磁性纳米粒子的制备与应用.

合集下载

纳米粒子的制备方法

纳米粒子的制备方法

纳米粒子的制备方法1 物理方法物理方法是制备纳米粒子的典型方法,其中蒸发凝聚法和机械粉碎发是两种较早期及常用的方法。

1.1 蒸发凝聚法蒸发凝聚法是一种早期的制备纳米粒子的物理方法。

它是在高真空条件下,将金属原料加热、蒸发,使之成为原子或分子,再凝聚生成纳米粒子。

蒸发凝聚过程一般不伴有燃烧之类的化学反应,是纯粹的物理过程。

其原料的蒸发方式包括等离子体蒸发、激光束加热蒸发、电阻蒸发、电弧放电加热蒸发、电子束加热蒸发、高频感应电流加热蒸发、太阳炉加热蒸发等。

蒸发法所得产品的粒径一般为5~100nm,再经过真空蒸馏、浓缩,可以在短时间内制得平均粒径为3nm的粒子。

蒸发凝聚法的主要特点是制备的纳米粒子纯度高、粒度分布窄、结晶性好、表面清洁、粒度易于控制等。

1.2 机械粉碎法机械粉碎是指在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。

常见的基本粉碎方式包括剪碎、压碎、冲击粉碎和磨碎。

一般的粉碎作用力都是几种粉碎力的组合。

理论上,固体粉碎的最小粒径可达10~50 nm。

然而目前的机械粉碎设备与制作工艺很难达到这一理想值。

粉碎极限受物料种类、粉碎方法、粉碎工艺条件、机械应力施加方式、粉碎环境等因素的影响。

机械粉碎也用于纳米粒子制备过程,比较典型的纳米粉碎技术有:气流磨、搅拌磨、振动磨、球磨和胶体磨等。

其中,气流磨是利用高速气流或热蒸气的能量使粒子相互冲击、碰撞、摩擦从而被较快的粉碎。

气流磨的技术发展较为迅速,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可将较高硬度的物料粒子粉碎,产品粒度达到了1~5 μm。

降低入磨物的粒度后,可以得到平均粒度1μm的产品,也就是说,产品的粒径下限可达到100 nm以下。

除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。

因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域具有广阔的应用前景[2-4]。

Magneticnanoparticles磁性纳米粒子

Magneticnanoparticles磁性纳米粒子

Magneticnanoparticles磁性纳米粒子磁性纳米粒子(Magnetic Nanoparticles)是一种具有特殊物理和化学性质的纳米材料,具有广泛的应用前景。

本文将介绍磁性纳米粒子的制备方法、表征手段以及在生物医学、环境治理和能源等领域的应用。

1. 制备方法磁性纳米粒子的制备方法多种多样,常见的包括物理合成、化学合成和生物合成等。

物理合成方法包括热分解、溶胶-凝胶法和磁控溅射等,可以通过调节反应条件来控制粒子的尺寸和形貌。

化学合成方法主要通过溶液反应来合成纳米粒子,常见的包括共沉淀法、热分解法和水热法等。

生物合成方法则利用生物体内的酶、植物提取物等来合成纳米粒子,具有环境友好性和可再生性。

2. 表征手段对磁性纳米粒子的表征主要包括形貌结构、晶体结构、磁性能和表面性质等方面。

形貌结构可以通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)等观察到,可以了解粒子的形态、尺寸和分布情况。

晶体结构常常通过X射线衍射(XRD)来进行分析,可以确定晶体相和晶格参数。

磁性能可以通过振动样品磁强计(VSM)等仪器来测试,可以获得粒子的矫顽力、饱和磁化强度和磁导率等参数。

表面性质则常常通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等技术来研究,可以了解粒子表面的化学组成和功能基团等信息。

