广东佛山中考数学试题及答案
2021年广东省佛山市数学中考真题含答案解析及答案(word解析版)

.
解:图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大。
第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故 D 错误。
第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故 A 错误,并且这段的速度小于于第
一阶段的速度,则 C 错误.
项的系数化为 1。(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.
13.(2013•佛山)在 1,2,3,4 四个数字中随机选两个不同的数字组成两位数,则组成的两位数大于 40 的概率
是 .
分析:画出树状图,然后根据概率公式列式计算即可得解
9.(2021 年佛山市)多项式1 2xy 3xy 2 的次数及最高次项的系数分别是(
)
A. 3, 3
B. 2, 3
C. 5, 3
D. 2,3
分析:根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为 3 次,最高次项是﹣3xy2,系数是数字
因数,故为﹣3. 解:多项式 1+2xy﹣3xy2 的次数是 3, 最高次项是﹣3xy2,系数是﹣3。
D. 2 2
解:原式=
=
=2+ .
故选 D. 点评:本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键
6.(2021 年佛山市)掷一枚有正反面的均匀硬币,正确的说法是(
)
1
B
A.正面一定朝上
B.反面一定朝上
C.正面比反面朝上的概率大
D.正面和反面朝上的概率都是 0.5
解:根据题意画出树状图如下:
佛山数学中考试题及答案

佛山数学中考试题及答案第一部分:选择题1. 已知一辆汽车以每小时60公里的速度行驶,行驶的时间为3小时,求汽车行驶的路程是多少?A. 120公里B. 160公里C. 180公里D. 360公里2. 已知正方形的边长为8厘米,求该正方形的面积是多少?A. 64平方厘米B. 32平方厘米C. 16平方厘米D. 8平方厘米3. 某商场举办了一次促销活动,原价1000元的商品打折后只需支付800元,求打折的折扣率是多少?A. 20%B. 25%C. 30%D. 35%4. 某数学竞赛共有6个参赛队伍,每个队伍有4名参赛选手,求共有多少名选手参加了比赛?A. 12人B. 16人C. 18人D. 24人5. 某姐姐今年的年龄是弟弟年龄的2倍,两年前,姐姐的年龄是弟弟的3倍,求姐姐和弟弟现在的年龄分别是多少?A. 姐姐:12岁,弟弟:6岁B. 姐姐:14岁,弟弟:7岁C. 姐姐:16岁,弟弟:8岁D. 姐姐:18岁,弟弟:9岁第二部分:解答题1. 有两个数,其中一个数是另一个数的3倍,它们的和是12,求这两个数分别是多少?解答:设其中一个数为x,另一个数为3x。
根据题意,可得方程x + 3x = 12。
化简得4x = 12,解得x = 3。
所以这两个数分别是3和9。
2. 某商店购进一批商品,原价是2000元。
商店决定将其售价提高20%后出售,求提高后的售价是多少?解答:原价2000元提高20%即为2000 × 1.2 = 2400元。
所以提高后的售价是2400元。
3. 某校有600名学生,其中男生人数占总人数的30%,求该校男生的人数是多少?解答:男生人数占总人数的30%,即男生人数 = 600 × 0.3 = 180人。
所以该校男生的人数是180人。
4. 某地区的年平均气温为20摄氏度,求该地区年平均气温转换为华氏度后的数值是多少?(已知华氏度 = 摄氏度 × 1.8 + 32)解答:年平均气温转换为华氏度的计算公式为华氏度 = 20 × 1.8 +32 = 68华氏度。
备考练习:2022年广东省佛山市中考数学历年真题练习 (B)卷(含答案及详解)

2022年广东省佛山市中考数学历年真题练习 (B )卷 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列运算中,正确的是( ) A6B5 C=4 D2、已知2250x x --=的两个根为1x 、2x ,则12x x +的值为( ) A .-2B .2C .-5D .53、下列说法正确的是( ) A .任何数的绝对值都是正数 B .如果两个数不等,那么这两个数的绝对值也不相等 C .任何一个数的绝对值都不是负数 D .只有负数的绝对值是它的相反数4、如图所示,AC BD =,AO BO =,CO DO =,30D ∠=︒,则C ∠等于( ) A .60︒B .25︒C .30D .35︒ ·线○封○密○外5、等腰三角形的一个内角是100︒,则它的一个底角的度数是( )A .40︒B .80︒C .40︒或80︒D .40︒或100︒6、若点P 位于平面直角坐标系第四象限,且点P 到x 轴的距离是1,到y 轴的距离是2,则点P 的坐标为( )A .()1,2-B .()1,2-C .()2,1-D .()2,1-7、如图,任意四边形ABCD 中,E ,F ,G ,H 分别是各边上的点,对于四边形E ,F ,G ,H 的形状,小聪进行了探索,下列结论错误的是( )A .E ,F ,G ,H 是各边中点.且AC =BD 时,四边形EFGH 是菱形B .E ,F ,G ,H 是各边中点.且AC ⊥BD 时,四边形EFGH 是矩形C .E ,F ,G ,H 不是各边中点.四边形EFGH 可以是平行四边形D .E ,F ,G ,H 不是各边中点.四边形EFGH 不可能是菱形8、方程20x x -=的解是( ).A .0x =B .1x =C .10x =,21x =D .10x =,21x =-9、下列式子运算结果为2a 的是( ).A .a a ⋅B .2a +C .a a +D .3a a ÷10、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A .