因式分解的十二种方法--练习
因式分解的十二种方法

因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。
在因式分解的过程中,有许多不同的方法可以使用。
下面将介绍因式分解的十二种常见方法。
一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。
它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。
例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。
二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。
通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。
例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。
三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。
例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。
五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。
它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。
根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。
它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。
例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。
因式分解方法及其练习

因式分解【知识要点】1 •因式分解概念:把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算。
2因式分解的方法:①提公因式法;(1)多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
(2)公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂。
②.公式法:(1)常用公式平方差:a2 _ b2 = (a b)(a _ b)完全平方:a2 _2ab b2 (a_b)23 3 2 2立方和:a +b =(a+b)(a -ab+b );立方差:a3-b3=(a-b)(a 2+ab+b2).下面再补充几个常用的公式:2 2 2 2⑸a +b +c +2ab+2bc+2ca=(a+b+c);3.3 3 2.2 2 (6) a +b +c -3abc=(a+b+c)(a +b +c - ab-bc-ca);(7) a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+,+ab n-2+b n-1)其中n为正整数;n n n-1 n-2 n-3 2(8) a -b =(a+b)(a -a b+a b -,+ab n-2-b n-1),其中n为偶数;n . n n-1 n-2 . n-3 .2(9) a +b =(a+b)(a -a b+a b -,-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1分解因式:5n-1 n 3n-1 n+2 n-1 n+4(1) -2x y +4x y -2x y ;(2) x 3-8y 3-z 3-6xyz ;2 2 2⑶a +b +c -2bc+2ca-2ab ;(4)a 7-a 5b2+a2b5-b7.解(1)原式=-2x n-1y n(x 4n-2x 2ny2+y4) =-2x n-1y n[(x 2n)2-2x 2ny2+(y2)2]=-2x n-1y n(x2n-y 2)2=-2x n-1y n(x n-y) 2(x n+y)2.⑵原式=x3+(-2y) 3+(-z) 3-3x(-2y)(-Z)2 2 2=(x-2y-z)(x +4y +z +2xy+xz-2yz).(3) 原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b) +2c(a-b)+c=(a-b+c)本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b) 2+c2+2(-b)c+2ca+2a(-b)=(a-b+c) 2(4) 原式=(a7-a5b2)+(a 2b5-b7)5 2 2 5 2 2、=a (a -b )+b (a -b )=(a 2-b 2)(a 5+b5) =(a+b)(a-b)(a+b)(a4-a 3b+a2b2-ab 3+b4)=(a+b) 2(a-b)(a 4-a 3b+a2b2- ab3+b4) 例2分解因式:a3+b3+c3-3abc .本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b) 3=a3+3a2b+3ab2+6的正确性,现将此公式变形为a3+b3=(a+b) 3-3ab(a+b).这也是一个常用的公式,本题就借助于它来推导.解原式=(a+b) 3-3ab(a+b)+c 3-3abc =[(a+b)3+c3] -3ab(a+b+c) =(a+b+c)[(a+b) 2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a2+b2+c-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc =* Ca + b + e)(备鼻+2b*+2c,*2曲-=j (a + b + D)L Ca b) 3 + Cb-c) : - (c -B O2],显然,当a+b+c=0 时,则a3+b3+c3=3abc ;当a+b+c > 0 时,贝U a3+b3+c3- 3abc > 0,即a3+b3+c3> 3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3>0,y=b3>0,z=c3> 0,则有等号成立的充要条件是x=y=z .这也是一个常用的结论.例3 分解因式:x15+x14+x13+, +x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0, 由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x 15+x14+x13+,x2+x+1),所以原天二------------------------- H -------- TK -1間+1)聞+1)(『町血+ 1)虻1)= n・(K9+I)(X'+1)[22+1)(X +1).说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.(2)常见的两个二项式幂的变号规律:①(a-b)2n =(b-a)2n;②(a_b)2n° =~(b_a)22. (n 为正整数)【课前热身】1 •计算下列各式:(1)(m 4)(m - 4) = ___________(2)(y-3)2= _____________________(3)3x(x _ 1) = ____________(4)m(a b c) = ______________________2 •根据上题填空:(1)3X2_3X= ______________2(2)m -16= _______________(3)ma mb mc= ____________________2(4)y - 6y 9 = _____________【典型题】1把下列各式分解因式32(1)4q(1 - p) 2(p-1)(2) 3m(x_ y) _ n(y _ x)(3) m(5ax ay -1) - m(3ax- ay - 1)1 2 2 1 3(4)a (x - 2a) a(2a - x)2 42把下列各式分解因式(1)25_16x2_____________2 1 2(2)9a2__________ b2=42 2(3)9(m n) _(m_n) = __________(4)2x -8x= _____________3把下列各式分解因式(1)(m n)2 - 6(m n) 92 2(2)3ax 6axy 3ay2 23 3•观察下列各组式子,其中有公因式的是/八m n 2mn 4(4) n ()① 2y x 与x y ;9 3= ② 3a(m - n)与-m n ;4〒算③a—b与2(a b);1 x2x3 +3工6工9 +5xl0>d5+7xl4x21 ④ x? _y?与(y _x)21 3 5 3 9 15 5 15 25 7 21 35A.①③ B.②③ C.②④ D.③④ 4•多项式b2n -b n提公因式b n后,另一个因式是()n 2n』2n』nA. b -1B.b -1c. b D• b5•下列多项式中,在有理数范围内不能用平方差公式分解因式的是( )A. -x2 z2B . X2 -162 . x2(a b)2 2x(a2-b2) (a-b)2四、解答1 .求证:对于任意的正整数n,3「2 -2nJ 3n - 2n一定是10 的倍数。
因式分解12种方法全攻略

