最新江苏省高中数学知识点体系框架超全超完美
苏教版高中数学必修+选修知识点归纳总结(精编版)(良心出品必属精品)

- 1 -高中数学必修+选修知识点归纳 引言1.课程内容:必修课程由5个模块组成:恒则成人生一连串的奋斗 追求理想要奋战不懈坚持到底有恒则成必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:三角函数、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有3个系列:选修系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数的引入、框图选修系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数的引入选修2—3:计数原理、概率,统计案例。
选修系列4:由4个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线- 2 -的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
江苏省高中复习数学知识点体系框架

数轴、V een 图、函数图象集合集合元素的特性确定性、互异性、无序性集合的分类有限集无限集空集φ集合的表示列举法、特征性质描述法、V een 图法集合的基本关系真子集子集几何相等性质集合的基本运算补集交集qp 并集q p .p q ,则逆命题:若.q p ,则原命题:若.q p ⌝⌝,则否命题:若.p q ⌝⌝,则逆否命题:若互为逆否互逆互逆互否互否四种命题{}{}{}{}{}{}{}{}.000)8()7()6(22)5()4()3()2()1(1φφφφφφφ⊆⊆⊆∈⊆∈⊆⊆⊆⊂=⊆⊆-≠,表示空集,表示集合,,区别:,,的集合;表示只有一个元素表示元素,区别:一般地,与表示集合与集合关系;表示元素与集合关系,的区别:,个真子集;有个子集,个元素的集合有含有;,则,若;或则则;真子集;空集是任何非空集合的a a a a a n C A C B B A B A B A B A A A n n ()()()()()()()()()()()()()()()()();;结合律:;;分配律:;;;;;或,,;,,,C B A C B A C B A C B A C A B A C B A C A B A C B A B C A C B A C A A C C A C A U A C A B A B A B A A B A B A B A A B A A A A A A A A A A U U U U U U U ========⊆⊆⊆⇔=⊆⇔=====)6()5()4()3()2()1(φφφφ基本逻辑联结词∨或()q p ⌝⌝或∧且⌝非qp ∧q p ∨量词全称量词存在量词全称命题存在命题()()00::x p M x p x p M x p ⌝∈∃⌝∈∀,;则,若()()x p M x p x p M x p ⌝∈∀⌝∈∃,;则,若::00否定第一部分集合与简易逻辑退出上一页函数与方程区间建立函数模型抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布单调性:同增异减赋值法,典型的函数零点函数的应用A 中元素在B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多函数的基本性质单调性奇偶性周期性对称性最值1.求单调区间:定义法、导数法、用已知函数的单调性。
(完整版)高中数学知识点体系框架超全超完美

高中数学基础知识整合函数与方程区间建立函数模型抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布单调性:同增异减赋值法,典型的函数零点函数的应用A 中元素在B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多函数的基本性质单调性奇偶性周期性对称性最值1.求单调区间:定义法、导数法、用已知函数的单调性。
2.复合函数单调性:同增异减。
1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ).2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0.3.偶函数图象关于y 轴对称,反之也成立。
f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。
函数的概念定义列表法解析法图象法表示三要素使解析式有意义及实际意义常用换元法求解析式观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等定义域对应关系值域函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换基本初等函数正(反)比例函数、一次(二次)函数幂函数指数函数与对数函数三角函数定义、图象、性质和应用函数映射第二部分映射、函数、导数、定积分与微积分退出上一页第二部分映射、函数、导数、定积分与微积分导数导数概念函数的平均变化率运动的平均速度曲线的割线的斜率函数的瞬时变化率运动的瞬时速度曲线的切线的斜率()()的区别与0x f x f ''0t t t v a S v ==,()0'x f k =导数概念基本初等函数求导导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1log sin cos cos sin 0e e a a a xx a x x x x x x nx x c c ====-====;;;;;;;为常数()()()()[]()()()()[]()()()()()()()()()()()[])3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=⎥⎦⎤⎢⎣⎡+=⋅±=±是可导的,则有:,设()()[]()()x u u f x g f '''⋅=1.极值点的导数为0,但导数为0的点不一定是极值点;2.闭区间一定有最值,开区间不一定有最值。
最新江苏省高考数学知识点总结精华版教学内容

8.对称变换:①y=f(x)
②y=f(x)
③y=f(x)
9.判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:
在进行讨论.
10.外层函数的定义域是内层函数的值域.
例如:已知函数f(x)= 1+ 的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是.
