高中数学必修二知识体系整合
高中必修二数学知识点

高中必修二数学知识点高中必修二数学知识1不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高中必修二数学知识2空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中必修二数学知识3圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程一定两解(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中必修二数学知识4直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中必修二数学知识51、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中必修二数学知识点。
高一数学必修二知识框架

关于高一数学《必修二》的知识框架
1. 空间几何体的结构特征:
●面:几何体由平面或曲面组成,这些平面或曲面被称为“面”。
●棱:两个面相交的线段被称为“棱”。
●顶点:三条棱相交的点被称为“顶点”。
●轴:一个几何体可能会有对称轴,这些轴可以是直线或曲线。
2. 空间几何体的三视图和直观图:
●中心投影:光线从一点发出,照射到几何体上,然后将几何体的影子投射到屏幕上。
●平行投影:光线从上方平行射出,将几何体的影子投射到屏幕上。
●三视图:从正面、左面和上面三个方向投影几何体,得到三个视图。
●直观图:通过将几何体放置在空间中,并从适当的角度观察,得到的几何体的直观印
象。
3. 直线与方程:
●直线的倾斜角:直线与x轴之间的夹角称为直线的倾斜角。
其取值范围为0°到180°。
●直线的斜率:表示直线与x轴之间的夹角的变化率。
如果直线与x轴之间的夹角增加
或减少,那么直线的斜率就为正或负。
●方程:表示直线与x轴、y轴的交点坐标,以及直线的斜率。
高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
高中必修2数学知识总结

高中必修2数学知识总结高中数学必修2主要包含以下知识点:平面向量、三角函数、数列与数理逻辑、平面解析几何、立体几何、概率论与数理统计。
接下来,我们将对每个知识点进行总结和概括。
一、平面向量平面向量是高中数学的重要概念,也是学习高级数学和物理学的基础。
在必修2中,我们学习了向量的概念、向量的坐标表示、向量的加法和减法、向量的数量积和向量的夹角、共线和垂直以及应用于几何中的平行四边形面积等知识。
二、三角函数三角函数是高中数学中重要的数学函数之一,主要包括正弦函数、余弦函数和正切函数。
我们学习了三角函数的定义、性质、基本关系式、解三角方程、三角函数的图像与性质以及在几何中的应用等。
三、数列与数理逻辑数列是有序数的排列,是高中数学学习中的一个重要内容。
我们学习了数列的概念、数列的通项公式、等差数列和等比数列的性质与求和公式、数列极限等知识。
数理逻辑是数学与逻辑学的交叉领域,通过学习数理逻辑可以提高我们的思维能力和逻辑推理能力。
四、平面解析几何平面解析几何是高中数学中的一门基础课程,主要研究平面上的点和直线的性质、方程以及它们之间的关系。
我们学习了平面解析几何的基本概念、直线和圆的方程及其应用、直线与圆的位置关系等内容。
五、立体几何立体几何是高中数学中的一门重要课程,主要研究空间中的点、直线、面以及它们之间的位置关系和几何性质。
我们学习了空间几何体的表面积和体积、平行线与平面的关系、空间几何体的投影、三棱锥和四棱锥的性质、球的性质等内容。
六、概率论与数理统计概率论是数学中重要的分支之一,研究事件发生的可能性。
我们学习了概率的基本概念、概率的运算、事件的互斥与独立、条件概率和贝叶斯定理等内容。
数理统计是研究收集到的大量数据的整理、求解和分析,通过数理统计可以研究数据分布、概括数据规律、进行统计推断等。