3. 生物医学应用磁性纳米粒子在生物医学领域具有广泛的应用前景。

一方面,磁性纳米粒子可以作为纳米载体,用于药物传递和基因传递等方面。

通过表面修饰可以增加纳米粒子与生物体内靶标的亲和性,实现靶向输送药物和基因,提高药物的疗效和减少副作用。

另一方面,磁性纳米粒子还可用于磁共振成像(MRI)和磁热疗法等诊断和治疗方面。

通过控制纳米粒子的磁性能和形貌,可以实现对肿瘤等异常组织的定位和治疗。

4. 环境治理应用磁性纳米粒子还可以在环境治理领域发挥重要作用。

一方面,磁性纳米粒子可以用于水处理和废水处理等方面。

通过表面修饰可以增加纳米粒子与污染物的亲和性,实现对重金属离子和有机污染物的吸附和去除。

纳米磁性材料ppt课件

纳米磁性材料ppt课件

3. 1988年,法国巴黎大学教授研究组首先在Fe/Cr纳米结构的多 层膜中发现了巨磁电阻效应,引起国际上的反响。此后,美国、 日本和西欧都对发展巨磁电阻材料及其在高技术中的应用投入很 大的力量,兴起纳米磁性材料的开发应用热。1988年,由非晶态 FeSiB退火通过掺杂Cu和Nb控制晶粒,获得了新型的纳米晶软磁材 料; 4. 1988年,人们发现了磁性多层膜的巨磁电阻效应,并由此产生 一门新兴学科:自旋电子学。 5. 1993年,人们通过理论研究发现,纳米级的软磁和硬磁颗粒复 合将综合软磁Ms高,硬磁Hc高的优点获得磁能积比现有最好NdFeB 高一倍的新型纳米硬磁材料。 6. 进人21世纪以来,利用模板生长一维磁性纳米丝的研究很活跃, 材料包括单一金属、合金、化合物、多层材料、复合材料等,应 用目标也从存储介质到细胞分离,多种多样。
(4)生成磁性液体的必要条件 生成磁性液体的必要条件是强磁性颗粒要足够小,
在致可以削弱磁偶极矩之间的静磁作用,能在基液中作无 规则的热运动。基液包括:水基、煤油基、短基、二醋基、 聚苯基、硅油基、氟碳基等。
(5)磁性液体的特点
在磁场作用下可以被磁化,可以在磁场作用下运动, 但同时它又是液体,具有液体的流动性。
二、纳米磁性材料的定义
纳米磁性材料是指材料尺寸限度 Nano Material
在纳米级,通常在1-100nm的准
0D
零维超细微粉,一维超细纤维
(丝)或二维超薄膜或由它们组
成的固态或液态磁性材料。当传
1D
统固体材料经过科技手段被细化
到纳米级时,其表面和量子隧道

4、 磁性液体
(1)磁性液体的定义 磁性液体是由纳米磁性微粒包复一层长链的有机表
面活性剂,高度弥散于一定基液中,而构成稳定的具有 磁性的液体。其中磁性微粒尺寸通常小于10nm,呈超顺 磁性。

强磁性Ni掺杂Fe3O4纳米磁粉的制备及性能研究

强磁性Ni掺杂Fe3O4纳米磁粉的制备及性能研究

一 3 旦 誊
窘 三
图3 掺杂纳米磁粉的红外吸收图
舸p拳煎放 ·,■um●■‘■“^t■a■I“m研
2005年(第四届)中田纳米科技西安研讨会论文集
Nano∞ienee&髓曲肭蛔r 2,11115 the 4蛆Chinese SYml砌aUm Oll
2.3掺杂纳米磁粉的透射电子显徽镜(TEM)测试 从掺杂Fe304纳米磁粉的透射电镜照片可以看出,掺杂Fe30。纳米粒子的粒径基本上在20nm左右,与由谢乐公
嬲the20惦年(第四届)中田纳米科技西安研讨会论文集 4恤Chln雠¥ymimattm on N*n懈elenee&Teehnology
薯墨圈_蕾皇曩焉圈_置冒冒——_置墨—墨_薯瞄囊_—一1 1"
li
强磁性Ni掺杂Fe304纳米磁粉的制备及性能研究
王芸1 马季玫1’2沈新元1 (1.东华大学材料科学与工程学院,东华大学纤维材料改性国家重点实验室,上海200051)
神、铀眷煎放 —,^■N■j‘I●“■t■,■■∞研
21105年(第四届)中田纳米科技西善£研讨会}论文jI

2005 the 4'k Chinese Symposium on Nauoscience&Tecimology
NiCl2·6H:O
Fe3+
2+
Fe
图1掺杂磁流体的制备流程图 1.3试剂及仪器
·286·一
厂/一一
.f

