题型四_几何图形的折叠与动点问题
高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。
求三棱锥P-BCD的体积的最大值。
2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。
当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。
3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。
求四棱锥P-BCFE的体积的最大值。
4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。
若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。
5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。
若四面体ABCD的体积的最大值为V,求V的值。
6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。
求V的值。
7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。
8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。
求三棱锥C'-ABD的体积。
1.删除该题,因为这明显是一道数学计算题,没有文章可言。
2.球O的表面积为4π,则球O的体积为(4/3)π。
2020中考数学 几何图形的折叠与动点问题(含答案)

2020中考数学几何图形的折叠与动点问题(含答案)1.如图,在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD 上的一个动点,若把△BEF沿EF折叠,点B落在点B′处,当点B′恰好落在矩形ABCD的一边上,则AF的长为________.第1题图3或11 32.如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是________.第2题图6-25≤BP≤43.如图,在矩形ABCD中,AB=2,AD=6,E,F分别是线段AD、BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为__________.第3题图4或4-224.如图,在四边形ABCD中,AD∥BC(AD<BC),AB与CD不平行,AB=CD=5,BC=12,点E是BC上的动点,将∠B沿着AE折叠,使点B落在直线AD上的点B′处,DB′=1,直线BB′与直线DC交于点H,则DH=________.第4题图5 11或5135.如图,已知AD∥BC,AB⊥BC,AB=8,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′分线段MN为3∶5的两部分时,EN的长为________.第5题图355 11或539 136.如图,在矩形纸片ABCD中,AB=6,BC=8,点P是对角线BD上一动点,将纸片折叠,使点C与点P重合,折痕为EF,折痕EF的两端分别在BC、DC边上(含端点),当△PDF为直角三角形时,FC的长为________.第6题图24 7或8 37.如图,正方形的边长为4,E是BC的中点,点P是射线AD上一动点,过P作PF⊥AE于F.若以P、F、E为顶点的三角形与△ABE相似,则P A=________.第7题图2或58.如图,矩形ABCD中,AB=1,AD=2,E是AD中点,点P在射线BD上运动,若△BEP为等腰三角形,则线段BP的长度等于____________.第8题图2或53或6559.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD、BC于点E、F;点M是边AB的一个三等分点.则△AOE 与△BMF的面积比为__________.第9题图3∶4或3∶810.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EP A′,若△EP A′与△ABC的另一个交点为F,当EF=14AB时,则BP的长为________.第10题图2或2311.已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,交BC 于点E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)①若AB =4,BC =23,则CD =________; ②当∠A =________时,四边形ODEB 是菱形.第1题图1.(1)证明:∵ED =EC ,∴∠EDC =∠C , ∵∠EDC +∠ADE =180°,∠B +∠ADE =180°, ∴∠EDC =∠B ,∴∠B =∠C , ∴AB =AC ; (2)解:①32; 如解图,连接BD ,第1题解图∵AB 为∵O 的直径,∵BD ∵AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt∵ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a )2, 在Rt∵CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(23)2-a 2, ∵42-(4-a )2=(23)2-a 2,解得a =32,即CD =32. ∵60°.如解图,连接OD 、OE ,∵四边形ODEB 是菱形,∵OB =BE ,又∵OB =OE ,∵∵OBE 是等边三角形,∵∵OBE =60°, ∵OD ∵BE ,∵∵BOD =120°,∵∵A =12∵BOD =60°.12 .如图,在▱ABCD 中,AD =4,AB =5,延长AD 到点E ,连接EC ,过点B 作BF ∥CE 交AD 于点F ,交CD 的延长线于点G .(1)求证:四边形BCEF 是平行四边形;(2)①当DF =______时,四边形BCEF 是正方形; ②当GFGD =________时,四边形BCEF 是菱形.第2题图13. (1)证明:∵四边形ABCD 是平行四边形,∴EF ∥BC . ∵BF ∥CE ,∴四边形BCEF 是平行四边形;(2)解:①1;∵四边形BCEF 是正方形,∵BF =BC =AD =4,∵FBC =∵AFB =90°, ∵AF =AB 2-BF 2=52-42=3. ∵AD =4,∵DF =AD -AF =4-3=1. ∵45. ∵四边形BCEF 是菱形, ∵BF =BC =AD =4.∵四边形ABCD 是平行四边形,∵CD ∵AB , ∵GD AB =GF BF ,即GF GD =BF AB =45.14.如图,AB 是半圆O 的直径,射线AM ⊥AB ,点P 在AM 上,连接OP 交半圆O 于点D ,PC 切半圆O 于点C ,连接BC .(1)求证:BC ∥OP ;(2)若半圆O 的半径等于2,填空:①当AP =________时,四边形OAPC 是正方形;②当AP =________时,四边形BODC 是菱形.第3题图解:(1)证明:连接OC ,AC ,如解图所示, ∵AB 是直径,AM ⊥AB , ∴BC ⊥AC ,AP 是半⊙O 的切线,又∵PC是半⊙O的切线,∴P A=PC,又∵OA=OC,∴OP⊥AC,∴BC∥OP;(2)① 2;② 2 3.