的B .祖C .国D .我第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、有理数a ,a ,a 在数轴上表示的点如图所示,化简|a +a |−|a −a |−2|a +a |=__________. 2、如图是一个运算程序的示意图,若开始输入x 的值为50,我们发现第1次输出的结果为25,第2次输出的结果为32,……则第2022次输出的结果为_________. 3、如图,在△aaa 中,AB 的垂直平分线交BC 于D ,AC 的中垂线交BC 于E ,∠aaa =20°,则∠aaa 的度数为________. 4、若a <√11<a +1,则整数a =___.·线○封○密○外5、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份).三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点C ,顶点为点D .(1)求该抛物线的表达式及点C 的坐标;(2)联结BC 、BD ,求∠CBD 的正切值;(3)若点P 为x 轴上一点,当△BDP 与△ABC 相似时,求点P 的坐标.2、如图,一次函数y kx b =+的图象交反比例函数m y x=的图象于()2,4A -,(),1B a -两点.(1)求反比例函数与一次函数解析式.(2)连接,OA OB ,求OAB ∆的面积.(3)根据图象直接回答:当x 为何值时,一次函数的值大于反比例函数的值?3、(数学阅读)图1是由若干个小圆圈推成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共推了n 层. 将图1倒置后与原图1排成图2的形状,这样图2中每一行的圆圈数都是1n +. 我们可以利用“倒序相加法”算出图1中所有圆圈的个数为:()112342n n n +++++⋅⋅⋅⋅⋅⋅+=. (问题解决) (1)按照图1的规则摆放到第12层时,求共用了多少个圆圈; (2)按照图1的规则摆放到第19层,每个圆圈都按图3的方式填上一串连续的正整数:1,2,3,4,……,则第19层从左边数第二个圆圈中的数字是______. 4、如图,BE 是ABC 的角平分线,在BE 的延长线上有一点D .满足CD BC =.求证:AE ABEC BC =. 5、(1)()2322114()82x y xyz xy ⎛⎫-⋅-÷ ⎪⎝⎭. ·线○封○密○外(2)22[(1)(2)22()]ab ab a b ab +--+÷-.-参考答案-一、单选题1、C【分析】根据算术平方根的意义逐项化简即可.【详解】解:B.-5,故不正确;4,正确;8,故不正确;故选C .【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键,正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.2、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】解:∵2250x x --=的两个根为1x 、2x ,∴122=()21x x -+-= 故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若1x 、2x 为一元二次方程20ax bx c ++=的两个实数根,则有12=b x x a +-,12=c x x a . 3、C 【分析】 数轴上表示数a 的点与原点的距离是数a 的绝对值,非负数的绝对值是它的本身,非正数的绝对值是它的相反数,互为相反数的两个数的绝对值相等,再逐一分析各选项即可得到答案. 【详解】 解:任何数的绝对值都是非负数,故A 不符合题意;如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方44, 但4=4, 故B 不符合题意; 任何一个数的绝对值都不是负数,表述正确,故C 符合题意; 非正数的绝对值是它的相反数,故D 不符合题意; 故选C 【点睛】 本题考查的是绝对值的含义,求解一个数的绝对值,掌握“绝对值的含义”是解本题的关键.4、C【分析】根据“SSS”证明△AOC ≌△BOD 即可求解.【详解】 ·线○封○密○外解:在△AOC 和△BOD 中AC BD AO BO CO DO =⎧⎪=⎨⎪=⎩, ∴△AOC ≌△BOD ,∴∠C =∠D ,∵30D ∠=︒,∴C ∠=30°,故选C .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.5、A【分析】由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.【详解】解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角 ∴底角的度数为180100402︒-︒=︒ 故选A .【点睛】本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.6、D【分析】第四象限中横坐标为正,纵坐标为负,到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,进而可表示出点坐标. 【详解】 解:由题意知点P 的横坐标为2,纵坐标为1-∴点P 的坐标为()2,1-故选D . 【点睛】 本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值. 7、D 【分析】 当E F G H ,,,为各边中点,EH BD FG EF AC GH ∥∥,∥∥,11====22EH BD FG EF AC GH ,,四边形EFGH 是平行四边形;A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形,进而可判断正误;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形,进而可判断正误;E ,F ,G ,H 不是各边中点,C 中若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形,进而可判断正误;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形,进而可判断正误. 