实验 4 水中氟化物的测定--离子选择电极法

合集下载

实验4水中氟化物的测定--离子选择电极法

实验4水中氟化物的测定--离子选择电极法

实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为1.0mg ·L-1。

测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。

本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。

一.实验目的和要求1. 掌握用离子活度计或pH 计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。

2. 复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。

二.仪器1. 氟离子选择电极(使用前在去离子水中充分浸泡)。

2. 饱和甘汞电极。

3. 精密pH 计或离子活度计、晶体管毫伏计,精确到0.1mV。

4. 磁力搅拌器和塑料包裹的搅拌子。

5.100mL、50mL 容量瓶。

6.10.00mL、5.00mL 移液管或吸液管。

7.100mL 聚乙烯杯。

三.试剂所用水为去离子水或无氟蒸馏水。

1. 氟化物标准贮备液:称取0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃ 烘干约40min,冷却),用水溶解后转入1000mL 容量瓶中,稀释至标线,摇匀。

贮存在聚乙烯瓶中。

此溶液每毫升含氟离子100μg。

2. 乙酸钠溶液:称取15g 乙酸钠(CH3COONa)溶于水,并稀释至100mL。

3. 盐酸溶液:2mol ·L-1。

4. 总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL 容量瓶中,稀释至标线,摇匀。

5. 水样① ,② 。

四.测定步骤1. 仪器准备和操作:按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。

离子选择电极法测定水中氟化物的研究与探讨

离子选择电极法测定水中氟化物的研究与探讨

·环境监测·离子选择电极法测定水中氟化物的研究与探讨夏晓萍(珠海市城市排水监测站,广东珠海519020) 摘 要:对离子选择电极法测定水中氟化物进行了研究与探讨。

对离子选择电极的构成、测定原理作了深入地分析,对测定中出现的电极空白值、电极斜率、测定温度、标准曲线法以及电极的老化、再生作了详细的论述,并将离子选择电极法与离子色谱法进行对比试验。

通过实验,证明其精密度、准确度均十分理想。

与离子色谱法相比,测定结果无明显差异,该方法具有选择性好,准确、快速、检测范围宽的特点,适用于氟化物在0.05~1900mg /L 样品的监测,适用于大批量水样的监测。

关键词:氟化物;选择电极;电极电位;分析方法中图分类号:X 832 文献标识码:A 文章编号:1001-2141(2003)09-0071-03 氟化物(F)是人体必需的微量元素,氟化物广泛存在于自然水体之中,与人们的生活密切相关。

对氟化物的分析主要采用离子色谱法,氟离子选择电极法以及氟试剂比色法等[1]。

其中离子色谱法具有准确度高、重复性好等优点,但仪器稳定时间较长、分析成本高且要求被测样品中的悬浮物<0.45μm (以防堵塞进样系统)[5];氟试剂比色法操作繁锁,被测样品混浊、色度均影响测定;离子选择电极法因其选择性好、适用范围宽、快速准确、不受水样混浊、色度的影响而受到广泛的应用[1]。