∵若四边形OAPC是正方形,则OA=AP,∵OA=2,∵AP=2;∵若四边形BODC是菱形,则CB=BO=OD=DC,∵AB=2OB,∵ACB=90°,∵AB=2BC,∵∵BAC=30°,∵ABC=60°,∵BC∵OP,∵∵AOP=∵ABC=60°,又∵∵OAP=90°,OA=2,∵∵OP A=30°,∵OP=4,∵AP=22222-OAOP=2 3.=4-第3题解图15.如图,在△ABC中,∠ACB=90°,线段BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,AF=CE且F不与E重合.(1)求证:△EF A≌△ACE;(2)填空:①当∠B=_________°时,四边形ACEF是菱形;②当∠B=_________°时,线段AF与AB垂直.第4题图(1)证明:如解图,第4题解图∵ED是BC的垂直平分线,∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余,∴∠1=∠2=∠5,∴AE=CE.又∵AF=CE,∴AE=AF,∴∠5=∠F,在△EF A和△ACE中,AF=AE=EC,∠1=∠2=∠5=∠F,∴△EF A≌△ACE.(2)解:① 30;②45.∵∵四边形ACEF是菱形,∵AC=CE,∵CE是Rt∵ABC斜边AB的中线,∵CE=AE=BE,∵AE=AC=CE,∵∵ACE是等边三角形,∵∵1=60°,则∵B=30°,∵当∵B=30°时,四边形ACEF是菱形;∵由(1)知∵EF A∵∵ACE,∵∵AEC=∵EAF,∵AF∥CE,∵AF∵AB,∵CE∵AB,∵CE=EB,∵∵3=∵4=45°,∵当∵B=45°时,线段AF与AB垂直.16.如图,AB是⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED,EB,切点分别为点D,B.连接AD并延长交BE延长线于点C,连接OE.(1)试判断OE与AC的关系,并说明理由;(2)填空:①当∠BAC=_________°时,四边形ODEB为正方形;②当∠BAC=30°时,ADDE的值为________.第5题图5.解:(1)OE∥AC,OE=12AC.理由:连接OD,如解图,第5题解图∵DE,BE是⊙O的切线,∴OD⊥DE,AB⊥BC,∴∠ODE=∠ABC=90°,∵OD=OB,OE=OE,∴Rt△ODE≌Rt△OBE(HL),∴∠1=∠2.∵∠BOD=∠A+∠3,OA=OD,∴∠A=∠3,∴∠2=∠A,∴OE∥AC;∵OA=OB,∴EC=EB,∴OE是△ABC的中位线,∴OE=12AC.(2)①45;②3.∵要使四边形ODEB是正方形,由ED=EB,∵ODE=∵ABC=90°,只需∵DOB =90°,∵∵A=45°;∵过O作OH∵AD于H,∵∵A=30°,OA=OD,∵∵3=∵A=30°,∵OD,∵∵ODE=90°,∵1=∵3=30°,∵OD,∵ADDE=3.17.如图,将⊙O的内接矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连接BC1,∠ACB=30°,AB=1,CC1=x.(1)若点O与点C1重合,求证:A1D1为⊙O的切线;(2)①当x=________时,四边形ABC1D1是菱形;②当x=________时,△BDD1为等边三角形.第6题图(1)证明:∵四边形ABCD为矩形,∴∠D=90°,∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1D1O=∠D=90°,∴A1D1⊥OD1,∴A1D1为⊙O的切线;(2)解:①1;②2.∵如解图∵,连接AD1,当x=1时,四边形ABC1D1是菱形;第6题解图∵理由:由平移得:AB=D1C1,且AB∵D1C1,∵四边形ABC1D1是平行四边形,∵∵ACB=30°,∵∵CAB=60°,∵AB=1,∵AC=2,∵x=1,∵AC1=1,∵AB=AC1,∵∵AC1B是等边三角形,∵AB=BC1,∵四边形ABC1D1是菱形;∵如解图∵所示,当x=2时,∵BDD1为等边三角形,第6题解图∵则可得BD=DD1=BD1=2,即当x=2时,∵BDD1为等边三角形.。
中考数学专题复习——四边形中的折叠、剪切、旋转与动点最值问题

C DEB A图② 中考数学专题复习——四边形中的折叠、剪切、旋转与动点最值问题一、折叠、剪切类问题1、折叠后求度数(1)将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( )A .600B .750C .900D .950(2)如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于( )A .50°B .55°C .60°D .65°(3)用一条宽相等的足够长的纸条,打一个结,如图①所示,然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE ,其中∠BAC =____________度.2、折叠后求长度(1)将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ). A 、B 、2C 、3D 、(2)如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且,则CE 的长是( ) (A )(B )(C ) (D )图①ABCDEF(3)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm(4)如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.(5)如图,是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD =(6)如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A . B . C .D .3、折叠后求面积(1)如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( )N M FEDCBAmnnn (2(1A .4B .6C .8D .10(2)如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( ) A .2 B .4 C .8 D .10(3)如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm 。
2019年河南中考数学之选择、填空重难点题型:专题四 几何图形的折叠与动点问题

折叠后点位置的不确定
8.(2018· 达州)如图,Rt△ABC 中,∠C=90° ,AC=2,BC=5,点 D 是 BC 边上 一点,且 CD=1,点 P 是线段 DB 上一动点,连接 AP,以 AP 为斜边在 AP 的下方作等 腰直角三角形 AOP.在点 P 从点 D 运动至点 B 的过程中, 点 O 的运动路径长为 2 2 .
4.如图,在直角坐标系中,点 A(4,0),B(0,2),过点 A 的直线 l⊥AB,点 P 是 直线 l 上一动点,过点 P 作 PC⊥x 轴,垂足为点 C,把△ACP 沿 AP 翻折,使点 C 落在 点 D 处,且以点 A,D,P 为顶点的三角形与△ABP 相似,则所有满足条件的点 P 的坐 标是 (5,2)或(8,8)或(0,-8)或(3,-2) .
