最新一元一次方程的基本概念及练习
一元一次方程全章知识点详细讲解与练习

知识点一:一元一次方程的相关概念例1.1.1:什么是方程?下列各式中,不属于方程的是( )A、2x+3-(x+2)=0B、3x+1-(4x-2)C、3x-1=4x+2D、x=7小结:具备(1)含有未知数;(2)是等式;两个条件的称为方程;变式训练1:判断下列各式是不是方程,是的打“√”,不是的打“x”。
(1)5x=0;(2)42÷6=7;(3)y2=4+y;(4)3m+2=1-m;(5)1+3x. (6)-2+5=3(7)3χ-1=7 (8)m=0(9)χ﹥ 3 (10)χ+y=8(11)2χ2-5χ+1=0 (12) 2a +b例1.1.2:什么是一元一次方程?在下列方程中:①2χ+1=3; ②y2-2y+1=0;③2a+b=3; ④2-6y=1;⑤2χ2+5=6;属于一元一次方程有_________。
小结:具备(1)有未知数,如x、y、a、b等(2)未知数只有一个;(3)未知数的指数是1次;(4)含有等号的等式;4个条件缺一不可变式训练1:方程3x m-2 + 5=0是一元一次方程,则代数4m-5=_____。
变式训练2:方程(a+6)x2 +3x-8=7是关于x的一元一次方程则a= _____。
例1.1.3:等式的性质下列说法中,正确的个数是( )①若mx=my,则mx-my=0 ②若mx=my,则x=y③若mx=my,则mx+my=2my④若x=y,则mx=myA.1B.2C.3D.4小结:(1)等式两边可以加上或减去同一个数;(2)等式两边可以乘以或除以同一个数,但是0除外;变式训练1:下列变形符合等式性质的是( )A.如果2x-3=7,那么2x=7-3B.如果3x-2=x+1,那么3x-x=1-2C.如果-2x=5,那么x=5+2D.如果-13x=1,那么x=-31.变式训练2:如果x+y=0,则x=_____,根据_________________.例1.1.4:什么叫解方程已知320x+=,则43x-=小结:解方程即时利用等式性质求出x=?的过程变式训练1:若2|1|(2)0a b-+-=,则方程1ax b-=的解为__________。
一元一次方程的基本概念及练习

一元一次方程的基本概念及练习等式的概念:用“="来表示相等关系的式子,叫做等式。
观察下面的式子,哪些是等式?哪些不是?①m +n =n +m ②x +2x ③3×3+1=2×5 ④3x +1〉5y ⑤2+3=5+4方程的概念:含有未知数的等式叫做方程。
要点:1、含有未知数;2、是等式。
这是判断一个式子是不是方程的两个必要条件,缺一不可。
判断下列各式是不是方程:(1)5x —9=2x (2)x y 322=- (3)1152+x(4)-1—1=—2 (5)4x -2=-x (6)125=-x x 方程的解的概念:能使方程两边的值相等的未知数的值,叫做方程的解.例如,在方程5x -9=2x 中,当x =3时,方程左边=5×3—9=6,方程右边=2×3=6,左边=右边,所以x =3是方程5x —9=2x 的解。
当x =2时,左边=5×2-9=1,右边=2×2=4,左边≠右边,所以x =2不是方程5x -9=2x 的解。
解方程的概念:求方程的解的过程,叫做解方程。
例1:已知2是关于x 的方程x +a =4的解,求a 的值。
解:因为2是关于x 的方程x +a =4的解,所以2+a =4,所以a =2例2:求方程x +2=3的解解:移项得x =3—2,所以x =1上面这个过程,就叫做解方程。
一元一次方程的概念:只含有一个未知数,并且含有未知数的项的次数都是一次,这样的方程叫做一元一次方程。
方程中的未知数叫做“元”。
只有一个未知数→“一元",所有含未知数的项都是一次→“一次” 一元一次要点:(1)一元一次方程的标准形式是ax+b=0,期中x 是未知数,a 、b 是已知数,且a ≠0;(2)一元一次方程必须满足三个条件:一是只含有一个未知数,二是未知数的次数是1次,三是未知数的系数不为0.例3:031=+-m x 是关于x 的一元一次方程,求m 的值。
初中数学《一元一次方程》知识梳理+练习题讲解