因式分解的十二种方法全攻略1.1提公因式法【例1】 分解因式: 3222524261352xy z xy z x y z -++1.2公式法平方差公式:22()()a b a b a b -=+-完全平方公式:2222()a ab b a b ++=+2222()a ab b a b -+=-三项完全平方公式:立方和差公式:【例2】 分解因式:66a b -附加:分解因式:333333()()()a b b c c a a b c ++++++++1.3选主元【例3】 分解因式:1a b c ab bc ca abc +++++++.练习:分解因式:1、2222a b ab bc ac --++附加:222222()()(1)()()ab x y a b xy a b x y ---+-++1.4分组分解法【例4】 分解因式:1、ax ay bx cy cx by -++--;【例5】 3254222x x x x x --++-【例6】 分解因式2244243x xy y x y ++---.1.5拆添项法【例7】 分解因式432433x x x x ++++【例8】 因式分解343a a -+.【例9】 分解因式:310x x ++【例10】 分解因式:421x x ++42231x x -+附加题:1、51x x ++ 2、541a a ++1.6十字相乘法【例11】 分解因式:()()()222221a a x a x a a ---++1.7 重组重解【例12】 分解因式:(6114)(31)2a a b b b +++--【例13】 分解因式:22(1)(1)(221)y y x x y y +++++附加:()()222222ax by ay bx c x c y ++-++1.8双十字相乘法【例14】 分解因式:222332x xy y x y +-+++【例15】2265622320x xy y x y --++- 22344883x xy y x y +-+--22121021152x xy y x y -++-+1.9换元法【例16】 分解因式:(1)(3)(5)(7)15x x x x +++++【例17】 分解因式22(32)(384)90x x x x ++++-1.10因式定理因式定理:如果x a =时,多项式1110...n n n n a x a x a x a --++++的值为0,那么x a -是该多项式的一个因式.【例18】 分解因式:32252x x x ---【例19】 分解因式:43265332x x x x ++-- 分解因式:3292624x x x -+-附加:分解因式:()()32222121x a x a a x a a ++++-+-1.11待定系数法如果两个多项式恒等,则左右两边同类项的系数相等.即,如果12112112101210n n n n n n n n n n n n a x a x a x a x a b x b x b x b x b --------+++++=+++++那么n n a b =,11n n a b --=,…,11a b =,00a b =.【例20】 用待定系数法分解因式:51x x ++【例21】 421x x -+是否能分解成两个整系数的二次因式的乘积?练习:1、631x x +-能否分解为两个整系数的三次因式的积?1.12对称式与轮换式【例22】 分解因式:222()()()x y z y z x z x y -+-+-拓展:333()()()x y z y z x z x y -+-+-【例23】 分解因式:222222()()()xy x y yz y z zx z x -+-+-【例24】 分解因式:222()()()2a b c b a c c a b abc ++++++【例25】 ()()ab bc ac a b c abc ++++-附加题:1、444()x y x y +++ 附加2、5555()x y z x y z ++---。
因式分解的十二种方法