12.(2018· 安阳一模改编)在矩形 ABCD 中,AB=4,BC=9,点 E 是 AD 边上一动 点, 将△ABE 折叠, 点 A 的对应点为 A′, 若点 A′到矩形较长两对边的距离之比为 1∶3, 4 4 则线段 AE 的长为 5 15或7 7或 4 3 . 13.如图,在矩形 ABCD 中,AB=3,AD=6,点 E 为 AD 边上一点,将△ABE 沿 BE 折叠,点 A 落在点 A′处,取 BE 的中点 F,连接 A′F,当 A′F 平行于矩形的某条边 时,AE 的长为
折叠后特殊三角形的判定
1.(2018· 宜宾)如图,在矩形 ABCD 中,AB=3,CB=2,点 E 为线段 AB 上的动点, 将△CBE 沿 CE 折叠,使点 B 落在矩形内点 F 处,下列结论正确的是 ①②③ 所有正确结论的序号) .(写出
①当 E 为线段 AB 中点时,AF∥CE; 9 ②当 E 为线段 AB 中点时,AF= ; 5 13-2 13 ③当 A,F,C 三点共线时,AE= ; 3 ④当 A,F,C 三点共线时,△CEF≌△AEF.
九年级数学专题复习图形的折叠和动点问题

中考冲刺:动手操作与运动变换型问题【中考展望】1.对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化”和“再创造”的过程,不断提高自己的创新意识与综合能力,这是《全日制义务教育数学课程标准(实验稿)》的基本要求之一,因此,近年来实践操作性试题受到命题者的重视,多次出现.2.估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查.需具备一定的分析问题能力和归纳推理能力.图形的设计与操作问题,主要分为如下一些类型:1.已知设计好的图案,求设计方案(如:在什么基本图案的基础上,进行何种图形变换等).2.利用基本图案设计符合要求的图案(如:设计轴对称图形,中心对称图形,面积或形状符合特定要求的图形等).3.图形分割与重组(如:通过对原图形进行分割、重组,使形状满足特定要求).4.动手操作(通过折叠、裁剪等手段制作特定图案).解决这样的问题,除了需要运用各种基本的图形变换(平移、轴对称、旋转、位似)外,还需要综合运用代数、几何知识对图形进行分析、计算、证明,以获得重要的数据,辅助图案设计.另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息.必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效.从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考查.所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分.【方法点拨】实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题.解答实践操作题的基本步骤为:从实例或实物出发,通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜想.在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题.动态几何问题:1、动态几何常见类型(1)点动问题(一个动点)(2)线动问题(二个动点)(3)面动问题(三个动点)2、运动形式平移、旋转、翻折、滚动3、数学思想函数思想、方程思想、分类思想、转化思想、数形结合思想4、解题思路(1)化动为静,动中求静(2)建立联系,计算说明(3)特殊探路,一般推证【典型例题】类型一、图形的剪拼问题例1.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下(如图所示):请你用上面图示的方法,解答下列问题:(1)对下图中的三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;(2)对下图中的四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.举一反三:【变式】把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.类型二、实践操作例2.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.例3.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠C=60°,∠A=30°,BC=6 cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐________.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.举一反三:【变式】如图,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=BC=4,BC⊥OB于B,以O为坐标原点,OB所在直线为x轴建立平面直角坐标系,开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线将直角梯形OBCD分成面积相等的两部分,你认为直线是否存在?若存在求出直线的解析式,若不存在,请说明理由.类型三、平移旋转型操作题例4.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:(1)如图所示,△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF 的形状在不断地变化,但它的面积不变化,请求出其面积.(2)如图所示,当D点移动到.AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图所示,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB 边上,此时,点恰好与B点重合,连结AE,请你求出sinα的值.类型四、动态数学问题例5.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O 出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB,过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.(1)当点B与点D重合时,求t的值;(2)当t为何值时,S△BCD=?举一反三:【变式】如图,平行四边形ABCD中,AB=10,AD=6,∠A=60°,点P从点A出发沿折线AB-BC以每秒1个单位长的速度向点C运动,当P与C重合时停止运动,过点P作AB的垂线PQ交AD或DC于Q.设P 运动时间为t秒,直线PQ扫过平行四边形ABCD的面积为S.求S关于t的函数解析式.【巩固练习】一、选择题1. 将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是( )A .B .C .D .2. 