一元一次方程知识梳理和练习题讲解【知识梳理】1、方程的概念方程含有未知数的等式叫做方程重点解读(1)方程含有两个要素,一是含有未知数,二是必须是等式,二者缺一不可;(2)方程一定是等式,但等式不一定是方程;(3)方程中含有的未知数个数不限.2、一元一次方程的概念定义只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程,它的一般形式是()00ax b a +=≠重点解读3、方程的解与解方程定义实质方程的解使方程等号左右两边相等的未知数的值叫做方程的解具体数值解方程求方程解的过程叫做解方程变形过程4、等式的性质语言叙述字母表示等式性质1等式两边加(或减)同一个数(或式子),结果仍相等如果ba=,那么cbca±=±等式性质2等式两边乘同一个数,或除以一个不为0的数,结果仍相等如果ba=,那么bcac=;如果ba=,那么()0≠=ccbca重点解读(1)注意等式左右两边同时加、减、乘或除以不能遗漏任一边,并且同时加、减、乘或除以的数必须是同一个数;(2)等式的两边除以一个数或整式时,这个数或整式不能为0;(3)等式还有以下性质:①如果ba=,cb=,那么ca=;②如果ba=,那么ab=5、解一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
变形名称依据具体做法注意事项去分母等式的性质2在等号两边都乘各分母的最小公倍数(1)不要漏乘不含分母的项;(2)若分子是一个多项式,需加上括号去括号乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项;(2)不要弄错符号移项移项法则把含有未知数的项移动到方程的一边,其他的项移动到方程的另一边(1)移项要变号;(2)不要丢项合并同类项合并同类项法则把方程化为()0≠=abax的形式(1)字母及其指数不变,系数相加;(2)不要漏项系数化为1等式的性质2在方程()0≠=abax的两边都除以未知数的系数a,得到方程的解abx=切忌分子、分母位置颠倒6、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
一元一次方程知识点及经典例题

一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:1)只含有一个未知数;2)未知数的次数是1次;3)整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(且c≠0),那么a/c=b/c。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤:1.变形步骤具体方法变形根据注意事项1.不能漏乘不含分母的项;去分母公倍数2.掉分母后,如果分子是多项式,则要加括号2.合并同类项1.分配律应满足分配到每一项去先去小括号,再乘法分配律、去括号2.注意符号,特别是去掉括号3.移项要变号;一般把含有未知数的项移动到方程左边,其余项移到右边4.合并同类项时,把同类项的同系数相加,字母与字母的指数不变5.未知数的系数a,成“ax=b”的形式6.方程两边同除以未知数的系数a,分子、分母不能颠倒。
七年级一元一次方程知识要点及典型例题

七年级一元一次方程知识要点及典型例题研究好资料,欢迎下载!一元一次方程知识要点梳理及典型例题1.一元一次方程及解的概念方程是含有未知数的等式。
而一元一次方程是一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0.下列方程是一元一次方程的是:A。
x+y=1 B。
x+5x= C。
3x+7=16 D。
2-1/2=3/2x2.等式的基本性质等式的基本性质有以下两个:1)若x=y,则x+5=y+5.2)若xy=,则x=y。
若2x+1=8,则4x+2=14.3.分数的基本性质例如方程x-3x+4/(0.5-0.2x)=1.6,将其化为的形式为4x+2.1/1.5-0.2x=+0.6/0.03.4.判定是不是一元一次方程1、如果单项式-1/n+12ab与3a2n-1bm是同类项,则n=2,m=1.2、如果代数式3x-5与1-2x的值互为相反数,那么x=2/5.3、若方程3x-5=4x+1与3m-5=4(m+x)-2m的解相同,则m=2.4.关于x的方程mx+2m-3=x+1的解是x=2,那么m=1/2.5.关于x的方程(m+2)/(m-3)+m-3=1是一个一元一次方程,则m=2.6.关于x的方程3x=9与x+4=k的解相同,则代数式2x-k-3的值为0.7.当x=-1/2时,代数式(1-x)/(1+x)与1/3的值相等。
8.当2x-kx-3k-1=0的解是x=-1时,k的值是-2.9.若关于x的一元一次方程(3x+2)/(x-1)=(2x+1)/(x+3)的解为x=4,则x=4是该方程的唯一解。
10.已知方程2x-3=4x+1的解与方程4-3x=2(x+1)的解相同,则x=-2.11.已知方程2x-3=3(x+m)的解满足x-1=m/3,则m=-6.12.已知当a=1,b=-2时,代数式ab+bc+ca=10,则c的值为4.13.已知y+my=2,当m=4时,y的值为1/3.15.已知方程2x-3mx+2m=8中x=-2是方程的解,求m的值。
一元一次方程所有知识点