⑸.函数值域的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
⑹.单调性的判定法:①设x ,x 是所研究区间内任两个自变量,且x <x ;②判定f(x )与f(x )的大小;③作差比较或作商比较.
⑺
.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)/f(x)=1是偶;f(x)÷f(-x)=-1为奇函数.
质
(2)值域:(0,+∞)
(3)过定点(0,1),即x=0时,y=1
(4)x>0时,y>1;x<0时,0<y<1
(4)x>0时,0<y<1;x<0时,y>1.
(5)在 R上是增函数
(5)在R上是减函数
对数函数y=logax的图象和性质:
对数运算:
(以上 )
a>1
0<a<1
图
象
性
质
(1)定义域:(0,+∞)
⑻.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象.
江苏高三数学知识点梳理

江苏高三数学知识点梳理高三数学是学生备战高考的重要阶段,对于江苏高三学生来说,理解和掌握数学知识点是提高数学成绩的关键。
下面将对江苏高三数学知识点进行梳理,并给出相应的解题技巧。
一、数列与数列极限1. 等差数列与等差数列的通项公式、前n项和公式;2. 等比数列与等比数列的通项公式、前n项和公式;3. 通项公式与前n项和公式的应用,特别是在求解实际问题时的转化;4. 数列极限的定义与性质,包括数列的有界性、单调性以及极限存在性的判断方法。
二、函数与导数1. 函数的概念与性质,包括函数的定义域、值域、奇偶性、周期性等;2. 初等函数的性质和常见图像的特征,如一次函数、二次函数、指数函数、对数函数等;3. 函数的运算与复合函数的求导法则;4. 导数的定义与性质,包括导数的几何意义、导数的计算法则以及导数存在与连续性的关系。
三、平面向量与解析几何1. 平面向量的基本概念与运算法则,包括向量的加法、减法、数量积和向量积等;2. 向量的数量积与几何应用,如求向量夹角、判定向量共线与垂直等;3. 直线和平面的方程与位置关系,包括点线面的位置关系、两直线及直线与平面的位置关系等;4. 空间几何体的性质,如球、棱柱、棱锥等的体积与表面积计算;四、三角函数与三角恒等式1. 三角函数的概念与基本性质,包括正弦、余弦、正切、余切等的定义与图像特征;2. 三角函数的运算与三角恒等式,包括和差化积、倍角、半角等的变换公式;3. 三角函数在几何问题中的应用,如求解三角形的边长与角度。
五、概率与统计1. 概率的基本概念与性质,包括概率的定义、加法定理、乘法定理等;2. 随机事件的概念与性质,包括互斥事件、对立事件、等概事件等;3. 统计的基本概念与方法,如抽样调查、频率分布、频率分布列等;4. 常见概率分布的性质与应用,如二项分布、正态分布等。
六、数学建模1. 数学建模的基本思路与步骤,包括问题分析、模型建立、模型求解与结果分析;2. 常用的数学建模方法,如线性规划、动态规划、灰色系统等;3. 数学建模在实际问题中的应用,如生态环境、社会经济等领域的问题建模。
苏教版高考数学知识点归纳总结

苏教版高考数学知识点归纳总结数学作为一门重要的科学学科,在高考中占据了非常重要的地位。
针对苏教版高考数学知识点,我们进行了归纳总结,以帮助考生更好地备考和复习。
本文将按照苏教版数学教材的章节顺序,详细总结其中的重要知识点。
第一章:函数与导数1.函数的概念与性质:(1)函数的定义:函数是一种特殊的对应关系,它将一个自变量和一个因变量联系起来。
2.导数与求导法则:(1)导数的定义:导数描述了函数在某一点上的变化速率。
(2)常见函数的导数:如幂函数、指数函数、对数函数等。
(3)求导法则:包括常数微分、幂函数微分、和差法则、乘法法则、除法法则和复合函数微分法则。
第二章:数列与数学归纳法1.等差数列与等比数列:(1)等差数列的概念与性质:等差数列是指数列中相邻两项之间的差值恒定的数列。
(2)等比数列的概念与性质:等比数列是指数列中相邻两项之间的比值恒定的数列。
第三章:平面向量与空间向量1.向量的概念与性质:(1)向量的定义:向量是有方向和大小的量。
(2)向量的运算:包括向量的加法、减法、数量乘法和数量除法。
第四章:圆1.圆的性质与定理:(1)圆的概念:圆是平面上到一个定点距离等于定长的所有点的集合。
(2)圆的性质:包括弧长、圆心角、弦长等性质。
第五章:三角函数1.三角函数的概念与性质:(1)正弦函数、余弦函数、正切函数的定义与性质。
(2)三角函数的基本关系式与基本公式。
第六章:排列与组合1.排列与组合的概念与应用:(1)排列的定义与性质:排列是指从一组元素中按照一定顺序取出若干元素的方式。
(2)组合的定义与性质:组合是指从一组元素中按照不考虑顺序的方式取出若干元素的方式。
第七章:概率统计1.概率与统计的概念与应用:(1)概率的基本概念与性质:包括事件、样本空间、概率的定义与性质等。