一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个角剪下的实际是四个小三角形,再把余下的部分展开,展开后的这个图形的内角和是多少度?( )A .1080°B .360°C .180°D .900°3. 如图,把矩形ABCD 对折,折痕为MN (图甲),再把B 点叠在折痕MN 上的B ′处.得到Rt △AB ′E (图乙),再延长EB ′交AD 于F ,所得到的△EAF 是( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 直角三角形4. 如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC ,则CE 的长是( )A 、10315-B 、1053-C 、535-D 、20103-二、填空题5.如图(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图(2)所示的一个菱形.对于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:.6.如图,△ABC中,∠BAC=600,∠ABC=450,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F ,连接EF,则线段EF长度的最小值为___________7.如图①,在四边形ABCD中,AD∥BC,∠C=90°,CD=6cm.动点Q从点B出发,以1cm/S的速度沿BC运动到点C停止,同时,动点P也从B点出发,沿折线B→A→D运动到点D停止,且PQ⊥BC.设运动时间为t(s),点P运动的路程为y(cm),在直角坐标系中画出y关于t的函数图象为折线段OE 和EF(如图②).已知点M(4,5)在线段OE上,则图①中AB的长是cm.三、解答题8.阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图(1)所示,将它们分割后拼接成一个新的正方形.他的做法是:按图(2)所示的方法分割后,将三角形纸片①绕AB的中点D旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图(3)所示.请将其分割后拼接成一个平行四边形.要求:在图(3)中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图(4),在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图(4)中探究平行四边形MNPQ面积的大小(画图并直接写出结果).9. 如图(a),把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸…….已知标准纸的短边长为a.(1)如图(b),把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B′处,铺平后得折痕AE;第二步将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF;则AD:AB的值是________,AD,AB的长分别是________,________;(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值;(3)如图(c),由8个大小相等的小正方形构成“L”型图案,它的4个顶点E,F,G,H分别在“16开”纸的边AB,BC,CD,DA上,求DG的长;(4)已知梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出两个符合条件且大小不同的直角梯形的面积.10. 操作与探究(1)图(a)是一块直角三角形纸片.将该三角形纸片按图中方法折叠,点A与点C重合,DE为折痕.试证明△CBE是等腰三角形;(2)再将图(b)中的△CBE沿对称轴EF折叠(如图(b)).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图(c)中的△ABC折叠成一个组合矩形吗?如果能折成,请在图(c)中画出折痕;(3)请你在图(d)的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?11.在图1至图5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE 在同一直线上.操作示例:当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.思考发现:小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图所示),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.实践探究:(1)正方形FGCH的面积是________;(用含a、b的式子表示)(2)类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展:小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时,如图所示的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.12. 已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.。
专题4几何图形的折叠与动点问题

8.(2017·平顶山二模)如图,在矩形纸片 ABCD 中,AB=5, AD=2,点 P 在线段 AB 上运动,设 AP=x,现将纸片折 叠,使点 D 与点 P 重合,得折痕 EF(点 E,F 为折痕与矩 形边的交点),再将纸片还原,则四边形 EPFD 为菱形时, x 的取值范围是_2_≤_x_≤_5______.
=
3 5
x.
由
折
叠
的
性
质
可
知
,
∠HED =
∠FED.
又
∵∠EHD =
∠EFD=90°,ED=ED,∴△EHD≌△EFD(AAS),
∴EH=EF,即 2-x=35x,解得 x=54.综上所述,BE 的长度为 12或54.
15 【答案】 2或4
类型2 折叠后点位置的不确定
(2017·许昌二模)如图,矩形 ABCD 中,AB=8,BC =15,点 E 是 AD 边上一点,连接 BE,把△ABE 沿 BE 折叠, 使点 A 落在 A′处.点 F 是 CD 边上一点,连接 EF,把△DEF 沿 EF 折叠,使点 D 落在直线 EA′上的点 D′处.当点 D′ 落在 BC 边上时,AE 的长为________.
6.已知正方形 ABCD 的面积为 12,若平面内存在一点 E, 使得△ABE 为等边三角形,且在对角线 AC 上有一点 P, 使 PD+PE 的和最小,则这个最小值为_2___3_或__3__2_+___6__.
7.(2017·营口)在矩形纸片 ABCD 中,AD=8,AB=6,E 是 边 BC 上的点,将纸片沿 AE 折叠,使点 B 落在点 F 处, 连接 FC,当△EFC 为直角三角形时,BE 的长为__3_或__6____.
