八年级数学《矩形的性质》学案

合集下载

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

学习目标:1. 理解矩形的概念,知道矩形与平行四边形的区别与联系.2. 会证明矩形的性质,会用矩形的性质解决简单的问题. 学习重点:矩形的定义、性质及其应用.〉宙主研〈一、 课前检测二、 温故知新1. 平行四边形是怎样定义的?它有哪些性质?请分别用符号语言表示出来.2.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°N 这是我们学过的哪个图形?三、预习导航(预习教材第52页,标出你认为重要的关键词)1. 矩形的定义:有一个角是直角的平行四边形叫做 _______ ,也就是长方形.2. 矩形是特殊的平行四边形,你能根据平行四边形的性质,说出矩形的性质吗?四、自学自测1. 矩形是常见的图形,你能举出一些生活中的实例吗?2. _________________________________________ 矩形的定义中有两个条件:一是 ___________________________________________ ,二是 ________________ . 3. 已知矩形的一条对角线与一边的夹角为30° ,则矩形两条对角线相交所得的 锐角为 ________ ;若该矩形的对角线长为4cm,则矩形的两邻边长分别 为 ______ 、 _______ • 五、我的疑惑(反思)师生备注18. 2. 1矩形 第1课时矩形的性质1〉居究点一、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一 个角为直角,它是否具有一般平行四边形所不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角 度数和对角线的长度,并记录测量结果.ACBDZBADZADCZABCZBCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?师生备注B:.ZC = ________ ° .A ZB=ZC=ZD=ZA = ____________ ° .②如图,四边形ABCD 是矩形,ZABC=90° ,对角线AC 与DB 相较于点0. 求证:AC=DB.证明:•.•四边形ABCD 是矩形,AAB _____ DC, ZABC=ZDCB= _________在AABC 和ADCB 中,VAB=DC, ZABC=ZDCB, BC= CB, AABC _____ ADCB. /. AC ___________ DB.猜想1矩形的四个角都是 __________ . 猜想2矩形的对角线— 证一证①如图,四边形ABCD 是矩形,ZB=90° . 求证:ZB=ZC=ZD=ZA=90° .证明:•••四边形ABCD 是矩形,A ZB _______ Z D, ZC ________ Z A, AB ________ DC. /. ZB+ZC= _________ ° .A又 V ZB = 90° ,思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条? 要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有: 1. 矩形的四个角都是 _____ •矩形的对角线 _________ • 2. 矩形是 ________ 图形,它有 __ 条对称轴. A 几何语言描述: 在矩形ABCD 中,对角线AC 与DB 相交于点0.A ZABC=ZBCD=ZCDA=ZDAB =90° , AC=DB.B二、精讲点拨例1如图,在矩形ABCD 中,E 是BC 上一点,AE=AD, DF 丄AE ,垂足为F.求证:DF=DC.例2如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ,处,BC'交AD 于点E, AD=8, AB=4,求ABED 的面积.方法总结:三、变式训练1.如图,在矩形ABCD 中,对角线AC, BD 交于点0,下列说法错误的是(A. AB 〃DCC. AC±BD2.如图,在矩形ABCD 中,AE 丄BD 于E, ZDAE : 度数.四、课堂小结内容 符号语言B. AC=BD D. 0A=0BZBAE=3: 1,求ZBAE 和 ZEAO 的变式2题图矩形的概念 有一个角是直角的平行 四边形叫做矩形矩形的性质 矩形的四个角都是直角. 矩形的对角线相等./ 星级达标★ 1.已知矩形的一条对角线长为10cm,两条对角线的一个交角为120° ,则矩形的短 边长为 ________ cm.★2.矩形的对角线把矩形分成的三角形中全等三角形一共有( )•C. 6对D. 8对 B.矩形的对角线相等 D.有一个角是直角的四边形是矩形★ ★4.如图,在矩形ABCD 中,连接对角线AC, BD.将AABC 沿BC 方向平移,使点B移到点C,得到ADCE. (1)求证:AACD 竺AEDC.(2)试确定△ BDE 的形状,并说明理由.★★5.已知:如图,0是矩形ABCD 对角线的交点,AE 平分ZBAD, ZA0D=120° ,求 ZAE0的度数.★★★6.如图,在矩形ABCD 中,AB=3, AD=4, P 是AD 上不与A, D 重合的一个动点, 过点P 分别作AC 和BD 的垂线,垂足分别为E, F.求PE+PF 的值.我的反思(收获,不足) 分层作业必做(教材智慧学习配套)选做 参考答案精讲点拨例1试题分析:根据矩形的性质AD 〃BC,AE=AD,可以得到ZDEC=ZADE=ZAED,由DF 丄AE 于F,A. 2对B. 4对★3.下列说法错误的是().A.矩形的对角线互相平分 C.矩形的四个角都相等【详解】证明:连接DE.VAD=AE, .*.ZAED = ZADE.在矩形ABCD 中,AD〃BC, ZC=90° .ZADE=ZDEC,ZDEC = ZAED.又TDF丄AE,.•.ZDFE=ZC=90° .VDE=DE,/. ADFE^ADCE (AAS)..・.DF=DC.例2试题分析:首先根据矩形的性质可得出AD〃BC,即Z2=Z3,然后根据折叠知Z1=Z2, C,D=CD、BC' =BC,可得到Z1=Z3,进而得出BE=DE,设BE=DE=x,则EC' =8-x,利用勾股定理求出x的值,代入面积公式即可求出ABED的面积.详解:•••四边形ABCD是矩形,.・.AD〃BC,即Z2=Z3,由折叠知,Z1=Z2, C‘ D=CD=4、BC, =BC=8,3,即DE=BE,BE=DE=x,则EC' =8n,DEC'中,DC' '+EC' 2=DE242+(8^C)2=X2解得:x=5,ADE的长为5.ABED 的面积=丄DEX AB =丄X5X4=10.2 2变式训练1•试题分析:根据矩形的定义和性质分析判断即可.详解:矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A, B, D正确,C错误.故选C..-.Z1=Z 设在RtA2•试题分析:根据矩形性质得出心血,。