综上所述,高中数学必修2的知识点涉及平面向量、三角函数、数列与数理逻辑、平面解析几何、立体几何、概率论与数理统计等内容。
高中必修二数学知识点总结

高中必修二数学知识点总结高中数学是一门基础学科,对于高中生来说是必修课之一,高中必修二数学是高中数学的第二册教材,主要包括了以下几个知识点:平面向量、立体几何、解析几何与向量、数列与数列极限、三角函数与三角恒等变换、指数与对数函数以及概率与统计等。
下面将对这些知识点进行详细的总结。
一、平面向量平面向量是高中数学的一个重要知识点,平面向量既有大小也有方向,在空间中用箭头表示,平面向量的运算有加法、减法、数乘等。
平面向量的基本运算法则:平面向量的加法满足“平行四边形法则”和“三角形法则”;平面向量的减法是加法的逆运算;平面向量的数乘是指向量的长度与数相乘,得到的向量与原向量的方向相同或相反,具体取决于数的正负;平面向量的数量积又叫点积,数量积的结果是一个标量,具体的运算式是A·B=|A||B|cosθ,其中A和B为两个向量,|A|和|B|分别为它们的长度,θ为夹角;平面向量的叉积又叫向量积,叉积的结果是一个向量,具体的运算式是A×B=|A||B|sinθn,其中A和B为两个向量,|A|和|B|分别为它们的长度,θ为夹角,n为垂直于A和B所在平面的单位向量。
二、立体几何立体几何是讲述空间图形的形状、大小、位置关系等内容的学科,在高中必修二数学中,主要包括了空间几何体的表面积、体积、平行投影等知识点。
在立体几何中,常见的几何体有:球、圆柱体、圆锥体、棱柱、棱锥等,每种几何体都有其独特的性质。
球的表面积和体积公式是S=4πr²,V=4/3πr³,其中r为球的半径;圆柱体的表面积和体积公式是S=2πr²+2πrh,V=πr²h,其中r为圆柱的底面半径,h为圆柱的高;圆锥体的表面积和体积公式是S=πr²+πrl,V=1/3πr²h,其中r为圆锥的底面半径,l为斜高,h为圆锥的高;棱柱和棱锥的表面积和体积公式的推导可以根据四边形的面积公式和三角形的面积公式进行推导。
高三数学必修二全部知识点

高三数学必修二全部知识点高三数学必修二是高中数学课程中的重要一环,它包含了许多基础的数学知识点。
下面将详细介绍高三数学必修二全部知识点,帮助同学们全面了解和掌握这些知识,为高考做好充分准备。
一、函数与导数1. 函数的定义及性质- 定义函数的方法- 函数的定义域、值域、奇偶性等性质2. 初等函数- 幂函数、指数函数、对数函数- 三角函数、反三角函数- 伸缩变换、平移变换、反转变换对函数图象的影响3. 函数的运算- 四则运算、复合函数、反函数- 常用初等函数的运算性质4. 导数与导函数- 导数的定义与几何意义- 导数与函数的连续性、可导性的关系- 导函数的计算- 导数的应用:切线与法线、函数的极值与最值、导数与函数的单调性二、幂指对数方程与不等式1. 幂指方程- 幂指函数的图象与性质- 一次幂指方程的解法- 二次幂指方程的解法2. 对数方程- 对数函数的图象与性质- 一次对数方程的解法- 二次对数方程的解法3. 幂指不等式- 幂指函数的单调性与不等式- 一元幂指不等式的解法- 二元幂指不等式的解法4. 对数不等式- 对数函数的单调性与不等式- 一元对数不等式的解法- 二元对数不等式的解法三、三角恒等变换与射影几何1. 三角恒等变换- 三角函数的基本关系- 和差化积公式、倍角与半角公式- 万能公式的推导与应用2. 射影几何- 点、直线、平面、圆锥曲线的基本概念- 直线与平面的位置关系- 圆锥曲线的方程及图象四、数列与数学归纳法1. 数列的概念与表示- 等差、等比、等差几何数列的概念与性质2. 数列的通项公式与前n项和- 等差、等比、等差几何数列的通项公式与前n项和公式3. 递推数列的应用- 斐波那契数列与黄金分割4. 数学归纳法- 数学归纳法的基本思想与应用五、概率统计1. 基本概念与排列组合- 事件、样本空间、随机事件的概念- 基本事件与复合事件的关系- 排列与组合的分类与应用2. 概率的定义与性质- 频率与概率的关系- 加法定理、乘法定理、全概率公式、贝叶斯公式3. 随机变量与概率分布- 离散型与连续型随机变量的概念与性质- 二项分布、泊松分布、正态分布的性质与应用4. 抽样与统计- 总体与样本的概念- 抽样调查的方法与应用- 统计指标的计算与应用通过对高三数学必修二全部知识点的学习和掌握,同学们能够更好地应对高考数学的挑战,提高数学成绩,达到理想的考试目标。