第11题图
题型四 几何图形的折叠与动点问题

题型四几何图形的折叠与动点问题试题演练1. 如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则x的取值范围是__________.2. 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________.3. (’15洛阳模拟)如图,在边长为4的正方形ABCD中,M为BC的中点,E、F分别为AB、CD边上的动点.在点E、F运动的过程中始终保持△EMF为直角三角形,其中∠EMF =90°.则直角三角形的斜边EF的取值范围是________.4. 如图,在边长为2的菱形ABCD中,∠A=60°,点P为射线AB上一个动点,过点P作PE⊥AB交射线AD于点E,将△AEP沿直线PE折叠,点A的对应点为F,连接FD、FC,若△FDC为直角三角形时,AP的长为________.5. 如图,正方形ABCD的边长为2,∠DAC的平分线AE交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为________.6. 如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在矩形的对角线上时,DE的长为________.7. 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,对应点为点E,若BG=10,则折痕FG的长为________.8. 如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为________.9. (’15商丘模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB 上的点F处,当△BCF为等腰三角形时,AE的长为________.10. (’15郑州模拟)如图,在矩形ABCD中,AD=6,CD=4,AD的中点为E,点F是AB边上一点(不与A、B重合),连接EF,把∠A沿EF折叠,使点A落在点G处,连接CG.则线段CG的取值范围是________.11. (’15江西)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△P AB为直角三角形时,AP的长为________.12. 如图,在矩形ABCD中,AB=12,BC=8,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为_____【答案】1. 1≤x≤3【解析】通过观察图形,可得当点E与点A重合时AP最小,则AP=EP=AD =1;当点P与点B重合时,AP最大,则AP=3,∴1<AP≤3,则x的取值范是1≤x≤3.2. 2【解析】由题意得:DF=DB,∴点F在以D为圆心,BD为半径的圆上,作⊙D,连接AD交⊙D于点F,此时AF值最小;∵点D是边BC的中点,∴CD=BD=3;而AC=4.由勾股定理得:AD2=AC2+CD2∴AD=5,而FD=3,∴F A=5-3=2,即线段AF长的最小值是2.3. 4≤EF≤5【解析】∵点M为BC的中点,正方形ABCD的边长为4,∴BM=CM=2,∵∠EMF=90°,∴∠BME+∠CMF=90°,∵∠CFM+∠CMF=90°,∴∠BME=∠CFM,又∵∠B=∠C=90°,∴△BME∽△CFM,∴BMCF=BECM,∴BE·CF=BM·CM=2×2=4,∵CF最大时为4,此时BE=1,BE最大时为4,此时CF=1,∴0≤|CF-BE|≤3,过点E 作EG⊥CD于点G,则EG=BC=4,在Rt△EFG中,EF2=EG2+FG2=16+(CF-BE)2,∴16≤EF2≤16+9,∴4≤EF≤5.4. 12或32 【解析】根据题意可得△FDC 为直角三角形时分三种情况考虑:(1)如解图①,当∠FDC =90°时,DF ⊥AB ,在△AFD 中,∠A =60°,AD =2,∴AF =1,AP =12;(2)如解图②,当∠DCF =90°时,CF ⊥AB ,在△CFB 中,∠CBF =60°,BC =2,∴BF =1,AF =3,AP =32;(3)当∠DFC =90°,不存在.综上可知AP 的值为12或32.5. 2 【解析】如解图,作D 关于AE 的对称点D ′,则D ′落在对角线AC 上,过点D ′作 D ′P ′⊥AD 于点P ′,∴D ′P ′即为DQ +PQ 的最小值,∵DD ′⊥AE ,∴∠AFD =∠AFD ′,∵AF =AF ,∠DAF =∠D ′AF ,∴△DAF ≌△D ′AF ,∴AD =AD ′=2,∵四边形ABCD 是正方形,∴∠DAD ′=45°,∴AP ′=P ′D ′,∴在Rt △AP ′D ′中,P ′D ′2+AP ′2=AD ′2, AD ′2=4,∴P ′D ′=2,即DQ +PQ 的最小值为 2.6. 32或94【解析】分两种情况进行讨论,设DE =x .ⅰ)D ′落在AC 上,如解图1,在Rt △ED ′C 中,EC =4-x ,D ′C =AC -AD ′=5-3=2,ED ′=x ,根据ED ′2+D ′C 2=EC 2可得x 2+22=(4-x )2,解得x =32;ⅱ)D ′落 在BD 上,如解图2,设DD ′交AE 于F 根据轴对称性质可知AE 垂直平分DD ′.在Rt △DF A 中,sin ∠ADF =AF AD ,∵sin ∠ADF =sin ∠ADB =AB BD =45,∴AF AD =45,又∵AD =3,∴AF =125,∴DF =95,又∵∠DEF =∠ADF ,∴sin ∠DEF =sin ∠ADF =45,∴DF DE =45,即95DE =45,∴DE =95×54=94.综上DE 的长为32或94.7. 55或45 【解析】分两种情况讨论:(1)如解图①,过点G 作GH ⊥AD 于点H ,则四边形ABGH 为矩形,∴GH =AB =8,由图形折叠可知△BFG ≌ △EFG ,∴EG =BG =10,∠B =∠FEG =90°,∴EH =6,AE =4,∠AEF +∠HEG =90°,∵∠AEF +∠AFE =90°,∴∠HEG =∠AFE ,又∵∠A =∠EHG =90°,∴△EAF ∽△GHE ,∴EF EG =AE GH,∴EF =5,∴FG =102+52=55;(2)如解图②,由图形的折叠可知四边形ABGF ≌四边形HEGF ,∴BG =EG ,AB =EH ,∠BGF =∠EGF ,∵EF ∥BG ,∴∠BGF =∠EFG ,∴∠EFG =∠EGF ,∴EF =EG ,∴BG =EF ,∴四边形BGEF 为平行四边形,∵EF =EG ,∴平行四边形BGEF 为菱形,连接BE ,∴BE 、FG 互相垂直平分.在Rt △EFH 中,EF =BG =10,EH =AB =8,由勾股定理可得FH =AF =6,∴AE =AF +EF =16,∴BE =AE 2+AB 2=85,∴BO =45,∴OG =BG 2-BO 2=25,∵四边形BGEF 为菱形,∴FG =2OG =4 5.8. 