湘教版八年级《矩形的性质》导学案

湘教版八年级《矩形的性质》导学案

湘教版八年级《矩形的性质》导学案导学目标•了解矩形的定义和性质•能够判断一个四边形是否为矩形•掌握矩形的性质,包括对角线相等、对角线互相垂直、相邻边相等、内角和为180度等导学内容什么是矩形?矩形是一种具有特殊性质的四边形,它的特点是每条边都和另外两条边垂直,并且所有内角都是直角。

判断矩形的方法判断一个四边形是否为矩形可以通过以下两种方法: 1. 判断是否为平行四边形:如果四边形的对边互相平行,则可以判断为平行四边形。

由矩形的定义可知,矩形必然是平行四边形。

2. 判断是否为直角四边形:如果四边形的每个内角都是直角,则可以判断为直角四边形。

由矩形的定义可知,矩形必然是直角四边形。

矩形的性质1.对角线相等:在矩形中,两条对角线相等。

2.对角线互相垂直:在矩形中,两条对角线互相垂直。

3.相邻边相等:在矩形中,相邻的两条边相等。

4.内角和为180度:在矩形中,每个内角都是直角,所以四个内角的和等于180度。

导学活动活动一:判断矩形通过判断四边形的性质,判断下列四边形是否为矩形:1.四边长分别为3cm、4cm、3cm、4cm的四边形。

2.两对边分别平行,每个角为90度的四边形。

3.两条对角线相等,但边不垂直的四边形。

活动二:探究矩形的性质以一张纸为材料,进行以下探究活动:1.用尺子测量纸的长和宽,记录下来。

2.用尺子测量纸的对角线的长度,并记录下来。

3.检查对角线的长度是否相等,判断纸是否为矩形。

活动三:验证矩形的性质在纸上画一个矩形,进行以下验证活动:1.用尺子测量矩形的对角线的长度,并记录下来。

2.检查对角线的长度是否相等。

3.利用直角定理,验证矩形的内角是否都是直角。

4.通过测量相邻边的长度,验证相邻边是否相等。

5.对矩形的对角线进行交点连线,利用垂直线的性质验证对角线是否互相垂直。

总结归纳在本节课中,我们学习了矩形的定义和性质。

矩形是一种具有特殊性质的四边形,它的特点是每条边都和另外两条边垂直,并且所有内角都是直角。

人教版数学八年级下册18.2.1矩形的性质(教案)