但在实际分析过程中须严格控制被测样品的温度、酸碱度和电极斜率以保证分析结果的准确性。

收稿日期:2003-05-07作者简介:夏晓萍(1964-),女,重庆人,1983年毕业于重庆工业学校化工分析专业,现从事水质监测分析工作。

1 氟离子选择电极的构成及测定原理氟离子选择电极的敏感膜由La F 3单晶粉末加入少量En 2+和Ca 2+经高压制成的电极膜片,是典型的晶体膜电极。

它以Ag -Ag Cl 为内参比电极,内参比溶液为0.001m ol /L Na F 、0.1m ol /L NaCl 和少许Ag Cl 。

水中氟化物的测定方法

水中氟化物的测定方法

水中氟化物的测定方法一、离子选择电极法离子选择电极法是一种常用的测定水中氟化物含量的方法。

该方法利用离子选择电极对水中的氟离子进行选择性测定,通过测量电极的电位变化来确定氟化物的浓度。

该方法操作简便、快速,且具有较高的准确性和灵敏度,适用于水质监测和环境分析等领域。

二、离子色谱法离子色谱法是一种常用的测定水中氟化物含量的方法。

该方法利用离子交换柱将样品中的氟离子与其他离子分离,再通过色谱柱分离和检测,最终得到氟化物的浓度。

离子色谱法具有高分辨率、高灵敏度和高选择性的特点,适用于各种水样的氟化物测定。

三、离子选择电极与离子色谱法相结合离子选择电极与离子色谱法相结合是一种常用的测定水中氟化物含量的方法。

该方法先利用离子选择电极对水样中的氟离子进行快速筛选,然后再使用离子色谱法对筛选出的样品进行精确测定。

这种组合方法兼具快速筛选和准确测定的优点,能够满足不同场合对氟化物测定的需求。

四、紫外分光光度法紫外分光光度法是一种常用的测定水中氟化物含量的方法。

该方法利用氟化物与酸性溴酸钾反应生成溴离子,溴离子在紫外光的照射下产生吸收,通过测量吸收光强的变化来确定氟化物的浓度。

紫外分光光度法具有简单、快速、灵敏度高的特点,适用于水质监测和环境分析等领域。

五、电化学法电化学法是一种常用的测定水中氟化物含量的方法。

该方法利用电极与水样中的氟离子发生氧化还原反应,通过测量电流或电位的变化来确定氟化物的浓度。

电化学法具有灵敏度高、准确性好的特点,适用于水质监测和环境分析等领域。

六、离子交换法离子交换法是一种常用的测定水中氟化物含量的方法。

该方法利用具有特定功能基团的离子交换树脂与水样中的氟离子进行吸附和解吸,通过测定解吸液中氟离子的浓度来确定氟化物的含量。

离子交换法具有操作简便、准确性高的特点,适用于水质监测和环境分析等领域。

水中氟化物的测定方法有离子选择电极法、离子色谱法、离子选择电极与离子色谱法相结合、紫外分光光度法、电化学法和离子交换法等。

离子选择电极法测定水中氟化物

离子选择电极法测定水中氟化物

离子选择电极法测定水中氟化物一、引言在环境保护和人类健康方面,水质监测是非常重要的工作之一。

水中的氟化物离子是水质监测中需要关注的重要指标之一。

本文将介绍一种常用的测定水中氟化物离子的方法——离子选择电极法。

二、离子选择电极法的原理离子选择电极法是基于离子选择电极的特性进行测定的。

离子选择电极是一种特殊的电极,它具有对特定离子的选择性。

对于氟化物离子的测定,常用的电极是氟化物选择电极。

氟化物选择电极由两个部分组成:一个参比电极和一个氟化物电极。

参比电极的电位是不变的,它作为一个基准电位,使得氟化物电极的电位变化与样品中氟化物离子的浓度相关。

当把氟化物选择电极浸入水样中时,如果存在氟化物离子,那么氟化物离子会与水样中的H+离子发生反应,生成HF分子。

这些HF分子会与氟化物选择电极表面的活性位点发生反应,产生电流信号。

根据这个电流信号的大小可以测定样品中氟化物离子的浓度。

三、实验步骤测定水中氟化物采用离子选择电极法,具体步骤如下:1.准备样品:按照标准方法取得水样,并将其过滤以去除悬浮物。

2.校准电极:在样品中加入已知浓度的氟化物标准溶液,使用标准溶液进行电极校准。

3.测量样品:将校准后的氟化物选择电极浸入样品中,记录电流信号的变化。

通过与校准曲线进行对比,确定样品中氟化物离子的浓度。

四、实验注意事项在进行离子选择电极法测定水中氟化物时,需要注意以下事项:1.样品处理:样品中常会存在其他离子的干扰,需要适当处理以去除干扰物质。