一元一次方程所有知识点一、一元一次方程的概念。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。
- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。
二、一元一次方程的解法。
1. 移项。
- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
2. 合并同类项。
- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。
- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。
3. 系数化为1。
- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。
- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。
三、一元一次方程的应用。
1. 行程问题。
- 基本公式:路程=速度×时间。
- 相遇问题:两者路程之和等于总路程。
例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。
- 追及问题:两者路程之差等于初始距离。
例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。
一元一次方程的解法(去括号)

2. 方程
$-5(x - 1) + 2 = 0$,求 解$x$的值。
3. 方程
$7 - 3(x + 1) = -5$,求 解$x$的值。
综合练习题
1. 方程
$-2(x - 1) + 3(x + 2) = x + 7$, 求解$x$的值。
2. 方程
$-3(x - 2) + 4(x + 1) = x + 5$, 求解$x$的值。
是多少。
04 练习与巩固
基础练习题
01
02
03
1. 方程
$-2x + 5 = 3$,求解$x$ 的值。
2. 方程
$3(x - 2) = 1$,求解$x$ 的值。
3. 方程
$-4(x + 1) = -2$,求解 $x$的值。
提升练习题
1. 方程
$2(x - 3) - 5 = 4$,求解 $x$的值。
3. 方程
$-4(x - 3) + 2(x - 1) = -6$,求解 $x$的值。
THANKSห้องสมุดไป่ตู้FOR WATCHING
感谢您的观看
一元一次方程的解的概念
01
解:满足一元一次方程的未知数 的值。
02
解一元一次方程,就是求出一元 一次方程的解。
02 去括号的解法
括号前是“+”号的情况
总结词
直接去掉括号,符号不变
详细描述
当括号前是“+”号时,直接去掉括号,括号内的各项符号保持不变。例如,方程 (3 + (x - 5) = 2) 可以化简为 (3 + x - 5 = 2)。
03 实际应用举例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的基本概念及练习 1
等式的概念: 2
用“=”来表示相等关系的式子,叫做等式。
3
观察下面的式子,哪些是等式?哪些不是? 4
①m +n =n +m ②x +2x ③3×3+1=2×5 ④3x +1>5y ⑤2+3=5+4 5
方程的概念: 6
含有未知数的等式叫做方程。
7
要点:1、含有未知数;2、是等式。
这是判断一个式子是不是方程的两个必要条件,缺一不可。
8
判断下列各式是不是方程: 9
(1)5x -9=2x (2)x y 322=- (3)1152+x
10 (4)-1-1=-2 (5)4x -2=-x (6)125=-x x 11
方程的解的概念: 12
能使方程两边的值相等的未知数的值,叫做方程的解。
13
例如,在方程5x -9=2x 中,当x =3时,方程左边=5×3-9=6,方程右边=2×3=6,左边=右边,所14
以x =3是方程5x -9=2x 的解。
15
当x =2时,左边=5×2-9=1,右边=2×2=4,左边≠右边,所以x =2不是方程5x -9=2x 的解。
16
解方程的概念: 17
求方程的解的过程,叫做解方程。
18
例1:已知2是关于x 的方程x +a =4的解,求a 的值。
19
解:因为2是关于x 的方程x +a =4的解,所以2+a =4,所以a =2 20
例2:求方程x +2=3的解 21
解:移项得x =3-2,所以x =1 22