人教版数学八年级下册18.2.1矩形的性质(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解矩形的基本概念。矩形是一种特殊的平行四边形,其对边平行且相等,对角相等,四个角都是直角。矩形在日常生活和建筑等领域具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析矩形的性质,解决实际问题,如计算矩形的面积和周长。
3.重点难点解析:在讲授过程中,我会特别强调矩形的判定方法和性质这两个重点。对于难点部分,如矩形性质的证明,我会通过举例和比较来帮助大家理解。
突破方法:通过对比矩形与一般平行四边形的性质,强调矩形的独特性质。
(2)矩形性质的证明:学生在证明矩形的性质时,可能不知道如何运用已知条件和几何定理。
突破方法:引导学生运用已学的几何知识和定理,如对边平行且相等、对角相等等,进行逐步证明。
(3)矩形面积和周长的计算:学生在计算矩形面积和周长时,可能会忘记公式或者计算错误。
1.掌握矩形的基本性质,提高空间想象能力和抽象思维能力;
2.学会运用矩形性质解决实际问题,增强数学应用意识;
3.通过探索矩形性质的过程,培养观察、分析、归纳和概括能力;
4.提升学生合作交流、动手实践的能力,激发创新精神;
5.培养学生严谨、细致的学习态度,形成良好的数学学习习惯。
三、教学难点与重点
1.教学重点
在实践活动环节,分组讨论和实验操作使学生们积极参与,但我发现部分小组在讨论时,仍存在对矩形性质理解不透彻的问题。这提示我在今后的教学中,应更加关注学生的讨论过程,及时发现问题并进行引导。
学生小组讨论环节,大家围绕矩形在实际生活中的应用展开了热烈的讨论,但有些学生在提出观点时,还是显得有些拘谨。我想在以后的课堂上,应该更多地鼓励学生发表自己的看法,培养他们的自信心和表达能力。

矩形的性质学案

矩形的性质学案

18.2.1 矩形的性质学习目标:1.理解矩形的概念,明确矩形与平行四边形的区别与联系;2.探索并证明矩形的性质,会用矩形的性质解决简单的问题;3.探索并掌握“直角三角形斜边上的中线等于斜边的一半”这个定理。

学习重点:矩形区别于一般平行四边形的性质的探索、证明和应用。

学习难点:能从矩形与平行四边形之间特殊与一般的关系出发,探究矩形的性质;能从矩形出发研究直角三角形中的有关问题。

一、 复习引入学习三角形时,我们研究了一般三角形后,把边特殊化得到了等腰三角形、把角特殊化得到了直角三角形,这是从一般到特殊的思想。

对于平行四边形,我们也可以延续这样的研究思路。

二、 探索研究(一)矩形的概念思考:把一个平行四边形的内角特殊化——变为90度,会得到什么样的特殊图形呢?矩形定义:有一个角是 的 叫做 ,也就是 。

(二)矩形的性质1、矩形是特殊的 ,因此具有 的所有性质。

2、矩形的四个角都是 。

符号语言:∵矩形ABCD∴3、矩形的对角线有什么性质呢?猜想:矩形的对角线AC 和BD 的数量关系为证明:已知:矩形ABCD (如图)求证:AC=BD.结论:矩形的对角线除了互相平分之外还 。