【详解】解:如图,连接AC BD 、当E F G H ,,,为各边中点时,可知EH EF FG GH 、、、分别为ABD ABC BCD ACD 、、、的中位线 ·线○封○密○外∴11====22EH BD FG EF AC GH EH BD FG EF AC GH ∥∥,∥∥,,∴四边形EFGH是平行四边形A中AC=BD,则=EF FG,平行四边形EFGH为菱形;正确,不符合题意;B中AC⊥BD,则EF FG⊥,平行四边形EFGH为矩形;正确,不符合题意;C中E,F,G,H不是各边中点,若四点位置满足==EH FG EF GH EH FG EF GH∥,∥,,,则可知四边形EFGH可以是平行四边形;正确,不符合题意;D中若四点位置满足===EH FG EF GH EH FG EF GH∥,∥,,则可知四边形EFGH可以是菱形;错误,符合题意;故选D.【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.8、C【分析】先提取公因式x,再因式分解可得x(x-1)=0,据此解之可得.【详解】解:20x x-=,x(x-1)=0,则x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键.9、C【分析】由同底数幂的乘法可判断A ,由合并同类项可判断B ,C ,由同底数幂的除法可判断D ,从而可得答案. 【详解】解:2,a a a ⋅=故A 不符合题意; 2a +不能合并,故B 不符合题意; 2,a a a +=故C 符合题意; 23,a a a ÷=故D 不符合题意;故选C 【点睛】 本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.10、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【详解】 解:正方体的表面展开图,相对的面之间一定相隔一个正方形, 第一列的“我”与“的”是相对面, 第二列的“我”与“国”是相对面, “爱”与“祖”是相对面. 故选:B . 【点睛】·线○封○密○外本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题1、−3a−3a##【分析】的符号,再去绝对值即可.根据数轴得出a+a,a−a,1b【详解】由数轴得a<a<0<a,|a|<|a|,∴a+a<0,a−a<0,a+a>0,∴|a+a|−|a−a|−2|a+a|=−(a+a)+a−a−2(a+a)=−a−a+a−a−2a−2a=−3a−3a.故答案为:−3a−3a.【点睛】本题主要考查了数轴和绝对值,掌握数轴、绝对值以及合并同类项的法则是解题的关键.2、2【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【详解】解:由设计的程序知,依次输出的结果是25,32,16,8,4,2,1,8,4,2,1…,发现从第4个数开始,以8,4,2,1循环出现,则2022−3=2019,2019÷4=504……3,故第2022次输出的结果是2.故答案为:2.【点睛】本题考查数字的变化类,解题的关键是明确题意,发现数字的变化特点,求出相应的输出结果. 3、100° 【分析】根据线段的垂直平分线的性质得到aa =aa ,aa =aa ,得到∠a =∠aaa 和∠a =∠aaa ,根据三角形内角和定理计算得到答案.【详解】解:∵aa 是线段aa 的垂直平分线,∴aa =aa ,∴∠a =∠aaa ,同理∠a =∠aaa ,180B DAB C EAC DAE ∠+∠+∠+∠+∠=︒,80DAB EAC ∴∠+∠=︒,∴∠aaa =100°,故答案是:100°.·线○封○密○外【点睛】本题考查的是线段的垂直平分线的性质和三角形内角和定理,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.4、3【分析】估算出√11的取值范围即可求出a的值.【详解】解:∵√9<√11<√16,∴3<√11<4,∵a<√11<a+1,∴a=3,故答案为:3.【点睛】此题主要考查了估算无理数的大小,在确定形如√a(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.5、10、11【分析】计算出相邻两个月销售额的变化,然后比较其绝对值的大小.【详解】-=、25−30=−5、15−25=解:根据图中的信息可得,相邻两个月销售额的变化分别为:30237−10、19−15=4,∵4<|−5|<7<|−10|,∴该店手机销售额变化最大的相邻两个月是10、11,故答案为:10、11【点睛】此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则. 三、解答题 1、 (1)223y x x =--,点C 的坐标为(0,-3) (2)13 (3)(-3,0)或(-13,0) 【分析】(1)把A 、B 两点坐标代入函数求出b ,c 的值即可求函数表达式;再令x =0,求出y 从而求出C 点坐标;(2)先求B 、C 、D 三点坐标,再求证△BCD 为直角三角形,再根据正切的定义即可求出; (3)分两种情况分别进行讨论即可.(1) 解:(1)将A (-1,0)、B (3,0)代入2++=y x bx c ,得 10930.b c b c -+=⎧⎨++=⎩, 解得:23.b c =-⎧⎨=-⎩, 所以,223y x x =--. 当x =0时,3y =-.∴点C 的坐标为(0,-3). (2) ·线○封○密○外解:连接CD ,过点D 作DE ⊥y 轴于点E ,∵()2223=14=----y x x x ,∴点D 的坐标为(1,-4).