\frac{3}{2}i$。
4.在平面直角坐标系$xOy$中,设$F_1$,$F_2$分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,$P$是双曲线右支上一点,$M$是$PF_2$的中点,且$OM\perp PF_2$,$3PF_1=4PF_2$,则双曲线的离心率为$5$。
5.定义区间$[x_1,x_2]$的长度为$x_2-x_1$。
若函数$y=\log_2x$的定义域为$[a,b]$,值域为$[0,2]$,则区间$[a,b]$的长度的最大值与最小值的差为$3$。
6.若关于$x$的二次方程$mx^2+(2m-1)x-m+2=0(m>0)$的两个互异的根都小于$1$,则实数$m$的取值范围是$\left(\frac{3+\sqrt{7}}{4},+\infty\right)$。
7.若$\tan4x=\frac{3\sin4x\sin2x\sinx}{\cos8x\cos4x\cos4x\cos2x\cos2x\cos x\cos x}$,则$\sin^2x+\sin^24x+\sin^28x=3$。
2017年全国高中数学联赛一试(B卷)答案

成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则
2017年度高考数学江苏试题及解析

2017年江苏1.(2017年江苏)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.1.1 【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2. (2017年江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.2.10 【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.故答案为10.3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.4. (2017年江苏)右图是一个算法流程图,若输入x的值为116,则输出y的值是.4. -2 【解析】由题意得y=2+log2116=-2.故答案为-2.5. (2017年江苏)若tan(α+π4)=16则tan α= .5. 75 【解析】tan α= tan[(α-π4)+π4]=tan(α-π4)+tan π41- tan(α-π4) tan π4=16+11-16=75.故答案为75.6. (2017年江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是 .6. 32 【解析】设球半径为r ,则V1V2=πr2×2r 43πr3=32.故答案为32.7. (2017年江苏)记函数f (x )=6+x-x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 .7. 59 【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x ∈D 的概率是3-(-2)5-(-4)=59.8. (2017年江苏)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 .8. 2 3 【解析】右准线方程为x=310=31010,渐近线方程为y=±33x ,设P (31010,3010),则Q (31010,-3010),F 1(-10,0),F 2(10,0),则S=210×3010=2 3.9.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] 设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.[答案] 3210. (2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:3011. (2017年江苏)已知函数f(x)=x 3-2x+e x-1e x ,其中e 是自然对数的底数.若f(a-1)+f(2a 2)≤0,则实数a 的取值范围是___________.12. (2017年江苏)如图,在同一个平面内,向量→OA ,→OB ,→OC 的模分别为1,1,2,→OA 与→OC 的夹角为α,且tan α=7,→OB 与→OC 的夹角为45°.若→OC =m →OA +n →OB (m ,n ∈R),则m n +=___________.12.3 【解析】由tan α=7可得sin α=7210,cos α=210,根据向量的分解, 易得⎩⎨⎧ncos 45°+mcos α=2,nsin 45°-msin α=0,即⎩⎨⎧22n+210m=2,22n-7210m=0,即⎩⎨⎧5n+m=10,5n-7m=0,即得m=54,n=74, 所以m+n=3.13. (2017年江苏)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若→PA ·→PB ≤20,则点P 的横坐标的取值范围是_________. 【答案】 [52,1]【解析】设P (x ,y ,)由→PA ·→PB ≤20易得2x -y +5≤0,由⎩⎨⎧2x -y +5=0,x 2+y 2=50可得A :⎩⎨⎧x =-5,y =-5或B :⎩⎨⎧x =1,y =7.由2x -y +5≤0得P 点在圆左边弧⌒AB 上,结合限制条件-52≤x ≤52,可得点P横坐标的取值范围为 [52,1].14. (2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =qp ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D的部分,且x=1处(lg x)′=1x ln 10=1ln 10<1,则在x=1附近仅有一个交点,因此方程f(x)-lgx=0的解的个数为8.答案:815.(2017年江苏)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC⊥平面ABD,则BC⊥AD,再由AB⊥AD及线面垂直判定定理得AD ⊥平面ABC,即可得AD⊥AC.【证明】(1)在平面ABC内,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC.(2)∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , ∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , ∴AD ⊥平面ABC .又∵AC ⊂平面ABC ,∴AD ⊥AC .16. (2017年江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 【解析】(1)∵a =(cos x ,sin x ),b =(3,-3),a ∥b , ∴-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,∴cos x ≠0. 于是tan x =-33.又错误!未找到引用源。
2017年全国高中数学联赛江苏赛区复赛参考答案

36t2(t2+12) 1 , 不妨设 k>0, 令 t=k+ ,则 t≥2,可化得 PQ2= k (3t2+4)2 6t t2+12 . 即 PQ= 3t2+4 设 B(x0,y0),则切点弦 PQ 的方程是 x0x+3y0y=3. k2-1 1 x- 上,所以 y0=-2. 又 P,Q 在 l:y= 2 4k 3(k2-1) . 从而 x0= 2k k2-1 2 3( ) +12 k 3t2 所以 B 到 PQ 的距离 d= = . 2 k -1 2 2 t2+12 2 ( ) +16 k 6t t2+12 1 9t3 1 3t2 因此△BPQ 的面积 S= ×d×PQ= × × = . 2 2 2 t2+12 2(3t2+4) 3t2+4 ……………………………… 16 分 1 1 9 令 u= ,则 0<u≤ ,化得 S= . t 2 2(4u3+3u) 1 当 0<u≤ 时,4u3+3u 递增. 2 9 1 所以 0<4u3+3u≤2,即 S≥ ,当且仅当 u= ,即 t=2,k=1 时,等号成立. 4 2 9 . 故△BPQ 的面积 S 的取值范围是 [ ,+∞) 4 四、解答题(本题满分 20 分) 1 1 设函数 fn(x)=1+x+ x2+…+ xn. 2! n! (1)求证:当 x∈(0,+∞) ,n∈N* 时,ex > fn(x); (2)设 x>0,n∈N*.若存在 y∈R 使得 ex = fn(x)+ 解: (1)用数学归纳法证明如下: (i) 当 n=1 时,令 f(x)=ex-f1(x)=ex-x-1,则 f ′(x)=ex-1>0,x∈(0,+∞)恒成立, 所以 f(x)在区间(0,+∞)为增函数. 又因为 f(0)=0,所以 f(x)>0,即 ex>f1(x). ……………………………… 5 分 1 xn+1ey,求证:0<y<x. (n+1)! ………………………… 20 分
2017年全国高中数学联赛江苏赛区复赛参考答案