2.电极保养:定期对电极进行维护,保持其灵敏度和准确性。

3.操作规范:操作过程中要注意避免电极受到机械振动和化学腐蚀等影响。

五、实验优缺点分析离子选择电极法测定水中氟化物具有以下优点:1.快速:相比其他测定方法,离子选择电极法测定速度较快。

2.简单:实验步骤相对简单,操作容易上手。

3.灵敏度高:氟化物选择电极对氟化物离子具有较高的选择性和灵敏度。

然而,该方法也存在一些缺点:1.干扰物质:其他离子可能对氟化物选择电极的测定结果产生干扰。

实验4—氟电极法测定自来水中的氟含量

实验4—氟电极法测定自来水中的氟含量

仪器分析实验讲义04实验地点化学楼205 实验学时 3 授课教师 实验项目 氟电极法测定自来水中的氟含量预习提要1. 氟离子选择电极基本构造,内参比电极;2. 直接电位法基本原理;3. TISAB 的组分构成和作用;实验报告部分一、实验目的与要求1. 掌握离子选择性电极的响应机理;2. 学会使用离子计;3. 掌握氟离子电极测定F -的条件。

二、实验原理1. 直接电位法电位分析法是通过测定在零电流条件下的电极电位和浓度间的关系进行分析测定的一种电化学分析法。

它包括直接电位法和电位滴定法。

电位分析法一般使用一支指示电极和一支参比电极。

其中,指示电极的电极电位与待测离子的活度(或浓度)符合能斯特方程:2. 离子选择性电极及响应机理离子选择性电极是一类利用膜电位测定溶液中离子的活度或浓度的电化学传感器,当它和含待测离子的溶液接触时,在它的敏感膜和溶液的相界面上产生与该离子活度直接有关的膜电位。

当敏感膜两边分别与两个不同浓度或不同组成的电解质相接触时,膜两边交换、扩散离子数目不同,形成了双电层结构,在膜的两边形成两个相界电位,产生电位差,即形成膜电位。

氟离子选择电极是目前最成熟的一种离子选择性电极。

将氟化镧单晶(掺入微量氟化铕(Ⅱ)以增加导电性)封在塑料管的一端,管内装0.1mol ·L-1 NaF 和0.1mol ·L-1 NaCl 溶液,以Ag/AgCl 电极为参比电极,构成氟离子选择电极。

测定时,以F-选择电极作指示电极,以饱和甘汞电极作参比电极,组成测量电池。

3. 总离子强度调节剂由于离子选择性电极响应的是离子活度,但离子活度只在较稀释的溶液内和离子浓度相等。

离子的活度取决于由离子内容决定的样品溶液中的离子强度。

为确保标准液和样品液离子强度相同,需要向溶液中加入离子强度调节剂。

另外,有些离子选择性电极只能用于一定范围pH 值溶液内。

在离子强度调节剂内加缓冲液可以将标准液和样品液调节至要求的pH 值。

水质氟化物的测定离子选择电极法

水质氟化物的测定离子选择电极法

水质氟化物的测定离子选择电极法
氟化物是水质中重要的有毒物质,它可以与水相聚合形成复杂的混合物,影响人体健康,因此需要对水域中氟化物的浓度进行监测。

离子选择电极法是进行水质氟化物分析的
最常用方法,它包括采样、容器、滴定液、试剂和离子选择电极等,全面评价水质氟化物
成分,在行业中得到广泛应用。

离子选择电极法是一种特殊分析仪器,能够同时进行多元组分的测定,其原理是根据
微量测定组分在不同离子强度下的电位差进行分析,因此被称为离子选择电极法。

利用离
子选择电极法测定水质中氟化物时,首先是采样,把水样放入容器,在离子选择电极法测
定完成后,分析表示水质氟化物的浓度。

接下来就是做滴定液,将试剂根据比例加入水样中,使得滴定液有效反应。

如果滴定液的测试结果出现氟化物,则与预定的电位测定参数
一起,在所用的离子选择电极器上进行电位测定。

离子选择电极法测量水质氟化物的特点:一是效率高,容易操作; 二是可以测量多种
氟化物,量程较大; 三是准确、稳定、重复性好,数据可靠可追溯; 四是仪器投资少,价
格较低。

离子选择电极法的优越性使其成为水质氟化物测量的理想工具,且市场供应也很充足。

它能准确、可靠地测定水体中的氟化物含量,是确定水质氟化物浓度和及时预警的有效工具。

但也需要专业技术人员来操作,考虑到可能会存在的准确性、可行性问题,在使用前,一定要充分做好准备,包括完整的操作指南、完整的仪器设备和相关实验设备等,将离子
选择电极法用于监测水质氟化物,才是最可靠的方法。