∵B (3,0)、C (0,-3)、D (1,-4),E (0,-4),∴OB =OC =3,CE =DE =1,∴BC=BD=∴222+18220=+==BC DC DB .∴∠BCD =90°.∴tan ∠CBD=13DC BC ==.(3)解:∵tan ∠ACO=13AO OC =, ∴∠ACO =∠CBD .∵OC =OB ,∴∠OCB =∠OBC =45°.∴∠ACO+∠OCB =∠CBD+∠OBC .即:∠ACB =∠DBO .∴当△BDP 与△ABC 相似时,点P 在点B 左侧. (i )当=AC DB CB BP时,=BP . ∴BP =6. ∴P (-3,0). (ii )当=AC BP CB DB 时,= ∴BP =103. ∴P (-13,0). 综上,点P 的坐标为(-3,0)或(-13,0). 【点睛】 本题是二次函数的综合题,掌握相关知识是解题的关键. 2、 (1)8y x =-,152y x =-; (2)15;(3)0<x <2或x >8.【分析】·线○封○密○外(1)先把点A的坐标代入myx=,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;(3)观察函数图象即可求得.(1)解:把A(2,-4)的坐标代入myx=得:m=-8,∴反比例函数的解析式是8yx=-;把B(a,-1)的坐标代入8yx=-得:-1=8a-,解得:a=8,∴B点坐标为(8,-1),把A(2,-4)、B(8,-1)的坐标代入y=kx+b,得:24 81k bk b+=-⎧⎨+=-⎩,解得:125kb⎧=⎪⎨⎪=-⎩,∴一次函数解析式为152y x=-;(2)解:设直线AB交x轴于C.∵152y x=-,∴当y=0时,x=10,∴OC=10,∴△AOB 的面积=△AOC 的面积-三角形BOC 的面积 =111041011522⨯⨯-⨯⨯=; (3) 解:由图象知,当0<x <2或x >8时,一次函数的值大于反比例函数的值. 【点睛】 本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B 的坐标是解题的关键. 3、 (1)78个圆圈 (2)173 【分析】 (1)将12n =代入公式求解即可得;(2)先计算当18n =时的值,然后根据题意,第19层从左边数第二个圆圈中的数字即可得出. (1)解:图1中所有圆圈的个数为:()112342n n n +++++⋅⋅⋅⋅⋅⋅+=, 当12n =时,()12121123412782⨯+++++⋅⋅⋅⋅⋅⋅+==, 答:摆放到第12层时,求共用了78个圆圈; (2) 先计算当18n =时, ()181811234181712⨯+++++⋅⋅⋅⋅⋅⋅+==, ·线○封○密○外第19层从左边数第二个圆圈中的数字为:1712173+=,故答案为:173.【点睛】题目主要考查有理数的加法及找规律求代数式的值,理解题意,运用代数式求值是解题关键.4、见解析【分析】根据BE是ABC的角平分线和CD BC=,可得∠ABE=∠D,从而得到△ABE∽△CDE,进而得到AE ABCE CD=,即可求证.【详解】证明:∵BE是ABC的角平分线,∴∠ABE=∠CBD,∵CD BC=,∴∠D=∠CBD,∴∠ABE=∠D,∵∠AEB=∠CED,∴△ABE∽△CDE,∴AE ABCE CD=,∵CD BC=,∴AE AB EC BC=.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握有两对角相等的两个三角形相似是解题的关键.5、(1)2xz ;(2)ab +1【分析】(1)先计算积的乘方,后自左到右依次计算即可,(2)先计算括号里的,最后计算除法.【详解】解:(1)原式2324(4)()11(84()())x x y y z x y -÷=-⨯ 34421214x y z x y ÷= =2xz ;(2)原式=22222[22()2]ab ab a b a b ab -+÷--+- =22)(()a a a b b b --÷- =ab +1.【点睛】本题考查了整式的混合运算,熟练掌握运算的顺序,运算公式和运算法则是解题的关键.·线○封○密·○外。
2021广东佛山中考数学试题及答案

2021广东佛山中考数学试题及答案2021广东佛山中考数学试题及答案2021年佛山市高中阶段学校招生考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1、-2的倒数是(2、(11·佛山)计算23+(-2) 3的值是() D 、183、(11·佛山)下列说法正确的是(A 、a 一定是正数C 、22是有理数D 、平方等于自身的数只有1B 、是有理数4、(11·佛山)若⊙O 的一条弧所对的圆周角为60°,则这条弧所对的圆心角是(C 、120°D 、以上答案都不对5、(11·佛山)在①a 4·a 2;②(-a 2) 3;③a 12÷a 2;④a 2·a 3中,计算结果为a 6的个数是()6、(11·佛山)依次连接菱形的各边中点,得到的四边形是(7、(11·佛山)一个图形无论经过平移还是旋转,有以下说法(①对应线段平行;③对应角相等;②对应线段相等;④图形的形状和大小都没有发生变化C 、①③○48、(11·佛山)下列函数的图像在每一个象限内,y 值随x 值的增大而增大的是(A 、y =-x +1B 、y =x 2-19、(11·佛山)如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是(1 2 14A B10、(11·佛山)下列说法正确的是(A 、“作线段CD =AB ”是一个命题;B 、三角形的三条内角平分线的交点为三角形的内心;C 、命题“若x =1,则x 2=1”的逆命题是真命题;D 、“具有相同字母的项称为同类项”是“同类项”的定义;第II 卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15分)11、(11·佛山)地球上的海洋面积约为361 000 000 km2,则科学记数法可表示为km 2;【答案】3.61×10812、(11·佛山)已知线段AB =6,若C 为AB 中点,则AC =;【答案】313、(11·佛山)在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,若AB =OB =4,则AD =;【答案】3写为48,给3分;写成近似值6.9、6.93或6.928,均给3分。