1227或352【解析】在Rt △ABC 中,∠ABC =90°,AC =10,BC =8,∴AB =102-82=6,则AE =6,EC =AC -AE =10-6=4;∵AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△ABD ≌△AED ,∴BD =DE ,∠B =∠AED =90°,设BD =x ,则DE =x ,CD =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴CD =5,DE =3.(1)如解图①,若沿∠DEC 的角平分线EG 折叠,使点C 落在ED 延长线上F 点处,过G 分别作GM ⊥EC ,GN ⊥EF ,垂足分别为M 、N .∴GN=GM ,∵S △DEC =12×3×4=6,S △DEG =12×3·GN =32GN ,S △CEG =12×4·GM =2GM ,∴2GM +32GN =6,即2GN +32GN =6,解得:GN =127,故EG =1227;(2)如解图②,若沿∠EDC 的角平分线DG 折叠,使点C 落在DE 延长线上F 点处.∴CG =FG ,DC =DF =5,∵DE=3,∴EF =2,设CG =y ,则FG =y ,EG =4-y ,∴(4-y )2+22=y 2,解得:y =52,∴EG=4-52=32,∵DE =3,∴DG =(32)2+32=94+9=352. 9. 1或54或710【解析】本题考查三角形的折叠,等腰三角形的性质求线段的长.在Rt △ABC 中,AC =4,BC =3,由勾股定理得AB =AC 2+BC 2=5.由折叠性质得AE =EF ,在△BCF 中,当BF =BC 时,有BF =AB -AF =AB -2AE =3,则AE =1; 当BF =CF 时,过BC 中点作AC 的平行线,交AB 于点F ,此时F 点满足题意,且AF =BF =52,则AE =54; 当CF =CB 时,如解图,过C 作CN ⊥AB 于点N .由等面积法得CN =AC ·BC AB =125.由△BCN ∽△BAC ,得BN BC =BC AB ,则BN =95.由等腰三角形三线合一性质得FN =BN =95,则AE =12AF =12(AB -BF )=12×(5-185)=710. 10. 2537<CG <213 【解析】如解图所示,在Rt △ADC 中,AD =6,CD =4,∴AC =AD 2+CD 2=213,把∠A 沿EB 折叠,此时CG 最小,使点A 落在点G 处,连接AG ,DG ,∴∠EAG =∠EGA ,AE =EG ,∵AE =DE ,∴EG =ED ,∴∠ADG =∠EGD ,∴∠AGD =∠AGE +∠EGD =∠DAG +∠ADG =90°,∵AE =3,AB =4,∴BE =AE 2+AB 2=5,∵12AG ·BE =AE ·AB ,∴AG =245,在Rt △ADG 中,DG =AD 2-AG 2=62-(245)2=185,过G 点作MN ⊥AD ,∴∠AMG =∠AGD =90°,∵∠MAG =∠GAD ,∴△AMG ∽△AGD ,∴AM AG=MG DG =AG AD ,即:AM 245=MG 185=2456,∴AM =9625,MG =7225,∵BN =AM =9625,MN =CD =4,∴CN =6-9625=5425,GN =4-7225=2825,在Rt △CNG 中,CG =CN 2+GN 2=2537.在Rt △ABC 中,AC =AB 2+BC 2=213,∴线段CG 的取值范围是2537<CG <213.11. 2或23或27 【解析】由于点P 在射线CO 上运动,∴当△P AB 为直角三角形时,有三种情况:(1)当∠APB =90°时,①如解图①,当点P 在线段CO 上时,∵AB =BC =4,AO =BO ,∴AO =2,∴PO =AO =2,∵∠AOC =60°,∴△APO 是等边三角形,∴AP =AO =2;②如解图②所示,当点P 在CO 的延长线上时,∵AB =BC =4,AO =BO ,∠AOC =60°,∴OP =OA =OB =2,∵∠POB =∠AOC =60°,∴△POB 是等边三角形,即PB =OB =2,∴AP =AB 2-PB 2=42-22=23;(2)当∠ABP =90°时,如解图③所示,∵AB =BC =4,AO =BO ,∴AO =BO =2,又∵∠BOP =∠AOC =60°,∠ABP =90°,∴BP =23,在Rt △APB 中,AP =AB 2+PB 2=42+(23)2=27;∴AP 的长度为2或23或27.12. 92或4877【解析】∵四边形ABCD 是矩形,∴AD =BC =8,AB =DC =12,AD ∥BC ,∠C =90°.∵把△DCE 沿DE 折叠得△DFE ,∴DC =DF =12.∵AD ≠DF ,∴△AFD 为等腰三角形只有两种情况: (1)当AF =FD =12时,如解图①,过点F 作FM ⊥AD于点M ,∴AM =MD =4,在Rt △MDF 中,由勾股定理,得MF =122-42=82,∵AD ∥BC ,∴∠MDF =∠DPC .∵∠DMF =∠C =90°,∴△MDF ∽△CPD ,∴MF CD =FD PD ,即:8212=12PD,解得PD =92; (2)当AD =AF =8时,如解图②,DF 的延长线交CB 的延长线于点P ,过点A 作AN ⊥DF 于点N, ∴FN =ND =6,在Rt △AND 中,由勾股定理,得AN =82-62=27,∵AD ∥BC ,∴∠ADN =∠DPC ,∵∠AND =∠C =90°, ∴△AND ∽△DCP ,∴AN CD =AD PD ,即:2712=8PD ,解得PD =4877.综上所述,DP 的长为92或4877。
矩形折叠问题及动点问题精讲

O
F
D
C
E
B
F
C
ห้องสมุดไป่ตู้
新知探究
一、矩形折叠问题
例1、如图,在矩形纸片ABCD中,AB=6cm,BC=8cm, 将矩形纸片折叠,使点C与点A重合. (3)四边形AFCE是什么四边形?说明理由. 答:四边形AFCE是菱形. A 理由:∵四边形ABCD是矩形, ∴AD∥BC,OD=OB,OA=OC, ∴∠EDO=∠CBO ∵∠BOF=∠DOE B ∴△BOF≌△DOE ∴OE=OF ∵OA=OC ∴四边形AFCE是平行四边形, 由对折可得EF⊥AC ∴四边形AFCE是菱形.
设DF=x,由折叠的性质得 10 EF=FC=6-x,DE=AD-AE=2, 在Rt△DEF中,由勾股定理得DE2+DF2=EF2, 即22+x2=(6-x)2,
6-x
8 解得DF=x= 3 .
自主练习
一、矩形折叠问题
3、如图,四边形ABCD是边长为9的正方形纸片,将其 沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′, 且B′C=3,则AM的长是( ) x 9-x A.1.5 B.2 C.2.25 D.2.5 6 9 析解:如图,连结MB,MB′, 由折叠的性质可知MB=MB′, 3 设AM=x, 在Rt△ABM中,BM2=AB2+AM2, 在Rt△MDB′中,B′M2=MD2+DB′2, ∴AB2+AM2=MD2+DB′2, 即92+x2=(9-x)2+(9-3)2, 解得x=2,即AM=2.