(2)统计的基本概念与性质:包括平均数、众数、中位数、标准差等。
第八章:解析几何1.平面解析几何:(1)坐标平面与坐标系的建立。
江苏高一高二数学知识点

江苏高一高二数学知识点一、集合与函数1. 集合的表示与性质1.1 集合的表示方法- 枚举法:列举集合中的元素- 描述法:根据元素的共同特征进行描述1.2 集合的性质与运算- 包含关系:子集、超集- 并集与交集- 补集与空集2. 函数的概念与性质2.1 函数的定义与表示- 自变量与函数值- 函数图像2.2 函数的性质与分类- 单调性与奇偶性- 周期性与有界性- 反函数与复合函数二、数列与数列极限1. 等差数列与等差中项1.1 等差数列的定义与性质 - 公差与通项公式- 常数列与特殊项1.2 等差数列的应用- 等差数列之和与平均数 - 等差数列与图形的关系2. 等比数列与等比中项2.1 等比数列的定义与性质 - 公比与通项公式- 递增与递减性2.2 等比数列的应用- 等比数列的和与产品- 等比数列与图形的关系3. 数列极限3.1 数列极限的定义与性质- 数列极限存在性与唯一性 - 收敛与发散的判断3.2 数列极限的计算- 夹逼定理与极限运算法则 - 数列极限与函数极限的关系三、函数与导数1. 函数的基本性质与图像1.1 定义域、值域与反函数1.2 函数的图像与性质- 奇偶性与单调性- 极值与拐点2. 导数的定义与计算2.1 导数的定义与几何意义2.2 导数的基本运算法则- 导数与函数的和、差、积、商的关系 - 链式法则与反函数的导数3. 函数的应用3.1 函数的极值与最值问题- 求函数的最值与最值点3.2 函数的单调性与增减区间- 函数图像的拐点与极值点四、平面向量1. 向量的概念与运算1.1 向量的定义与表示- 平面向量与坐标表示- 向量的模与方向1.2 向量的运算法则- 向量的加减与数乘- 向量的数量积与夹角2. 向量的坐标表示与应用2.1 向量的坐标表示与运算 - 平移、旋转与轴对称变换 - 向量共线与垂直2.2 向量的应用- 力的合成与分解问题- 矢量运动与速度五、立体几何1. 空间几何基本概念1.1 点与直线的位置关系1.2 点与平面的位置关系- 平行关系- 垂直关系2. 空间几何的基本性质2.1 三视图与投影2.2 立体图形的表面积与体积- 三棱锥、四棱锥、棱柱的体积与表面积- 球、圆柱、圆锥、球台的体积与表面积3. 空间几何的应用3.1 空间几何证明与推理3.2 空间几何建模与问题解决以上是江苏高一高二数学部分的知识点,通过学习和掌握这些知识,可以为学生打下扎实的数学基础,为日后的学习和应试打下坚实的基础。
苏教高中数学必修+选修知识点归纳总结

高中数学必修+选修知识点归纳引言1.课程内容:必修课程由5个模块组成:恒则成人生一连串的奋斗追求理想要奋战不懈坚持到底有恒则成必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:三角函数、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有3个系列:选修系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数的引入、框图选修系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数的引入选修2—3:计数原理、概率,统计案例。
选修系列4:由4个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴、V een 图、函数图象集合集合元素的特性确定性、互异性、无序性集合的分类有限集无限集空集φ集合的表示列举法、特征性质描述法、V een 图法集合的基本关系真子集子集几何相等性质集合的基本运算补集交集qp 并集q p .p q ,则逆命题:若.q p ,则原命题:若.q p ⌝⌝,则否命题:若.p q ⌝⌝,则逆否命题:若互为逆否互逆互逆互否互否四种命题{}{}{}{}{}{}{}{}.000)8()7()6(22)5()4()3()2()1(1φφφφφφφ⊆⊆⊆∈⊆∈⊆⊆⊆⊂=⊆⊆-≠,表示空集,表示集合,,区别:,,的集合;表示只有一个元素表示元素,区别:一般地,与表示集合与集合关系;表示元素与集合关系,的区别:,个真子集;有个子集,个元素的集合有含有;,则,若;或则则;真子集;空集是任何非空集合的a a a a a n C A C B B A B A B A B A A A n n ()()()()()()()()()()()()()()()()();;结合律:;;分配律:;;;;;或,,;,,,C B A C B A C B A C B A C A B A C B A C A B A C B A B C A C B A C A A C C A C A U A C A B A B A B A A B A B A B A A B A A A A A A A A A A U U U U U U U ========⊆⊆⊆⇔=⊆⇔=====)6()5()4()3()2()1(φφφφ基本逻辑联结词∨或()q p ⌝⌝或∧且⌝非qp ∧q p ∨量词全称量词存在量词全称命题存在命题()()00::x p M x p x p M x p ⌝∈∃⌝∈∀,;则,若()()x p M x p x p M x p ⌝∈∀⌝∈∃,;则,若::00否定第一部分集合与简易逻辑退出上一页函数与方程区间建立函数模型抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布单调性:同增异减赋值法,典型的函数零点函数的应用A 中元素在B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多函数的基本性质单调性奇偶性周期性对称性最值1.求单调区间:定义法、导数法、用已知函数的单调性。
2.复合函数单调性:同增异减。
1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ).2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0.3.偶函数图象关于y 轴对称,反之也成立。
f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。
函数的概念定义列表法解析法图象法表示三要素使解析式有意义及实际意义常用换元法求解析式观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等定义域对应关系值域函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换基本初等函数正(反)比例函数、一次(二次)函数幂函数指数函数与对数函数三角函数定义、图象、性质和应用函数映射第二部分映射、函数、导数、定积分与微积分退出上一页第二部分映射、函数、导数导数导数概念函数的平均变化率运动的平均速度曲线的割线的斜率函数的瞬时变化率运动的瞬时速度曲线的切线的斜率()()的区别与0x f x f ''0t t t v a S v ==,()0'x f k =导数概念基本初等函数求导导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1log sin cos cos sin 0e e a a a xx a x x x x x x nx x c c ====-====;;;;;;;为常数()()()()[]()()()()[]()()()()()()()()()()()[])3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=⎥⎦⎤⎢⎣⎡+=⋅±=±是可导的,则有:,设()()[]()()x u u f x g f '''⋅=1.极值点的导数为0,但导数为0的点不一定是极值点;2.闭区间一定有最值,开区间不一定有最值。
导数应用函数的单调性研究函数的极值与最值曲线的切线变速运动的速度生活中最优化问题()()()().00''在该区间递减在该区间递增,x f x f x f x f ⇒<⇒>1.曲线上某点处切线,只有一条;2.过某点的曲线的切线不一定只一条,要设切点坐标。
一般步骤:1.建模,列关系式;2.求导数,解导数方程;3.比较区间端点函数值与极值,找到最大(最小)值。
第三部分三角函数与平面向量退出上一页化简、求值、证明(恒等式)任意角的三角函数任意角三角函数定义同角三角函数的关系诱导公式和(差)角公式二倍角公式三角函数线平方关系、商的关系奇变偶不变,符号看象限公式正用、逆用、变形及“1”的代换角正角、负角、零角象限角轴线角终边相同的角区别第一象限角、锐角、小于900的角任意角与弧度制;单位圆弧度制定义1弧度的角①角度与弧度互化;②特殊角的弧度数;③弧长公式、扇形面积公式正弦函数y =sinx 三角函数的图象余弦函数y =cosx正切函数y =tanx y =Asin (ωx +φ)+b作图象描点法(五点作图法)几何作图法性质定义域、值域单调性、奇偶性、周期性对称性最值对称轴(正切函数除外)经过函数图象的最高(或低)点且垂直x 轴的直线对称中心是正余弦函数图象的零点,正切函数的对称中心为( ,0)(k ∈Z )2πk ①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;②图象也可以用五点作图法;③用整体代换求单调区间(注意ω的符号);④最小正周期T =;⑤对称轴x =,对称中心为( ,b )(k ∈Z ).ωπ2()ωφπ2212-+k ωφπ-k 三角函数三角函数模型的简单应用生活中、建筑学中、航海中、物理学中等第三部分三角函数与平面向量退出上一页(1)解三角形时,三条边和三个角中“知三求二”。
(2)解三角形应用题步骤:先准确理解题意,然后画出示意图,再合理选择定理求解。
尤其理解有关名词,如坡角、坡比、仰角和俯角、方位角、方向角等。