2020年广东省佛山市中考数学试题及答案

佛山市2020年高中阶段学校招生考试数学试卷说明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟.注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.12345.下列说法中,不正确...的是( ).A.为了解一种灯泡的使用寿命,宜采用普查的方法B.众数在一组数据中若存在,可以不唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差6. “明天下雨的概率为80%”这句话指的是( ).A . 明天一定下雨B . 明天80%的地区下雨,20%的地区不下雨C . 明天下雨的可能性是80%D . 明天80%的时间下雨,20%的时间不下雨7. 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M 、N . 则线段BM 、DN 的大小关系是( ).89(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11.计算:=--)2)(2(b a b a .12.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .13.若20082007=a ,20092008=b ,则a 、b 的大小关系是a b .第12题图BCDAP14.在研究抛掷分别标有1、2、3、4、5、6的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大?假设下表是几位同学抛掷骰子的实验数据:同学编号抛掷情况1 2 3 4 5 6 7 8抛掷次数100 150 200 250 300 350 400 450 正面朝上的点数是三个连续整数的次数10 12 20 22 25 33 36 41题每到直(参考数据:7.13≈,4.12≈)A住宅小区M4530B第18题图19.某地为了解当地推进“阳光体育”运动情况,就“中小学生每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见下表):.另22.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.人数B 第21题图(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?23.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1) 当AB≠AC时,证明四边形ADFE为平行四边形;最B点25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形...............提出相关的概念和问题(或者根据问题构造图形),并加以研究.............................例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1) 如图1,在圆O所在平面上,放置一条..直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心..直.......的两条线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之.(3) 如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F. 请找出点C和点E重合的条件,并说明理由.佛山市2008年高中阶段学校招生考试数学试卷参考答案与评分标准一、选择题. 题号 1 2 3 4 5 6 7 8 9 10 答案B DC B A C C BD A二、填空题. 题号1112131415603MN== 300 . ……………………………………………MN 191≈.………………………………………………6分(由于计算方式及取近似值时机不同有多个值,均不扣分)19.(1) B 组的人数是 30 人; ………………………………………………………………………………2分(2) 本次调查数据的中位数落在 C 组内;…………………………………………………………4分第18题图(3) 5120030024064000=⨯(人). ………………………………………………………………………6分 (每小题2分,不用补全图形)20.第一类解法(直接推理):)2)(1(2323++=++n n n n n n ..…………………………………………………………………………1分因为n 、1+n 、2+n 是连续的三个正整数,………………………………………………………2分所以其中必有一个是2的倍数、一个是3的倍数. ………………………………………………3分 所以)2)(1(2323++=++n n n n n n 一定是6的倍数. ………………………………………4分 又n n n 2323++的最小值是6,……………………………………………………………………………5分∴ x =2.即正方形ADEF 的边长为2. ………………………………………………………………8分(本题可以先作图后计算,也可以先计算后作图;未求出AD 或AF 的值用作中垂线的方法找到D 点或F 点,给2分)22.