高中数学必修二知识点总结

高中数学必修二知识点总结引言高中数学必修二通常包括了高中数学的核心概念和技能,是学生深入理解数学和培养数学思维的关键阶段。
以下是对高中数学必修二知识点的详细总结。
一、几何基础1.1 平面几何概念:点、线、面、角的基本概念和性质。
1.2 三角形性质:等边三角形、等腰三角形、直角三角形的性质。
1.3 四边形性质:平行四边形、矩形、正方形、梯形的性质。
1.4 圆的性质定理:圆周角定理、圆心角定理、弦的性质。
二、解析几何2.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
2.2 直线方程形式:直线的点斜式、斜截式、一般式。
2.3 圆的方程形式:圆的标准方程、一般方程。
2.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
三、函数3.1 函数的基本概念定义:函数的定义、定义域、值域。
3.2 函数的性质总结:单调性、奇偶性、周期性、有界性。
3.3 反函数概念:反函数的定义、性质。
3.4 复合函数运算:复合函数的定义、运算法则。
3.5 函数图像绘制:函数图像的绘制方法和变换规律。
四、导数与微分4.1 导数的概念解释:导数的几何意义、物理意义。
4.2 导数的计算方法:基本初等函数的导数计算、复合函数求导法则。
4.3 高阶导数介绍:高阶导数的定义、计算方法。
4.4 微分的概念定义:微分的定义、几何意义。
五、积分学基础5.1 不定积分方法:不定积分的计算方法、积分公式。
5.2 定积分定义:定积分的定义、几何意义。
5.3 定积分的性质总结:定积分的基本性质、计算公式。
5.4 定积分的应用案例:定积分在几何、物理问题中的应用。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、性质。
七、概率与统计7.1 概率的基本概念定义:随机事件、概率的定义。
7.2 概率的计算方法:加法公式、乘法公式、全概率公式。
7.3 统计量的计算指标:均值、中位数、众数、方差、标准差。
高中必修二数学知识点总结

高中必修二数学知识点总结高中必修二数学知识点总结高中必修二数学是高中数学课程中的一门重要课程,涵盖了很多基础和扩展的数学知识。
下面将从代数、几何、函数、三角、概率与统计几个方面总结高中必修二数学的主要知识点。
一、代数部分:1. 集合与集合运算:定义集合、集合的表示方法、集合的运算。
2. 数与式:整数的加减乘除、有理数的加减乘除、绝对值、代数式的基本概念和运算法则。
3. 线性方程与一元一次方程组:一元一次方程的解法、二元一次方程组及其解法。
4. 不等式:一元一次不等式、一元二次不等式及其解法。
5. 平方根与立方根:平方根的概念及基本性质、开方运算的性质。
二、几何部分:1. 直线与角:直线的性质、六类基本角,互补角和补角。
2. 平行线与三角形:平行线的判定条件、平行线间的性质、三角形的概念及性质。
3. 三角形的相似与全等:相似三角形的判定条件、全等三角形的判定条件。
4. 三角形的中线与垂心:三角形的中线定义、中线的性质、垂心及相关性质。
5. 圆的性质:圆和圆的相关性质、切线定理。
三、函数部分:1. 一元二次函数:一元二次函数的基本概念、一元二次函数的图像的性质。
2. 指数函数与对数函数:指数与对数的基本概念、指数函数和对数函数的图像与性质。