CD符号语言:∵矩形ABCD∴且OA 、OB 、OC 、OD 的关系是 。

三、实践应用如图,矩形ABCD 中,矩形对角线AC 、BD 相交于点O ,我们观察Rt △ABC ,在Rt △ABC 中,OB 与AC 是怎样的关系?根据矩形的性质,我们知道:OB= = ,因此,我们得到直角三角形的一个性质:直角三角形斜边的 等于斜边的 。

符号语言:∵∠ABC=90°,O 为AC 中点∴思考:矩形是轴对称图形吗?如果是,有几条对称轴?例1:已知:矩形ABCD 的两条对角线相交与O ,∠AOD=120°,AB = 4cm.求OA 、AC 、BD 、AD 的长。

例2.已知:如图,四边形ABCD 为矩形,P 为矩形内一点且PB=PC ,(1)求证:PA=PD 。

矩形的性质课程设计

矩形的性质课程设计

矩形的性质课程设计一、教学目标矩形的性质课程设计的教学目标分为知识目标、技能目标和情感态度价值观目标。

知识目标:学生能够理解矩形的定义、性质和判定方法,掌握矩形的对角线性质、对边平行等特征。

技能目标:学生能够运用矩形的性质解决几何问题,提高空间想象能力和逻辑思维能力。

情感态度价值观目标:学生能够培养对数学学科的兴趣,增强自信心,培养合作探究的精神。

二、教学内容矩形的性质课程设计以人教版初中数学八年级上册第五章《平行四边形》为基础,重点讲解矩形的性质。

1.矩形的定义和性质2.矩形的判定方法3.矩形的对角线性质4.矩形对边平行的证明5.矩形在实际应用中的举例三、教学方法为了激发学生的学习兴趣和主动性,本课程采用多种教学方法:1.讲授法:教师通过讲解矩形的性质和判定方法,引导学生理解知识点。

2.讨论法:学生分组讨论矩形的性质,培养合作精神和表达能力。

3.案例分析法:教师通过举例分析矩形在实际应用中的作用,提高学生的应用能力。

4.实验法:学生在实验室进行矩形性质的实验,增强实践操作能力。

四、教学资源1.教材:人教版初中数学八年级上册《平行四边形》2.参考书:初中数学教学指导书、矩形性质的相关论文和书籍3.多媒体资料:矩形性质的PPT、动画演示、实况视频等4.实验设备:直尺、三角板、剪刀、透明胶带等五、教学评估本课程的教学评估分为平时表现、作业和考试三个部分,以全面客观地评估学生的学习成果。

1.平时表现:通过观察学生在课堂上的参与度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。

2.作业:布置与课程内容相关的练习题,要求学生在规定时间内完成,评估学生的掌握情况。

3.考试:定期进行课程考试,测试学生对矩形性质的掌握程度,包括选择题、填空题、解答题等题型。

六、教学安排本课程的教学安排如下:1.教学进度:按照教材和大纲的要求,合理安排每个知识点的教学顺序和深度。

2.教学时间:每节课安排45分钟,确保在有限的时间内完成教学任务。

矩形的性质学案

矩形的性质学案

矩形的性质学案矩形的性质:矩形的性质1:_______________________几何语言:__________________________________________________矩形的性质2:_______________________几何语言:__________________________________________________矩形的性质3:_______________________几何语言:__________________________________________________矩形的性质3的推论:____________________几何语言:__________________________________________________矩形的性质4:_______________________例1 矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=1,求AC 的长.例2.已知:如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线是13cm,那么矩形的周长是多少?例3、如图,在矩形ABCD中,BE⊥AC于E,若AB=3,BC=4,试求出BE的长.例4 已知如图,O是矩形ABCD对角线交点,AE平分∠BA D,∠AOD=120°求∠AEO的度数.练习:1、已知:如图,矩形ABCD的两条对角线相交于点O,1)若∠AOD=120°,判断△AOB的形状2)如果要得到△AOB是等边三角形,你可以添加什么条件?3)在矩形ABCD中,AE⊥BD于E,若BE=OE=1,则AC=_____, AB =______∠AOB=__________2、下列性质中,矩形不一定具有的是()A.对角线相等B. 四个角都相等C.是轴对称图形D.对角线垂直3、如图,已知ABCD为矩形,若沿AE折叠,使D点落在BC边上F点处,如果∠BAF=600,那么∠DAE等于()A.150B.300C.450D.600F4、如图,把两个完全相同的矩形拼成“L”形图案, 则∠FAC=______°∠FCA=______°5、如图,在矩形ABCD中,E是AB上的一点,EF⊥CE,交AD 于点F,若BE=2,矩形的周长为16,CE=EF,则BC的长为_____6、矩形的短边长为3cm,两对角线所成的钝角是120 °,则它的对角线长是_______.7、 已知矩形对角线长为4,一边长为2,则矩形的面积是________. 8、矩形ABCD 的对角线AC 与BD 交于O ,AB=6,BC=8,则△ABO 的周长为 。