(1) 设租用甲种货车x 辆,则乙种货车为8x -辆. ……………………………………1分依题意,得:208(8)100,68(8)54.x x x x +-≥⎧⎨+-≥⎩(每列出一个给一分) ………………………………3分解不等式组,得53≤≤x : ………………………………………………………………………………5分 这样的方案有三种:甲种货车分别租5,4,3辆,乙种货车分别租3,4,5辆. ………6分B【另解:设安排甲种货车x 辆,则有54100)8)(88()620(+≥-+++x x . ……………3分解得513≥x ,又8≤x ,可取整数8,7,6,5,4,3=x . ………………………………………5分 租用货车的方案有六种:即甲种货车分别租用8,7,6,5,4,3辆. ………………………6分 (2) 总运费8000300)8(10001300+=-+=x x x s . ………………………………………7分 因为s 随着x 增大而增大,所以当3=x 时,总运费s 最少,为8900元. ………8分((1)若用另解,在总得分中扣1分;(2)若用类似列下表的方式解答,可参考给分) 甲车数量 3 4 5 6 7 8 总运费89009200…………B (12-m ,0),C )3121,12(2++--m m m ,D )3121,(2++-m m m . …………7分 ∴“支撑架”总长AD+DC+CB = )3121()212()3121(22++-+-+++-m m m m m= 18612+-m . …………………………………………………………………………………………………9分∵ 此二次函数的图象开口向下.∴ 当m = 0时,AD+DC+CB 有最大值为18. …………………………………………………10分25.解:(1) 弦(图中线段AB )、弧(图中的ACB 弧)、弓形、求弓形的面积(因为是封闭图形)等.(写对一个给1分,写对两个给2分)(2) 情形1 如图21,AB 为弦,CD 为垂直于弦AB 的直径. …………………………3分 结论:(垂径定理的结论之一). …………………………………………………………………………4分 证明:略(对照课本的证明过程给分). ……………………………………………………………7分 情形2 如图22,AB 为弦,CD 为弦,且AB 与CD 在圆内相交于点P . 结论:PD PC PB PA ⋅=⋅.m。
2023年广东省佛山市中考数学试卷含答案解析

绝密★启用前2023年广东省佛山市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A. −5元B. 0元C. +5元D. +10元2.下列出版社的商标图案中,是轴对称图形的为( )A. B.C. D.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A. 0.186×105B. 1.86×105C. 18.6×104D. 186×1034.如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A. 43°B. 53°C. 107°D. 137°5.计算3a +2a的结果为( )A. 1a B. 6a2C. 5aD. 6a6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A. 黄金分割数B. 平均数C. 众数D. 中位数7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( )A. 18B. 16C. 14D. 128.一元一次不等式组{x−2>1x<4的解集为( )A. −1<x<4B. x<4C. x<3D. 3<x<49.如图,AB是⊙O的直径,∠BAC=50°,则∠D=( )A. 20°B. 40°C. 50°D. 80°10.如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为( )A. −1B. −2C. −3D. −4二、填空题(本大题共5小题,共15分)11.因式分解:x2−1=.12.计算:√ 3×√ 12=______ .13.某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=48R.当R=12Ω时,I的值为______ A.14.某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打______ 折.15.边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为______ .三、解答题(本大题共8小题,共75分。
2021年广东省佛山市数学中考真题含答案解析(含答案)

2
6.(3 分)(2014•佛山)下列函数中,当 x>0 时,y 值随 x 值的增大而减小的是( )
A.y=x
B.y=2x﹣1
C.y=
D.y=x2
考点:二次函数的性质。一次函数的性质。正比例函数的性质。反比例函数的性质. .
点评:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的 两个内角的和.
5
15.(3 分)(2014•佛山)如图,AC⊥BC,AC=BC=4,以 BC 为直径作半圆,圆心为 O.以点 C 为 圆心,BC 为半径作弧 AB,过点 O 作 AC 的平行线交两弧于点 D、E,则阴影部分的面积是
4.(3 分)(2014•佛山)若两个相似多边形的面积之比为 1:4,则它们的周长之比为( )
A.1:4
B.1:2
C.2:1
D.4:1
考点:相似多边形的性质. .
分析:根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比,就可求解. 解答:解:∵两个相似多边形面积比为 1:4,
∴周长之比为 =1:2.
﹣2 .
考点:扇形面积的计算. .
分析:如图,连接 CE.图中 S 阴影=S 扇形 BCE﹣S 扇形 BOD﹣S△OCE.根据已知条件易求得 OA=OC=OD=2,BC=CE=4.∠ECB=60°,OE=2 所以由扇形面积公式、三角形面积公 式进行解答即可.