3. 三角函数与其应用:角度的概念、弧度制与角度制的换算、标准位置三角函数、三角函数的图像性质。
4. 幂函数与函数的图像:幂函数的基本性质与图像性质。
四、三角部分:1. 三角恒等变换与二倍角公式:三角函数的基本恒等变换、常用的二倍角公式。
2. 解三角形:解直角三角形、解非直角三角形。
3. 三角函数的图像:三角函数的图像性质、变换、复习与运用。
五、概率与统计部分:1. 概率:基本概念、事件的关系、概率运算与公式、随机事件的概率计算。
2. 统计:统计调查与统计资料、统计图和图表的制作与分析。
通过对高中必修二数学的总结,我们可以发现数学是一门重要且实用的学科,在日常生活中,我们经常会用到数学的知识和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章点、直线、平面之间的位置关系
一、平面
1、含义:平面是无限延展的
2、“3个公理”
公理内容图形符号
公理1如果一条直线上的两点在一个
平面内,那么这条直线在此平面
内
A∈l,B∈l,且A∈
α,B∈α
⇒l⊂α
公理2过不在一条直线上的三点,有且
只有一个平面
A,B,C三点不共
线⇒存在唯一的α,
使A,B,C∈α
推论:①一条直线和其外一点可确定一个平面
②两条相交直线可确定一个平面
③两条平行直线可确定一个平面
公理3如果两个不重合的平面有一个公
共点,那么它们有且只有一条过
该点的公共直线
P∈α,P∈β
⇒α∩β=l,且P∈l
二、空间中点、直线、面的位置关系(“3种关系”)
1、空间两条直线的位置关系
位置关系特点
共面相交同一平面内,有且只有一个公共点平行同一平面内,没有公共点
异面直线不同在任何一个平面内,没有公共点
异面直线的画法
1.异面直线所成角θ的范围是【锐角(或直角)】00<θ≤900
2.当两条异面直线所成的角是直角时,我们就说这两条异面
直线互相垂直,记作a⊥b;
2.直线与平面的位置关系
位置关系直线a在平面α内
直线a在平面α外
直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点
符号表示a⊂αa∩α=A a∥α
图形表示
3.两个平面的位置关系
位置关系图示表示法公共点个数
两平面平行α∥β没有公共点
两平面相交α∩β=l 有无数个公共点(在一条直线
上)
三、平行(3种)
线线平行 线面平行 面面平行
⎭
⎪⎬⎪
⎫a ∥α
a ⊂βα∩β=
b ⇒a ∥b
⎭
⎪⎬⎪
⎫
a ⊄α
b ⊂αa ∥b ⇒a ∥α β
ααα
ββ
//////⇒⎪⎪⎪⎭⎪
⎪⎪⎬⎫
=⋂⊂⊂b a p b a b a
⎭
⎪⎬⎪
⎫α∥β
α∩γ=a β∩γ=b ⇒a ∥b αββα////a a ⇒⎭
⎬⎫
⊂ β
αααββ
//////⇒⎪⎪
⎪
⎪
⎪⎭⎪
⎪
⎪
⎪
⎪⎬⎫
=⋂⊂⊂=⋂⊂⊂m b n a Q n m n m p b a b a
⎭
⎪⎬⎪
⎫a ⊥αb ⊥α⇒a ∥b 垂直于同一平面的 两直线平行
βαβα//⇒⎭
⎬⎫
⊥⊥l l 垂直于同一条直线 的两平面平行
⎭⎪
⎬
⎪⎫
a∥b
b∥c
⇒a∥c.β
α
γ
β
γ
α
//
//
//
⇒
⎭
⎬
⎫
四、垂直(3种)
线线垂直线面垂直面面垂直a
l
a
l
⊥
⇒
⎭
⎬
⎫
⊂
⊥
α
α
α
α
α
⊥
⇒
⎪
⎪
⎪
⎭
⎪⎪
⎪
⎬
⎫
⊥
⊥
=
⋂
⊂
⊂
l
b
l
a
l
p
b
a
b
a
β
α
α
β
⊥
⇒
⎭
⎬
⎫
⊂
⊥
l
l
⎭⎪
⎬
⎪⎫
α⊥β
α∩β=l
a⊂α
a⊥l
⇒a⊥β
β
α
γ
β
γ
α
⊥
⇒
⎭
⎬
⎫
⊥
//
α
α
⊥
⇒
⎭
⎬
⎫
⊥
a
b
a
b
//
五、角(3种)
异面直线所成角直线与平面所成角度二面角
平面的一条斜线和它在平面上
的射影所成的锐角
范围:]
90
,0(︒
︒范围:]
90
,0[︒
︒
①当直线AP与平面垂直时,它们所
成的角是90°.