因式分解的十二种方法因式分解是一种将一个数或代数式分解成更简单的乘积的方法。
在数学中,有很多种因式分解的方法可以使用,根据不同的情况可以采用不同的方法,下面将介绍十二种常见的因式分解方法。
1.提取公因子法:当一个式子存在公因子时,可以先将公因子提取出来,然后再进行进一步的因式分解。
2. 公式法:利用公式进行因式分解,例如(a+b)^2=a^2+2ab+b^23.分组法:将一个多项式按照不同的组合方式进行分组,然后再分别进行因式分解,最后将得到的结果合并。
4.平方差公式法:对于一个二次型式,可以利用平方差公式进行因式分解,例如a^2-b^2=(a+b)(a-b)。
5. 完全平方公式法:对于一个完全平方式,可以通过完全平方公式进行因式分解,例如a^2+2ab+b^2=(a+b)^26. 二次因式法:对于一个二次多项式,可以通过二次因式法进行因式分解,例如ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为方程ax^2+bx+c=0的根。
7.和差立方公式法:对于一个和差立方的多项式,可以通过和差立方公式进行因式分解。
8. 因式分解的配方法:通过配方法进行因式分解,例如ab+ac=a(b+c)。
9.分解因式法:将一个多项式根据不同的性质进行因式分解,例如差平方分解、和的平方分解等。
10.二次根与一次根相结合法:对于一个多项式,通过将二次根与一次根相结合,得到更简单的因式分解结果。
11. 分组求积法:对于一个多项式,可以通过分组求积法进行因式分解,例如(a+b)(c+d)=ac+ad+bc+bd。
12.全等公式法:利用全等公式进行因式分解。
以上是常见的十二种因式分解方法。
不同的方法适用于不同的情况,需要根据具体的问题选择合适的方法进行因式分解。
因式分解是数学中的一个重要概念,通过因式分解可以简化计算过程,提高解题效率。
因此,掌握不同的因式分解方法对于提高数学能力和解决实际问题都有很大的帮助。
因式分解的方法与技巧

因式分解的方法与技巧一、巧拆项:在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。
例1、因式分解 32422+++-b a b a解析:根据多项式的特点,把3拆成4+(-1),则32422+++-b a b a =)12()44(14242222+--++=-+++-b b a a b a b a =)3)(1()1()2(22+-++=--+b a b a b a例2、因式分解 611623+++x x x解析:根据多项式的特点,把26x 拆成2242x x +;把x 11拆成x x 38+则611623+++x x x =)63()84()2(223+++++x x x x x=)3)(2)(1()34)(2()2(3)2(4)2(22+++=+++=+++++x x x x x x x x x x x 练习:x 3-9x+8 (-x-8x )(-1+9)(93-83)a 2+b 2+4a+2b+5a 2+b 2+4a+2b+3x 3-3x 2+4a 3+3a 2+3a+2二、巧添项:在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可谓方法独特,新颖别致。
例3、因式分解444y x +解析:根据多项式的特点,在444y x +中添上22224,4y x y x -两项,则444y x +=2222224224)2()2(4)44(xy y x y x y y x x -+=-++=)22)(22(2222y xy x y xy x +-++例4、因式分解 4323+-x x解析:根据多项式的特点,将23x -拆成224x x +-,再添上x x 4,4-两项,则4323+-x x =4444223+-++-x x x x x=)1)(44()44()44(222++-=+-++-x x x x x x x x=2)2)(1(-+x x练习:3x 3+7x 2-4 x 5+x+1x 3-9x+8(添加-x 2+x 2)(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ;(3)(x+1)4+(x 2-1)2+(x-1)4;(4)a 3b-ab 3+a 2+b 2+1.三、巧换元:在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单易于分解的多项式,会使问题化繁为简,迅捷获解。
因式分解的12种方法精讲