解答:
解:如图,连接 CE. ∵AC⊥BC,AC=BC=4,以 BC 为直径作半圆,圆心为点 O。以点 C 为圆心,BC 为半径作弧 AB, ∴∠ACB=90°,OB=OC=OD=2,BC=CE=4. 又∵OE∥BC, ∴∠ACB=∠COE=90°. ∴在直角△OEC 中,OC=2,CE=4, ∴∠CEO=30°,∠ECB=60°,OE=2
广东省佛山市中考数学试卷及答案

2013年广东省佛山市中考数学试卷参考答案与试题解析ACBCD DBCAB二、填空题11.(3分)(2013•佛山)数字9 600 000用科学记数法表示为9.6×106.解答:解:将9 600 000用科学记数法表示为:9.6×106.故答案为:9.6×106.12.(3分)(2013•佛山)方程x2﹣2x﹣2=0的解是x1=+1,x2=﹣+1.解答:解:x2﹣2x﹣2=0,移项得:x2﹣2x=2,配方得:x2﹣2x+1=2+1,(x﹣1)2=3,两边直接开平方得:x﹣1=,则x1=+1,x2=﹣+1.13.(3分)(2013•佛山)在1,2,3,4四个数字中随机选两个不同的数字组成两位数,则组成的两位数大于40的概率是.解答:解:根据题意画出树状图如下:一共有12种情况,组成的两位数大于40的情况有3种,所以,P(组成的两位数大于40)==.故答案为:.14.(3分)(2013•佛山)图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=30°.解答:解:∵CA∥OB,∴∠CAO=∠AOB=30°,∵OA=OC,∴∠C=∠OAC=30°,∴∠AOD=2∠C=60°,∴∠BOD=60°﹣30°=30°.故答案为30°.15.(3分)(2013•佛山)命题“对顶角相等”的“条件”是两个角是对顶角.三、解答题16.解答:解:2×[5+(﹣2)3]﹣(﹣|﹣4|÷2﹣1=2×(5﹣8)﹣(﹣4÷)=﹣6﹣(﹣8)=2.17.解答:证明:∵AC=,BC==,AB=4,DF==2,EF==2,ED=8,∴===2,∴△ABC∽△DEF.18.解答:解:原式=﹣===.19.解答:解:(1)一样;(2)①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;②式子2x﹣1的值不小于1且不大于3可得.20.解答:解:设圆锥的母线长为l,底面半径为r,则:πl=2πr,∴l=2r,∴母线与高的夹角的正弦值==,∴母线AB与高AO的夹角30°.21.解答:解:(1)把A(1,2)代入y=ax得a=2,所以正比例函数解析式为y=2x;把A(1,2)代入y=得b=1×2=2,所以反比例函数解析式为y=;(2)如图,当﹣1<x<0或x>1时,正比例函数值大于反比例函数值.22.解答:解:(1)三角形全等的判定方法中的推论AAS指的是:两边及其夹角分别对应相等的两个三角形全等.(2)已知:在△ABC与△DEF中,∠A=∠D,∠C=∠F,BC=EF.求证:△ABC≌△DEF.证明:如图,在△ABC与△DEF中,∠A=∠D,∠C=∠F(已知),∴∠A+∠C=∠D+∠F(等量代换).又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),∴∠B=∠E.∴在△ABC与△DEF中,,∴△ABC≌△DEF(ASA).23.解答:解:(1)根据图表数据得出:选A的所占圆心角为:×360°=45°;选B的所占圆心角为:×360°=15°;选C的所占圆心角为:×360°=270°;选D的所占圆心角为:×360°=30°.如图所示:(2)∵选择题满分是3分,正确的选项是C,∴全体学生该题的平均得分为:=2.25(分),答:全体学生该题的平均得分是2.25分.24.解答:解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.25.解答:解:(1)在表格中作答:分割图形分割或图形说明示例:示例:①分割成两个菱形.②两个菱形的边长都为a,锐角都为60°.①分割成两两个等腰梯形.②两个等腰梯形的腰长都为a,上底长都为,下底长都为a,上底角都为120°,下底角都为60°.①分割成一个等边三角形、一个等腰三角形、一个直角三角形.②等边三角形的边长为a,等腰三角形的腰长为a,顶角为120°.直角三角形两锐角为30°、60°,三边为a 、a、2a.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年佛山市高中阶段学校招生考试
数 学 试 卷
说 明:本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共6页,满分 120分,考试时间100分钟。
注意事项:
1、 试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上
2、 要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字等描黑。
3、 其余注意事项,见答题卡。
第I 卷(选择题 共30分)
一.选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
答案选项填涂在答题卡上。
)
1.1
2-的绝对值是(
C )
A .2
B .2-
C .
12
D .12
-
2.23.a a 等于( A )
A .5a
B .6a
C .8a
D .9a
3.与432÷÷运算结果相同的是( A/B ) A .432÷÷ B .)43(2⨯÷ C .)34(2÷÷
D .423÷÷
4.在平面直角坐标系中,点()2,3-M 关于x 轴对称的点在(C )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.一个几何体的展开图如图所示,这个几何体是( A ) A .三棱柱 B .三棱锥
C .四棱柱
D .四棱锥
6.下列图形中,既是轴对称图形又是中心对称图形的是( B )
7.吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最合适的调查方式是( B )
A .普查
B .抽样调查
C .在社会上随机调查
D .在学校里随机调查
8.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是( A )
A .平行四边形
B .矩形
C .菱形
D .梯形
9.用配方法解一元一次方程0322
=--x x 时,方程变形正确的是( B )
A .(
)2
12
x -=
B .(
)2
14
x -=
C .