萼£a)一loq叮蠲叠0霉‘ -、|
. 一—一//
州icfield(G) 3500 ua000-2500-2'00_3·1500 1000—500

3∞加∞15∞2000 2500珊Ⅺ3500
图5掺杂纳米磁粉的饱和磁化曲线

Fe3O4磁性纳米材料的制备、粒径调控及表征

Fe3O4磁性纳米材料的制备、粒径调控及表征

2019年3月西部皮革化工与材料1㊀Fe3O4磁性纳米材料的制备㊁粒径调控及表征王宝玲ꎬ胡忠苇ꎬ田晴晴ꎬ陈余盛基金项目:国家级大学生创新创业训练计划项目(201710452011)作者简介:王宝玲(1997.11-)ꎬ女ꎬ汉族ꎬ山东省潍坊人ꎬ本科学生ꎬ临沂大学化学化工学院应用化学专业ꎬ研究方向:磁性纳米材料ꎮ(临沂大学ꎬ山东临沂276000)摘㊀要:本文以三氯化铁为铁源㊁醋酸钠为沉淀剂㊁柠檬酸钠为稳定剂㊁乙二醇为反应溶剂ꎬ通过溶剂热法制备磁性四氧化三铁纳米材料ꎮ透射电子显微镜(TEM)㊁X射线衍射仪(XRD)用于表征纳米材料的尺寸㊁结构及形貌ꎮ通过改变反应中柠檬酸钠㊁醋酸钠的用量ꎬ制备得到一系列粒径可控的四氧化三铁纳米材料ꎮ关键词:四氧化三铁ꎻ磁性ꎻ溶剂热法ꎻ表征中图分类号:TQ139.2㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-1602(2019)06-0001-011㊀前言四氧化三铁(Fe3O4)纳米材料具有优良的磁学性能ꎬ在磁共振成像㊁磁热疗㊁靶向载药等领域具有广泛的应用前景ꎮ[1]磁共振成像(MRI)可以对内脏器官和软组织无损伤快速检测ꎬ是目前恶性肿瘤最为有效的临床诊断方法之一ꎮ[2]Fe3O4在MRI检测中表现出负增强效果而广泛地用作磁共振成像造影剂ꎮ[2]Fe3O4磁共振成像检测效果与纳米材料的尺寸㊁分散性等密切相关ꎮ合成具有良好分散性㊁尺寸可控的四氧化三铁纳米材料对其应用具有重要的研究意义ꎮ目前ꎬ人们开发了大量的合成方法包括共沉淀法㊁微乳液发㊁溶剂热法等制备Fe3O4磁性纳米材料ꎮ[3-5]李亚栋课题组最早报道了通过溶剂热法制备磁性纳米材料的方法ꎬ他们以FeCl3为铁源㊁乙二醇为溶剂㊁聚乙二醇㊁醋酸钠为稳定剂合成出磁性纳米材料ꎮ[4]本文以改进的溶剂热法制备磁性Fe3O4纳米材料ꎬTEM㊁XRD用于表征纳米材料的尺寸㊁结构及形貌ꎮ通过改变反应中柠檬酸钠㊁醋酸钠的用量ꎬ制备得到一系列粒径可控的四氧化三铁纳米材料ꎮ2㊀实验部分2.1㊀药品试剂六水三氯化铁(分析纯)㊁无水醋酸钠(分析纯)㊁柠檬酸钠(分析纯)㊁乙二醇(分析纯)㊁乙醇(分析纯)购于国药集团化学试剂有限公司ꎮ2.2㊀测试仪器透射电子显微镜(JEM2100ꎬJEOL)ꎬX射线衍射仪(BrukerD8XRD).2.3㊀实验步骤称取0.65g六水三氯化铁加入锥形瓶ꎬ加入20ml乙二醇ꎬ超声溶解ꎬ依次加入1.2g无水乙酸钠㊁0.1g柠檬酸钠ꎬ搅拌30分钟ꎮ将混合液转移到反应釜中ꎬ200ħ下反应10小时ꎮ反应结束后ꎬ产物纯化干燥备用ꎮ3㊀结果与讨论我们通过TEM对制备的Fe3O4进行表征ꎮ从TEM照片可以看出制备的Fe3O4为球形结构的ꎬ平均粒径为255nmꎮ制备得到Fe3O4的纳米材料XRD图ꎬ出现的衍射峰位与JCPDS中Fe3O4衍射峰位相一致ꎬ说明制备得到磁性纳米粒子是反尖晶石型的Fe3O4ꎮ[4]在实验中ꎬ其于条件不变改变柠檬酸钠的量制备Fe3O4ꎮ当柠檬酸钠的量为0.3g时ꎬ纳米材料平均尺寸为188nmꎬ当柠檬酸钠的量为0.5g时ꎬ纳米材料平均尺寸为145nmꎮ柠檬酸钠为零时ꎬFe3O4粒径为310nmꎮ柠檬酸钠对控制粒径尺寸起到重要的作用ꎬ增加柠檬酸钠可以有效降低Fe3O4的粒径尺寸ꎮ醋酸钠对制备Fe3O4起到决定的作用ꎮ在没有醋酸钠存在的条件下ꎬ无法形成Fe3O4纳米粒子ꎬ在加入醋酸钠的条件下可以形成磁性四氧化三铁纳米粒子ꎮ醋酸钠的加入量对粒径有一定影响ꎬ0.6g醋酸钠条件下制备的Fe3O4平均粒径320nmꎬ2.4g醋酸钠条件下制备的Fe3O4平均粒径290nm.4㊀结论本文以三氯化铁为铁源㊁醋酸钠为沉淀剂㊁柠檬酸钠为稳定剂㊁乙二醇为反应溶剂ꎬ通过溶剂热法制备磁性Fe3O4纳米材料ꎬ通过改变反应中柠檬酸钠㊁醋酸钠的用量ꎬ制备得到一系列粒径可控的Fe3O4纳米材料ꎮTEM㊁XRD用于表征纳米材料的结构及形貌ꎮ本文为磁性纳米材料的制备与应用提供良好的实验参考ꎮ参考文献:[1]㊀LuA.-H.SalabasE.L.SchüthF.MagneticNanoparticles:SynthesisꎬProtectionꎬFunctionalizationꎬandApplication[J].Angew.Chem.Int.Ed.2007ꎬ46ꎬ1222.[2]㊀QiaoR.YangC.GaoM.SuperparamagneticIronOxideNanop ̄articles:fromPreparationstoinVivoMRIApplications[J].J.Mater.Chem.2009ꎬ19ꎬ6274.[3]㊀JeongU.TengX.WangY.YangH.XiaY.Superparamag ̄neticColloids:ControlledSynthesisandNicheApplications[J].Adv.Mater.2007ꎬ19ꎬ33.[4]㊀DengH.LiX.PengQ.WangX.ChenJ.LiY.Monodisper ̄semagneticsingle-crystalferritemicrospheres[J].Angew.Chem.Int.Ed.2005ꎬ44ꎬ2782.。