水中氟化物的测定

水中氟化物的测定

三、仪器
1.氟离子选择电极 2.饱和甘汞电极 3.精密pH计 4.磁力搅拌器
四、试剂
1.离子强度缓冲液Ⅱ 2.氟化物标准储备液(1mg/ml)
五、方法步骤
标准加入法 1.吸取50ml水样于200ml烧杯中,加入50ml离子强 度缓冲液Ⅱ,插入氟离子选择电极和饱和甘汞 电极,在匀速搅拌下连续搅拌溶液,待电位稳 定后,在继续搅拌下读取平衡电位值(E1,mV)。
六、结果与评价

《生活饮用水卫生标准》(GB5749-2006)
指标
氟化物(mg/L)
限值
1Hale Waihona Puke 0水中氟化物的测定一、目的要求
掌握氟离子选择电极法检测氟化物的原理及 方法步骤。
二、测定原理

氟化镧单晶对氟离子有选择性,在氟化镧电极 膜两侧的不同浓度氟溶液之间存在电位差,即 膜电位.

膜电位的大小与氟化物溶液的离子活度有关. 氟电极与饱和甘汞电极组成一对原电池,利用 电动势与离子活度负对数值的线性关系直接 求出水样中氟离子浓度.
2.于上述溶液中加入0.5ml氟化物标准溶液,在搅 拌下读取平衡电位(E2,mV)
3.计算
V1 1 (F 1) V2 1 E 2 E1 Log( ) 1 K

(F 1)
——水样中氟化物的质量浓度(mg/L)
——加入标准贮备液的质量浓度(mg/L)
1
V1 ——加入标准贮备液的体积(ml) V2 ——加入水样的体积(ml) K ——测定水样的温度t℃时的斜率,其值为0.1985(273+t℃)

实验:离子选择电极法测定氟离子

实验:离子选择电极法测定氟离子

实验讲义:离子选择电极法测定氟离子一. 实验目的:(1)了解氟离子选择电极的构造及测定自来水中氟离子的实验条件;(2)掌握离子计的使用方法。

二. 实验原理:氟化物在自然界广泛存在,有时人体正常组织成分之一。

人每日从食物及饮水中摄取一定量的氟。

摄入量过多对人体有害,可致急、慢性中毒。

据国内一些地区的调查资料表明,在一般情况下,饮用含氟量0.5~1.5mg/L的水时,多数地区的氟斑牙患病率已高达45%以上,且中、重度患者明显增多。

而水中含氟量0.5mg/L以下的地区,居民龋齿患病率一般高达50%~60%;水中含氟0.5~1.0mg/L的地区,仅为30%~40%。

综合考虑饮用水中氟含量对牙齿的轻度影响和防龋作用,以及对我国广大的高氟区饮水进行除氟或更换水源所付的经济代价,1976年全国颁发的《生活饮用水卫生标准》制定饮用水中氟含量不得超过1mg/L。

水中痕量氟的测定可采用蒸馏比色法和氟离子选择电极法。

前者费时,后者简便快捷。

氟离子选择电极是目前最成熟的一种离子选择电极。

将氟化镧单晶(掺入微量氟化铕(Ⅱ)以增加导电性)封在塑料管的一端,管内装0.1mg/LNaF和0.1mg/LNaCl溶液,以Ag-AgCl电极为参比电极,构成氟离子选择电极。

用氟离子选择电极测定水样时,以氟离子选择电极作指示电极,以饱和甘汞电极作参比电极,组成的电池为:氟离子选择电极∣试液∣∣SCE如果忽略液接电位,电池的电动势为:E=b-0.0592㏒a即电池的电动势与试液中氟离子活度的对数成正比。

氟离子选择电极一般在1~10-6mg/L范围内符合能斯特方程式。

氟离子选择电极具有较好的选择性。

常见阴离子NO3-,SO42-、PO43-、Ac-、Cl-、Br-、I-、HCO3-等不干扰,主要干扰物是OH-。

产生干扰的原因,很可能是由于在膜表面发生如下反应:LaF3 + 3OH-→ La(OH)3+ 3F-反应产物F-因电极本身的响应而造成干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为
1.0mg·L-1。