因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:L提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1.分解因式x3 -2x 2-xx,~x=x(x^_2x_ 1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2.分解因式a2 +4沥+4力2解:a2 +4ab+4b2 =(a+2b)23.分组分解法要把多项式am+cm+bm十bn分解因式,可以先把它前两项分成一组,并提出公因式。
,把它后两项分成一组,并提出公因式们从而得到ct(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2 +5n-mn-5m解:m2 +5n・mn・5m= m 2-5m-mn+5n =(m2 -5m )+(-mn+5n)4.十字相乘法对于mx2 ^px^-q形式的多项式,如果a^b=m, c^d=q且ac+bd=p,则多项式可因式分解为(ctx+d)(bx+c)例4.分解因式7x2 -19x-6分析:1 x7=7, 2x(-3)=-6 lx2+7x(.3)=・19解:7x2-19x-6=f7x+2;(x-3;5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5.分解因式+6x-40 解x2 +6x-40=x2 +6x+( 9) -(9 ) -40=(x+ 3)2 -(7 )2 =[(x+3)+7][(x+3) —7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6.分解因式bc(b^c)+ca(c-a)-ab(a+b)角学:bc(b+c)+ca(c-a)-ab(a^-b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)-^bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7 .换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解法的12种方法

因式分解法的12种方法一、公式因式分解法公式因式分解法是一种基于公式的因式分解方法。
通过运用一些常见的代数公式,将多项式进行因式分解。
例如,对于二次多项式a^2 + 2ab + b^2,可以利用平方差公式因式分解为(a + b)^2。
二、因式提取法因式提取法是一种通过提取多项式中的公因子来进行因式分解的方法。
通过寻找多项式中的最大公因子并将其提取出来,可以将多项式进行因式分解。
例如,对于多项式2x^2 + 4x,可以提取公因子2x,得到2x(x + 2)。
三、分组法分组法是一种将多项式中的项进行分组,并利用分组后的特点进行因式分解的方法。
通常是将多项式中的项进行适当的分组,然后利用分组后的项之间的关系进行因式分解。
例如,对于多项式x^3 + x^2 + x + 1,可以分组为(x^3 + x^2) + (x + 1),然后利用分组后的特点进行因式分解。
四、平方差公式平方差公式是一种通过平方差的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为两个平方差的形式。
例如,对于二次多项式x^2 - 4,可以利用平方差公式因式分解为(x + 2)(x - 2)。
五、差平方公式差平方公式是一种通过差平方的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为两个差平方的形式。
例如,对于二次多项式x^2 - 9,可以利用差平方公式因式分解为(x + 3)(x - 3)。
六、完全平方公式完全平方公式是一种通过完全平方的形式进行因式分解的方法。
该方法适用于一些特定的二次多项式,可以将其因式分解为完全平方的形式。
例如,对于二次多项式x^2 + 6x + 9,可以利用完全平方公式因式分解为(x + 3)^2。
七、三项立方和公式三项立方和公式是一种通过三项立方和的形式进行因式分解的方法。
该方法适用于一些特定的立方多项式,可以将其因式分解为三项立方和的形式。
例如,对于立方多项式x^3 + 3x^2 + 3x + 1,可以利用三项立方和公式因式分解为(x + 1)^3。
因式分解的十二种方法(已整理)

因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。