②当直线与平面平行或在平面内
时,它们所成的角是0°.
范围:]
180
,
0[︒
︒
第三章直线与方程
一、倾斜角和斜率
1、倾斜角:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.
2、斜率:k =tan α=
y2-y1
x2-x1
(x1≠x2)
直线
倾斜角 α=0° 0°<α<90° α=90° 90°<α<180°
斜率
>0
不存在
<0
二、直线的位置关系
直线方
程
b kx y +=
1111:0l A x B y C ++=(11,A B 不同时为0),
2222:0l A x B y C ++=(22,A B 不同时为0)
平行
2
12121,//b b k k l l ≠=⇔l 1∥l 2⇔l 1,l 2斜率都不存在
1
2212
1
212121//B A B A C C B B A A l l =⇔≠=⇔
与直线:0l Ax By C ++=平行的直线,
可设所求方程为10Ax By C ++=(c c ≠1)
垂直
12l l ⊥⇔121k k ⋅=-.
1212120l l A A B B ⊥⇔+=
与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=. 一条直线的斜率不存在,同时另一条直线的斜率等于零
相交
l 1与l 2相交⇔k 1≠k 2.
1l 与2l 相交11
22
A B A B ⇔
≠. 1l 与2l 相交12210A B A B ⇔-≠.
重合
212121,//b b k k l l ==⇔
1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=;
1l 与2l 重合111
222
A B C A B C ⇔
==
三、直线的方程
1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.
2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.
3.两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为11
2121
y y x x y y x x --=--(2121,y y x x ≠≠) 4. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x y
a b
+=(不过原点的直线) 5.一般式:0Ax By C ++=(A 、B 不同时为0)
直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C
y x B B
=--,表示斜率为A B -,y 轴上截距
为C
B
-
的直线. 四、解含有参数的直线恒过定点的问题
(1)方法一:化为点斜式00()y y k x x -=-.令⎩⎨⎧=-=-00
00y y x x ,直线必过定点(x 0,y 0)
(2)方法二:含有一个参数的二元一次方程若能整理为
A 1x +
B 1y +
C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数, 联立⎩
⎪⎨⎪⎧
A 1x +
B 1y +
C 1=0,
A 2x +
B 2y +
C 2=0解得.
五、距离公式
1、两点间的距离公式:|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2
2、点到直线的距离:
点00(,)P x y 到直线:0l Ax By C ++=
的距离公式为d =
3、两平行线距离
两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=
之间的距离公式d =
六、对称问题
1、点关于点对称
点),(b a A 关于点),(00y x P 对称,求A '坐标
解:设),(d c A ',则联立⎪⎪⎩⎪
⎪⎨⎧=+=+00
22y d b x c
a 求得
2、点关于线对称
点N (x 0,y 0)关于直线l :Ax +By +C =0的对称点M (x ,y )可由
方程组⎩⎨⎧
y -y 0x -x 0·⎝ ⎛⎭
⎪⎫
-A B =-1(AB ≠0)A ·x +x 0
2+B ·y +y
2
+C =0求得.。