测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。

本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。

一.实验目的和要求
1.掌握用离子活度计或pH计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。

2.复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。

二.仪器
1.氟离子选择电极(使用前在去离子水中充分浸泡)。

2.饱和甘汞电极。

3.精密pH计或离子活度计、晶体管毫伏计,精确到
0.1mV。

4.磁力搅拌器和塑料包裹的搅拌子。

5.100mL、50mL容量瓶。

6.10.00mL、
5.00mL移液管或吸液管。

7.100mL聚乙烯杯。

三.试剂
所用水为去离子水或无氟蒸馏水。

1.氟化物标准贮备液:
称取
0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。

贮存在聚乙烯瓶中。

此溶液每毫升含氟离子100µg。

2.乙酸钠溶液:
称取15g乙酸钠(CH
3COONa)溶于水,并稀释至100mL。

3.盐酸溶液:2mol·L-1。

4.总离子强度调节缓冲溶液(TISAB):
称取
58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL容量瓶中,稀释至标线,摇匀。

5.水样①,②。

四.测定步骤
1.仪器准备和操作:
按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。

2.氟化物标准溶液制备:
用氟化钠标准贮备液、吸液管和100mL容量瓶配制每毫升含氟离子10µg的标准溶液。

3.标准曲线绘制:
用吸液管取
1.00、
3.00、
5.00、
10.00、
20.00mL氟化物标准溶液,分别置于5只50mL容量瓶中,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。

分别移入100mL聚乙烯杯中,放入一只塑料搅拌子,按浓度由低到高的顺序,依次插入电极,连续搅拌溶液,读取搅拌状态下的稳定电位值(E)。

在每次测量之前,都要用水将电极冲洗净,并用滤纸吸去水份。

在半对数坐标纸上绘制E—lgc
F-
标准曲线,浓度标于对数分格上,最低浓度标于横坐标的起点上。

4.水样测定:
用无分度吸管吸取适量水样,置于50mL容量瓶中,用乙酸钠或盐酸溶液调节至近中性,加入10mL总离子强度调节缓冲溶液,用水稀释至标线,摇匀。

将其移入100mL聚乙烯杯中,放入一只塑料搅拌子,插入电极,连续搅拌溶液,待电位稳定后,在继续搅拌下读取电位值(Ex)。

在每次测量之前,都要用水充分洗涤电极,并用滤纸吸去水份。

根据测得的毫伏数,由标准曲线上查得试液氟化物的浓度,再根据水样的稀释倍数计算其氟化物含量。

5.空白试验:
用去离子水代替水样,按测定样品的条件和步骤测量电位值,检验去离子水和试剂的纯度,如果测得值不能忽略,应从水样测定结果中减去该值。

当水样组成复杂时,宜采用一次标准加入法,以减小基体的影响。

其操作是:
先按步骤4测定出试液的电位值(E
1),然后向试液中加入与试液中氟含量相近的氟化物标准液(体积为~),在不断搅拌下读取稳定电位值(E
2),按下式计算水样中氟化物的含量:
cx=[c
s·V
s/(V
x+V
s)]×[10×ΔE/S-V
x/(V
x+V
s)]-1
式中:cx—水样中氟化物(F-
)浓度,mg·L-1;V
x—水样体积,mL;cs—F-标准溶液浓度,mg·L-1;V
s—加入F-
标准溶液体积,mL;
ΔE—等于E
1-E
2(对阴离子选择电极),其中E
1为测得水样试液的电位值,mV;E2—为试液中加入标准溶液后测得的电位值,mV;
S—氟离子选择电极实测斜率。

如果V
s﹤﹤V
x,则上式可简化为:
cx=( c
s·V
s/ V
x)×(10×ΔE/S-1)-1
五.结果处理
1.绘制标准曲线。

2.计算水样中氟化物的含量。

3.分析测定方法中采取的控制和消除各种干扰因素的措施。

相关文档
最新文档