()2
11
x -=
D .(
)2
17
x -=
10.如图,把一个斜边长为2且含有0
30角的直角三角板ABC 绕直角顶点C 顺
时针旋转0
90到11A BC
∆,则在旋转过程中这个三角板扫过的图形的面积是( A )
A .π
B .3
C .33
4
π+
D .113
12
4π+
第II 卷(非选择题 共90分)
二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡中)
11.分式方程x
x 2
13=-的解x 等于 1 ;
12.一个多边形的内角和为540°,则这个多边形的边数是 五 ;
13.若),(11y x A 和),(22y x B 在反比例函数x y 2
=的图象上,且210x x <<,则2
1y y 与的大小关系是1y > 2y ;
14.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 20% ;
15.如图,边长为4+m 的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 2m+4
三、解答题(在答题卡上作答,写出必要的步骤。
16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分)
16.按要求的程序(见答题
卡)化简:a b b c
ab bc
++-
解:a b b c ab bc ++-
=(ac+bc-ab-ac)/abc =b(c-a)/abc =(c-a)/ac
17.如图,已知AB=DC ,DB=AC
(1)求证:∠ABD=∠DCA
注:证明过程要求给出每一步结论成立的依据. 证明:连接AD 。
∵在△ABD 和△DCA 中 AB=DC ,DB=AC (已知) AD=DA (公共边)
∴△ABDC≌△DCA(SSS)
∴∠ABD=∠DCA(全等三角形,对应角相等)
(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?
构建出两个全等三角形,从而利用全等三角形对应角相等证明两角相等。
18.解不等式组
3(21)54(1) 32(2) 2
x x
x
x
⎧--≥+
⎪
⎨
-<
⎪⎩
注:不等式(1)要给出详细的解答过程.
解:由(1)得:3-(2x-1)≥5x+4
3-2x+1≥5x+4
-2x-5x≥4-3-1
-7x≥0
X≤0
由(2)得:x/2 -3<2x
x/2 -2x<3
(-3/2)x<3
X>-2
∴综上所述,原不等式组的解集是:-2<x≤0
19.甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:
甲
98 90 87 98 99 91 91 96 98 96 乙 85
91
89
97
96
97
98
96
98
98
(1)根据上表数据,完成下列分析表:
(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么? 应选甲参加比赛,因为甲乙两人的平局数一样,而甲的方差和极差都比乙小,所以选甲参加比赛。
20.用如图所示的三等分的圆盘转两次做“配紫色(红色+蓝色)”游戏,配出紫
色的概率用公式m
n
P 计算.
请问:m 和n 分别是多少?m 和n 的意义分别是什么?
21.比较两个角的大小,有以下两种方法(规则)
①用量角器度量两个角的大小,用度数表示,则角度大的角大; ②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大. 对于如图给定的∠ABC 与∠DEF ,用以上两种方法分别比较它们的大小.
注:构造图形时,作示意图(草图)即可.
平均数 众数 中位数 方差 极差 甲
94.5 98 96 15.56 12 乙
94.5
98
96.5
18.65
13
(略)
22.(1)任选以下三个条件中的一个,求二次函数
c bx ax y ++=2的解析式;
①y 随x
变化的部分数值规律如下表:
②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③已知函数c bx ax y ++=2的图象的一部分(如图). (2)直接写出二次函数c bx ax y ++=2的三个性质.
解:(1)y=-x ²+2x+3
(2)图像是一条抛物线;开口向下;顶点坐标为(1,4);在(-∞,1)上递增;与x 轴交点坐标为(-1,0)和(3,0);与y 轴坐标为(0,3)。
x -1 0 1 2 3 y
3
4
3
23.如图,直尺、三角尺都和圆O相切,AB=8cm .求圆O的直径.
解:设三角尺与圆相切的交点为C,连接OC。
在Rt△OCA和Rt△OBA中
∵OC=OB(半径相等)
OA=OA(公共边)
∴Rt△OCA≌Rt△OBA(HL)
∴∠OAC=∠OAB(全等三角形,对应角相等)
∴∠OAC=∠OAB=60°
∵AB=8
∴OB=8√3
∴圆的直径为16√3
24.规律是数学研究的重要内容之一.
初中数学中研究的规律主要有一些特定的
规则、符号(数)及其运算规律、图形的数值特
征和位置关系特征等方面.
请你解决以下与数的表示和运算相关的问
题:
(1)写出奇数a用整数n表示的式子;
(2)写出有理数b用整数m和整数n表示的式子;
(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).
y 的某种数值变化规律进行初步研究:
下面对函数2x
x0 1 2 3 4 5 ...
i
由表看出,当x 的取值从0开始每增加1个单位时,y 的值依次增加1,3,5... 请回答:
当x 的取值从0开始每增加
21
个单位时,y 的值变化规律是什么? 当x 的取值从0开始每增加n
1
个单位时,y 的值变化规律是什么?
解:当x 的取值从0开始每增加21
个单位时,y 的值依次增加1/4,3/4,5/4...
当x 的取值从0开始每增加n
1
个单位时,y 的值依次增加1/n ²,3/ n ²,5/n ²...
25.(1)按语句作图并回答:
作线段AC(AC=4),以A 为圆心a 为半径作圆,再以C 为圆心b 为半径作圆(4<a ,4<b ,圆A 与圆C 交于B 、D 两点),连结AB 、BC 、CD 、DA . 若能作出满足要求的四边形ABCD,则b a 、应满足什么条件? (2)若32==b a ,,求四边形ABCD 的面积.
i y
0 1 4 9 16 25 ... i i y y -+1
1
3
5
7
9
11
...。