北京版数学八年级下册《矩形的性质》教学设计

北京版数学八年级下册《矩形的性质》教学设计

北京版数学八年级下册《矩形的性质》教学设计一. 教材分析《矩形的性质》是北京版数学八年级下册的一个重要内容。

本节课主要让学生了解矩形的性质,掌握矩形的判定方法,并能够运用矩形的性质解决实际问题。

教材通过生动的实例和丰富的练习,帮助学生深入理解矩形的特点,提高他们的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质和判定方法,对图形的性质和判定有一定的了解。

然而,学生对于矩形的性质和判定方法可能还存在一些模糊的认识,需要通过本节课的学习来进一步巩固和提高。

三. 教学目标1.了解矩形的性质,掌握矩形的判定方法。

2.能够运用矩形的性质解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.矩形的性质和判定方法。

2.运用矩形的性质解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过提出问题,引导学生思考和探索;通过案例分析和练习,使学生理解和掌握矩形的性质;通过小组合作,培养学生的合作意识和团队精神。

六. 教学准备1.PPT课件:包括矩形的性质和判定方法的讲解,以及相关的练习题。

2.练习题:包括基础题和提高题,以巩固学生的学习成果。

3.黑板和粉笔:用于板书和讲解。

七. 教学过程1.导入(5分钟)通过提出问题:“你们知道矩形有哪些性质吗?”引导学生思考和回忆矩形的性质,激发学生的学习兴趣。

2.呈现(10分钟)利用PPT课件,讲解矩形的性质和判定方法。

通过生动的实例和图示,使学生直观地理解和掌握矩形的性质。

3.操练(10分钟)让学生分组进行练习,运用矩形的性质解决问题。

教师巡回指导,解答学生的问题,及时给予反馈和评价。

4.巩固(10分钟)让学生独立完成练习题,巩固对矩形性质的理解和运用。

教师选取部分学生的作业进行点评,指出优点和不足,并进行讲解。

5.拓展(10分钟)让学生通过小组合作,探索矩形的其他性质和判定方法。

教师提供必要的指导和帮助,鼓励学生发表自己的观点和见解。

八年级数学下册《矩形的性质》教案、教学设计

八年级数学下册《矩形的性质》教案、教学设计
作业布置时,注意分层设计,让每个学生都能在适合自己的层面上得到锻炼和提高。同时,鼓励学生在完成作业的过程中,积极思考、主动探究,培养良好的学习习惯。教师应及时批改作业,给予反馈,帮助学生发现并改正错误,提高学习效果。
5.使学生认识到数学知识在实际生活中的广泛应用,体会数学的价值,增强学生的应用意识。
二、学情分析
八年级的学生已经具备了一定的几何基础,掌握了平行四边形的基本性质,对于图形的认识和性质的探究有了一定的经验。在此基础上,学生对矩形的性质的学习将更加深入和具体。然而,学生在解决实际问题时,可能还未能熟练运用矩形性质,需要教师在教学过程中进行引导和指导。此外,学生的空间想象力、逻辑思维能力以及合作交流能力等方面还存在一定差异,因此,在教学过程中,应关注个体差异,因材施教,提高学生的学习效果。在此基础上,教师要注重激发学生的学习兴趣,引导学生主动参与课堂,培养学生的自主学习能力,使学生在探究矩形性质的过程中,提升几何素养,增强数学应用意识。
(二)教学设想
1.创设情境,引入新课:通过展示生活中的矩形实例,如窗户、书本、电视屏幕等,引导学生观察和思考这些图形的共同特征,从而引出矩形的定义和性质。