平面向量解的个数是一个?两个?还是无解?解三角形正弦定理及变式R CcB b A a 2sin sin sin ===适用范围:①已知两角和任一边,解三角形;②已知两边和其中一边的对角,解三角形。
余弦定理Cab b a c Bac c a b A bc c b a cos 2cos 2cos 2222222222-+=-+=-+=面积推论:求角适用范围:①已知三边,解三角形;②已知两边和它们的夹角,解三角形。
实际应用()()()()()()是内切圆半径是外接圆半径其中r r c b a R R abcc b a p c p b p a p p C ab ah S ABC ⋅++==⎪⎭⎫ ⎝⎛++=---===∆2142sin 2121表示向量的概念零向量与单位向量()()212212y y x x a -+-=共线与垂直线性运算加、减、数乘几何意义及运算律平面向量基本定理数量积几何意义夹角公式投影a ba b a b⋅=θcos 方向上的投影为在ba b a b a⋅⋅=θθcos ,则夹角为与设共线(平行)垂直()001//1221≠=-⇔=⇔a y x y x a b b a λ002121=+⇔=⋅⇔⊥y y x x b a b a在平面(解析)几何中的应用;在物理(力向量、速度向量)中应用向量的应用21e y e x p +=第四部分数列退出上一页数列是特殊的函数数列的定义概念一般数列通项公式递推公式a n 与s n 的关系解析法:a n =f (n )表示图象法列表法mn m n n q a q a a --⋅=⋅=11特殊数列等差数列等比数列判断性质通项公式求和公式()()dm n a d n a a m n -+=-+=1122nm q p n m a a a a a +=+=+22nm q p n m a a a a a +=⋅=⋅常数=+nn a a 1常数=-+n n a a 1()()d n n na a a n S n n 21211-+=+=()()()11111111≠-⋅-=--==q qq a a q q a q na S n nn ;时q ≠0,a n ≠0公式法:应用等差、等比数列的前n 项和公式①常见递推类型及方法()n f a an n =+1q pa a n n +=+111++-=n n n n a a a pa nn n qpa a +=+1()n n n f a a =-+1②④③⑤⎭⎬⎫⎩⎨⎧-+1p q a n 构造等比数列逐差累加法逐商累积法③转化为化为111+⋅=-+n nn n qa q p q a 常见的求和方法数列应用倒序相加法分组求和法裂项相消法错位相减法()()()()12112161121⎥⎦⎤⎢⎣⎡+=++=+=∑∑∑n n k n n n k n n k ;自然数的乘方和公式:⎩⎨⎧≥-==-2111n S S n S a n n n ,,等差中项:等比中项:212+++=n n n a a a 221++⋅=n n n a a a 数列构造等差数列p a a =-11第五部分不等式退出上一页指数对数不等式不等式二元一次不等式(组)与平面区域a xb y z --=()()22b y a x z -+-=简单的线性规划问题可行域目标函数应用题一次函数z =ax +b构造斜率:构造距离几何意义:z 是直线ax +by -z =0在x 轴截距的a 倍,y 轴上截距的b 倍.基本不等式2b a ab +≤最值变形和为定值,积有最大值;积为定值,和有最小值.“一正二定三相等”22222b a b a ab b a ab +≤+≤≤+作差或作商借助二次函数图象,利用三个“二次”间的关系不等关系与不等式基本性质一元二次不等式及其解法比较大小问题求解范围问题解不等式一元一次:ax >b 一元二次不等式ax 2+bx +c >0(a ≠0)绝对值不等式分式不等式分a >0,a <0,a =0(b ≥0,b <0)讨论分a >0,a <0,Δ>0, Δ=0, Δ<0讨论一元高次不等式()()()()0021<>-⋅⋅⋅--n x x x x x x 解不等式组()()()()()()()()()000;00≠≥⋅⇔≥>⋅⇔>x g x g x f x g x f x g x f x g x f 且()()()()()()()()()()()()()()().22绝对值几何意义求解,可分段讨论或用形如或c b x a x x g x f x g x f x g x f x g x f x g x f x g x f x g x g x f <-+->⇔>-<>⇔><<-⇔<x 系数化为正,“穿根法”,奇穿偶不穿利用性质转化为代数不等式,底数a的讨论目录第一部分集合与简易逻辑第二部分映射、函数、导数、定积分与微积分第三部分三角函数与平面向量第四部分数列第五部分不等式第六部分立体几何与空间向量第七部分解析几何第八部分排列、组合、二项式定理、推理与证明第九部分概率与统计第十部分复数第十一部分算法。