1 1 + 的最小值. (x+y)2 (x-y)2 ………………………… 4 分
1 1 1 1 1 )((x+y)2+(x-y)2) 2 + 2 = ( 2 + 4 (x+y) (x-y) (x+y) (x-y)2
E E E E E
1 ≥ (1+1)2 4
A A E
6k 6 ,y =1- 2 . k2+3 Q k +3
y-yP x-xP (1+3k2)(y+1)-2 (1+3k2)x+6k 所以 直线 l: = ,即 l: = . yQ-yP xQ-xP (1+3k2)(yQ+1)-2 (1+3k2)xQ+6k k2-1 1 化简得 l:y= x- . 2 4k 1 1 直线 l 纵截距是常数- ,故直线 l 过定点(0,- ). 2 2 ……………………… 8 分
(ii) 假设 n=k 时,命题成立,即当 x∈(0,+∞)时,ex>fk(x), 1 1 1 k+1 x ), 则 n=k+1 时,令 g(x)=ex-fk+1(x)=ex-(1+x+ x2+…+ xk+ 2! k! (k+1)! 1 1 所以 g(x)在区间(0, +∞)为增函数. 则 g′(x)=ex-(1+x+ x2+…+ xk)=ex-fk(x)>0, 2! k! 又因为 g(0)=0,所以 g(x)>0,x∈(0,+∞)恒成立,即 ex>fk+1(x),x∈(0,+∞). 所以 n=k+1 时,命题成立. 由(i)(ii)及归纳假设可知,∀n∈N*,当 x∈(0,+∞)时,ex > fn(x). ……………………………… 10 分 1 n+1 y 1 n+1 x e > fn(x)+ x , (2)由(1)可知 ex >fn+1(x),即 fn(x)+ (n+1)! (n+1)! 所以 ey>1,即 y>0.下证:y<x. 1 1 1 - 下面先用数学归纳法证明:当 x>0,ex<1+x+ x2+…+ xn 1+ xnex,n∈N*. 2! n! (n-1)! (i) 当 n=1 时,令 F(x)=1+xex-ex,则 F′(x)=xex>0,x∈(0,+∞), 所以 F(x)在区间(0,+∞)单调增. 又 F(0)=0,故 F(x)>0,即 ex<1+xex. (ii) 假设 n=k 时,命题成立, 1 1 1 - 即当 x∈(0,+∞)时,ex<1+x+ x2+…+ xk 1+ xkex. 2! k ! (k-1)! 1 1 1 k+1 x x 则当 n=k+1 时,令 G(x)=1+x+ x2+…+ xk+ x e -e , 2! k! (k+1)! 1 1 k+1 x x 1 k+1 x 1 x e -e > x e >0, G′(x)=1+x+ x2+…+ xkex+ k! (k+1)! (k+1)! 2! 所以 G(x)在区间(0,+∞)上为增函数,又 G(0)=0,故 G(x)>0,即 1 1 1 k+1 x ex<1+x+ x2+…+ xk+ x e ,x∈(0,+∞). 2! k! (k+1)! 由(i)(ii)及归纳假设, 1 1 1 n+1 x 可知当 x∈(0,+∞)时,ex<1+x+ x2+…+ xn+ x e ,对 n∈N*成立. 2! n! (n+1)! 1 1 1 n+1 y 1 1 1 n+1 x x e <1+x+ x2+…+ xn+ x e, 所以 ex=1+x+ x2+…+ xn+ 2! n! (n+1)! 2! n! (n+1)! 从而 ey<ex,即 y<x.证毕. ……………………………… 20 分
2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文

可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
2017年高考江苏数学试题及答案(word解析版)(K12教育文档)

2017年高考江苏数学试题及答案(word解析版)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考江苏数学试题及答案(word解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考江苏数学试题及答案(word解析版)(word版可编辑修改)的全部内容。
2017年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置.......上.. (1)【2017年江苏,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =,则实数a 的值为_______. 【答案】1【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =,∴1a =或231a +=,解得1a =.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用. (2)【2017年江苏,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴()221310z =-+=.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年江苏,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为6061000100=,则应从丙种型号的产品中抽取630018100⨯=件. 【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取. (4)【2017年江苏,4,5分】如图是一个算法流程图:若输入x 的值为116,则输出y 的值是_______. 【答案】2-【解析】初始值116x =,不满足1x ≥,所以41216222log 2log 2y =+=-=-.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.(5)【2017年江苏,5,5分】若1tan 46πα⎛⎫-= ⎪⎝⎭.则tan α=_______.【答案】75【解析】tan tantan 114tan 4tan 161tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,∴6tan 6tan 1αα-=+,解得7tan 5α=.【点评】本题考查了两角差的正切公式,属于基础题.(6)【2017年江苏,6,5分】如如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。