∴DQ=CP 即 16-t=21-2t 2t 解得 t=5 21-2t ∴当 t=5秒时,四边形PQDC是平行四边形
自主练习
二、特殊四边形动点问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型四几何图形的折叠与动点问题试题演练1. 如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则x的取值围是__________.2. 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________.3. (’15模拟)如图,在边长为4的正方形ABCD中,M为BC的中点,E、F分别为AB、CD边上的动点.在点E、F运动的过程中始终保持△EMF为直角三角形,其中∠EMF=90°.则直角三角形的斜边EF的取值围是________.4. 如图,在边长为2的菱形ABCD中,∠A=60°,点P为射线AB上一个动点,过点P作PE⊥AB交射线AD于点E,将△AEP沿直线PE折叠,点A的对应点为F,连接FD、FC,若△FDC为直角三角形时,AP的长为________.5. 如图,正方形ABCD的边长为2,∠DAC的平分线AE交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为________.6. 如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在矩形的对角线上时,DE的长为________.7. 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,对应点为点E,若BG=10,则折痕FG的长为________.8. 如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个角平分线折叠,使点C落在DE所在直线上,则折痕的长度为________.9. (’15模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的点F处,当△BCF为等腰三角形时,AE的长为________.10. (’15模拟)如图,在矩形ABCD中,AD=6,CD=4,AD的中点为E,点F是AB边上一点(不与A、B重合),连接EF,把∠A沿EF折叠,使点A落在点G处,连接CG.则线段CG的取值围是________.11. (’15)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为________.12. 如图,在矩形ABCD中,AB=12,BC=8,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为_____【答案】1. 1≤x ≤3 【解析】通过观察图形,可得当点E 与点A 重合时AP 最小,则AP =EP =AD =1;当点P 与点B 重合时,AP 最大,则AP =3,∴1<AP ≤3,则x 的取值是1≤x ≤3.2. 2 【解析】由题意得:DF =DB ,∴点F 在以D 为圆心,BD 为半径的圆上,作⊙D ,连接AD 交⊙D 于点F ,此时AF 值最小;∵点D 是边BC 的中点,∴CD =BD =3;而AC =4.由勾股定理得:AD 2=AC 2+CD 2∴AD =5,而FD =3,∴FA =5-3=2,即线段AF 长的最小值是2. 3. 4≤EF ≤5 【解析】∵点M 为BC 的中点,正方形ABCD 的边长为4,∴BM =CM =2,∵∠EMF =90°,∴∠BME +∠CMF =90°,∵∠CFM +∠CMF =90°,∴∠BME =∠CFM ,又∵∠B =∠C =90°,∴△BME ∽△CFM ,∴BM CF =BECM,∴BE ·CF =BM ·CM =2×2=4,∵CF 最大时为4,此时BE =1,BE 最大时为4,此时CF =1,∴0≤|CF -BE |≤3,过点E 作EG ⊥CD 于点G ,则EG =BC =4,在Rt △EFG 中,EF 2=EG 2+FG 2=16+(CF -BE )2,∴16≤EF 2≤16+9,∴4≤EF≤5.4. 12或32【解析】根据题意可得△FDC 为直角三角形时分三种情况考虑:(1)如解图①,当∠FDC=90°时,DF⊥AB,在△AFD中,∠A=60°,AD=2,∴AF=1,AP=12;(2)如解图②,当∠DCF=90°时,CF⊥AB,在△CFB中,∠CBF=60°,BC=2,∴BF=1,AF=3,AP=32;(3)当∠DFC=90°,不存在.综上可知AP的值为12或32.5. 2 【解析】如解图,作D关于AE的对称点D′,则D′落在对角线AC上,过点D′作D′P′⊥AD于点P′,∴D′P′即为DQ+PQ的最小值,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAF=∠D′AF,∴△DAF≌△D′AF,∴AD=AD′=2,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=4,∴P′D′=2,即DQ+PQ的最小值为 2.6.32或94【解析】分两种情况进行讨论,设DE=x.ⅰ)D′落在AC上,如解图1,在Rt△ED′C中,EC=4-x,D′C=AC-AD′=5-3=2,ED′=x,根据ED′2+D′C2=EC2可得x2+22=(4-x)2,解得x=32;ⅱ)D′落在BD上,如解图2,设DD′交AE于F根据轴对称性质可知AE垂直平分DD′.在Rt△DFA中,sin∠ADF=AFAD,∵sin∠ADF=sin∠ADB=ABBD=45,∴AFAD=45,又∵AD=3,∴AF=125,∴DF=95,又∵∠DEF=∠ADF,∴sin∠DEF=sin∠ADF=45,∴DFDE=45,即95DE=45,∴DE=95×54=94.综上DE的长为32或94.7. 55或4 5 【解析】分两种情况讨论:(1)如解图①,过点G作GH⊥AD于点H,则四边形ABGH 为矩形,∴GH =AB =8,由图形折叠可知△BFG ≌ △EFG ,∴EG =BG =10,∠B =∠FEG =90°,∴EH =6,AE =4,∠AEF +∠HEG =90°,∵∠AEF +∠AFE =90°,∴∠HEG =∠AFE ,又∵∠A =∠EHG =90°,∴△EAF ∽△GHE ,∴EF EG =AE GH,∴EF =5,∴FG =102+52=55;(2)如解图②,由图形的折叠可知四边形ABGF ≌四边形HEGF ,∴BG =EG ,AB =EH ,∠BGF =∠EGF ,∵EF ∥BG ,∴∠BGF =∠EFG ,∴∠EFG =∠EGF ,∴EF =EG ,∴BG =EF ,∴四边形BGEF 为平行四边形,∵EF =EG ,∴平行四边形BGEF 为菱形,连接BE ,∴BE 、FG 互相垂直平分.