2.自主探究,合作交流:给予学生足够的时间和空间,让他们通过画图、测量、计算等方式自主探究矩形的性质。在此基础上,组织学生进行小组讨论,分享各自发现,共同归纳总结矩形的性质。
2.学生自主总结,用自己的话复述矩形性质,提高记忆效果。
3.强调矩形性质在实际生活中的应用,激发学生学习数学的兴趣。
4.布置课后作业,巩固所学知识,为下一节课的学习做好准备。
五、作业布置பைடு நூலகம்
1.完成课本上与本节课相关的练习题,巩固矩形性质的基本知识,特别是对边平行且相等、对角线相等、四个角为直角等特性的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《矩形的性质》学案
1、掌握矩形的概定义和性质
2、会运用矩形的定义和性质来解决有关问题;学习重点:矩形的性质、难点:矩形的性质的灵活应用、学习过程:
一、矩形的定义:
1、探究:拉动一个活动的平行四边形教具,请观察思考、问题1:在这个变化过程中什么不变、什么变?问题2:在这个变化过程中的所有四边形,还是不是平行四边形?问题3:在这个变化过程中,使其一个内角恰好为直角,得到一种特殊的平行四边形是什么图形?
2、矩形定义:
叫做矩形、(1)矩形的定义中有两个条件:一是,二是(2)判断:有一个角是直角的四边形是矩形。

()注意:矩形ABCD记作:矩形ABCD,注意:不能像平行四边形ABCD一样可以用个小图形来代替汉字进行简写。

二、矩形的性质:
1、探究一:在一个平行四边形活动框架上,用两根橡皮筋做出两条对角线,拉动一对不相邻的顶点,改变平行四边形的形状、(1)随着∠α的变化,两条对角线的长度是否也发生变化?你能说说他们是怎样变化的吗?(2)当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?(3)当∠α是
直角时,平行四边形变成什么图形?此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?为什么?(A)角的特性:证明:符号表示:(B)对角线的特性:证明:符号表示:探究二:根据矩形对角线的性质你能得到直角三角形斜边中线的性质吗?直角三角形斜边中线的性质:符号表示:(C)矩形是轴对称图形吗?找出它的对称轴?共几条?
2、矩形的性质:边:
角:
对角线:
三:应用新知::A组:
1、一个矩形被一条对角线分成两个全等的三角形;一个矩形被两条对角线分成两对全等的三角形。

2、已知:如图,矩形ABCD的两条对角线相交于点O,
AB=6cm,AO=5 cm、求矩形对角线的长及AD的长、3、已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60,AB=4cm,求矩形对角线的长、4、如果矩形的一条对角线与一边的夹角为400,那么两条对角线所夹锐角的度数为多少?B组:
5、在直角三角形ABC中,∠C=90,CD是AB边上的中线,
∠A=30,AC=5,求△ADC的周长。

B组1 、已知:如图,矩形ABCD中,AB长8 cm ,对角线比AD边长4 cm、求AD的长及点A 到BD的距离AE的长、、2、矩形ABCD中,AE⊥BD,垂足为E,
∠DAE=3∠BAE,则∠BAE= ,∠EAC= 。

四:课堂小结:本节课你有什么收获?五:当堂检测:
1、已知矩形的一条对角线长为10cm,两条对角线的一个交角为120,则矩形的边长分别为多少?
2、已知:如图,O是矩形ABCD对角线的交点,AE平分
∠BAD,∠AOD=120,求∠EAC的度数、EODCBA
3、直角三角形斜边上的高与中线分别是5和6,则它的面积是多少?、。

相关文档
最新文档