上面这个过程,就叫做解方程。
23
一元一次方程的概念: 24
只含有一个未知数,并且含有未知数的项的次数都是一次,这样的方程叫做一元一次方程。
25
方程中的未知数叫做“元”。
26
只有一个未知数→“一元”,所有含未知数的项都是一次→“一次” 一元一次 27
要点:(1)一元一次方程的标准形式是ax+b=0,期中x 是未知数,a 、b 是已知数,且a ≠0; 28
(2)一元一次方程必须满足三个条件:一是只含有一个未知数,二是未知数的次数是1次,三29
是未知数的系数不为0.
30 例3:031=+-m x 是关于x 的一元一次方程,求m 的值。
31 解:11=-m ,m -1=±1,所以m =2或m =0
32 例4:031=+-m mx 是关于x 的一元一次方程,求m 的值。
33 解:11=-m ,m -1=±1,所以m =2或m =0,但由于m 是未知数的系数,所以m 不能为0,所以34
m =2。
35
练习: 36
1、勾选出下列各题中的一元一次方程 37
(1)A 、x 2-4x =3 B 、x =0 C 、x +2y =1 D 、x
x 11=- 38
(2)A 、322=+x B 、342
13=+-x C 、y 2+3y =0 D 、9x -y =2 39 (3)A 、3x +2y =5 B 、y 2-6y +5=0 C 、x x 1331=- D 、3x -2=4x -7 40
(4)A 、x -3 B 、x 2-1=0 C 、2x -3=0 D 、x -y =3 41
(5)A 、211=-x B 、x 2-1=0 C 、2x -y =3 D 、2
13=-x 42 2、若方程61312=+-m x 是关于x 的一元一次方程,则m 的值是 。
43 3、已知等式0352=++m x 是关于x 的一元一次方程,则m = 。
44 4、已知方程53)2(1-=+--m x m m 是关于x 的一元一次方程,则m = 。
45 5、关于x 的方程12)2(1=-+-a x a 是一元一次方程,则a = 。
46
6、若方程05334=+-n x 是一元一次方程,则n = 。
47 7、已知0421=+-m x 是一元一次方程,则m = 。
48 8、若0241=--m x 是一元一次方程,则m = 。
49 9、已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,求代数式199(m +x )(x -2m )+m 50 的值。
51 10、若关于x 的方程3(x -1)+a =b (x +1)是一元一次方程,则( )
52 A 、a 、b 为任意有理数 B 、a ≠0 C 、b ≠0 D 、b ≠3
53 11、在下列方程中,解是2的方程是( )
54 A 、3x =x +3 B 、-x +3=0 C 、2x =6 D 、5x -2=8
55 2、下列方程中,解是x =2的是( ) 56
A 、2x =4
B 、421=x
C 、4x =2
D 、241=x 57
12、如果x =-2是方程2x +m -4=0的解,那么m 的值为( ) 58
A 、-8
B 、0
C 、2
D 、8 59
13、已知x =2是关于x 的方程3x +a =0的解,则a 的值是( ) 60
A 、-6
B 、-3
C 、-4
D 、-5 61
14、若x =2是方程9-2x =ax -3的解,则a = 。
62
15、43=x 是方程3x 2)(x =+k 的解,那么k = 。
63
16、已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是 。
64
17、当m = 时,方程032=-+-m x m 是一元一次方程,这个方程的解是 。
65
18、若方程x mx x m =+--8)1(22是关于x 的一元一次方程,求代数式12018--m m 的值。
66
67
68
69
19、已知关于x 的方程ax +b =c 的解为x =2,求62---b a c 的值。
70
71
72
20、若关于x 的方程02)1(2=+-m x m 是一元一次方程,求m 的值,并求出方程的解。
73
74
75
76
21、已知当x =5时,代数式x 2+mx -10的值为0,求当x =3时,x 2+mx -10的值。
77
78
79
80
22、方程x x b 142135-=-的解是21=x ,求关于y 的方程by +2=0的解。
81
82。