在Rt △EFH 中,EF =BG =10,EH =AB =8,由勾股定理可得FH =AF =6,∴AE =AF +EF =16,∴BE =AE 2+AB 2=85,∴BO =45,∴OG =BG 2-BO 2=25,∵四边形BGEF 为菱形,∴FG=2OG =4 5.8. 1227或352 【解析】在Rt △ABC 中,∠ABC =90°,AC =10,BC =8,∴AB =102-82=6,则AE =6,EC =AC -AE =10-6=4;∵AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△ABD ≌△AED ,∴BD =DE ,∠B =∠AED =90°,设BD =x ,则DE =x ,CD =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴CD =5,DE =3.(1)如解图①,若沿∠DEC 的角平分线EG 折叠,使点C 落在ED 延长线上F 点处,过G 分别作GM ⊥EC ,GN ⊥EF ,垂足分别为M 、N .∴GN =GM ,∵S △DEC =12×3×4=6,S △DEG =12×3·GN =32GN ,S △CEG =12×4·GM =2GM ,∴2GM +32GN =6,即2GN +32GN =6,解得:GN =127,故EG =1227;(2)如解图②,若沿∠EDC 的角平分线DG 折叠,使点C 落在DE延长线上F 点处.∴CG =FG ,DC =DF =5,∵DE =3,∴EF =2,设CG =y ,则FG =y ,EG =4-y ,∴(4-y )2+22=y 2,解得:y =52,∴EG =4-52=32,∵DE =3,∴DG =(32)2+32=94+9=352.9. 1或54或710 【解析】本题考查三角形的折叠,等腰三角形的性质求线段的长.在Rt △ABC中,AC =4,BC =3,由勾股定理得AB =AC 2+BC 2=5.由折叠性质得AE =EF ,在△BCF 中,当BF =BC 时,有BF =AB -AF =AB -2AE =3,则AE =1; 当BF =CF 时,过BC 中点作AC 的平行线,交AB 于点F ,此时F 点满足题意,且AF =BF =52,则AE =54; 当CF =CB 时,如解图,过C 作CN ⊥AB 于点N .由等面积法得CN =AC ·BC AB =125.由△BCN ∽△BAC ,得BN BC =BCAB,则BN =95.由等腰三角形三线合一性质得FN =BN =95,则AE =12AF =12(AB -BF )=12×(5-185)=710. 10. 2537<CG <213 【解析】如解图所示,在Rt △ADC 中,AD=6,CD =4,∴AC =AD 2+CD 2=213,把∠A 沿EB 折叠,此时CG 最小,使点A 落在点G 处,连接AG ,DG ,∴∠EAG =∠EGA ,AE=EG ,∵AE =DE ,∴EG =ED ,∴∠ADG =∠EGD ,∴∠AGD =∠AGE +∠EGD =∠DAG +∠ADG =90°,∵AE =3,AB =4,∴BE =AE 2+AB 2=5,∵12AG ·BE =AE ·AB ,∴AG =245,在Rt △ADG 中,DG =AD 2-AG 2=62-(245)2=185,过G 点作MN ⊥AD ,∴∠AMG=∠AGD =90°,∵∠MAG =∠GAD ,∴△AMG ∽△AGD ,∴AM AG =MG DG =AG AD ,即:AM 245=MG 185=2456,∴AM =9625,MG =7225,∵BN =AM =9625,MN =CD =4,∴CN =6-9625=5425,GN =4-7225=2825,在Rt △CNG 中,CG =CN 2+GN 2=2537.在Rt △ABC 中,AC =AB 2+BC 2=213,∴线段CG 的取值围是2537<CG <213. 11. 2或23或27 【解析】由于点P 在射线CO 上运动,∴当△PAB 为直角三角形时,有三种情况:(1)当∠APB =90°时,①如解图①,当点P 在线段CO 上时,∵AB =BC =4,AO =BO ,∴AO =2,∴PO =AO =2,∵∠AOC =60°,∴△APO 是等边三角形,∴AP =AO =2;②如解图②所示,当点P 在CO 的延长线上时,∵AB =BC =4,AO =BO ,∠AOC =60°,∴OP =OA =OB =2,∵∠POB =∠AOC =60°,∴△POB 是等边三角形,即PB =OB =2,∴AP =AB 2-PB2=42-22=23;(2)当∠ABP =90°时,如解图③所示,∵AB =BC =4,AO =BO ,∴AO =BO =2,又∵∠BOP =∠AOC =60°,∠ABP =90°,∴BP =23,在Rt △APB 中,AP =AB 2+PB 2=42+(23)2=27;∴AP 的长度为2或23或27.12. 92或4877 【解析】∵四边形ABCD 是矩形,∴AD =BC =8,AB =DC =12,AD ∥BC ,∠C =90°.∵把△DCE 沿DE 折叠得△DFE ,∴DC =DF =12.∵AD ≠DF ,∴△AFD 为等腰三角形只有两种情况: (1)当AF =FD =12时,如解图①,过点F 作FM ⊥AD 于点M ,∴AM =MD =4,在Rt △MDF 中,由勾股定理,得MF =122-42=82,∵AD ∥BC ,∴∠MDF =∠DPC .∵∠DMF=∠C =90°,∴△MDF ∽△CPD ,∴MF CD =FD PD ,即:8212=12PD ,解得PD =92;(2)当AD =AF =8时,如解图②,DF 的延长线交CB 的延长线于点P ,过点A 作AN ⊥DF 于点N, ∴FN =ND =6,在Rt △AND 中,由勾股定理,得AN =82-62=27,∵AD ∥BC ,∴∠ADN=∠DPC ,∵∠AND =∠C =90°, ∴△AND ∽△DCP ,∴AN CD =AD PD ,即:2712=8PD ,解得PD =4877.综上所述,DP 的长为92或4877。