磁性Fe3O4纳米粒子的制备及其表面修饰研究[开题报告]

磁性Fe3O4纳米粒子的制备及其表面修饰研究[开题报告]

毕业论文开题报告环境工程磁性Fe3O4纳米粒子的制备及其表面修饰研究一、选题的背景、意义随着人类文明的不断进步和科学技术的飞速发展,特别是能源开发、空间技术、电子技术、激光技术、光电子技术、传感技术等高新技术领域的高速发展,元器件的小型化、智能化、高集成、高密度存储和超快传输等对材料提出了新的需求[1]。

再者随着中国工业经济的飞速发展,现有的传统材料己经难以满足其需求,开发、利用高性能材料和新功能材料己经成为共识。

纳米材料就应运而生,由于纳米材料的界面组元所占比例大,纳米颗粒表面原子比例高,与通常的多晶材料或者微粉完全不同,其表现出高的表面效应、体积效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,派生出传统固体材料所不具备的许多特殊性质[2-4]。

纳米科学技术的快速发展,让磁性纳米材料得到了长足的发展。

近年来的磁性材料,在非晶态、稀土永磁化合物、超磁致伸缩、巨磁电阻等新材料相继发现的同时,由于组织的微细化、晶体学方位的控制、薄膜化、超晶格等新技术的开发,其特性显著提高。

这些不仅对电子、信息产品等特性的飞跃提高作出了重大贡献,而且成为新产品开发的原动力。

目前,磁性纳米材料已成为支持并促进社会发展的关键材料。

而磁性Fe304纳米粒子是纳米材料中一类新颖的功能材料,四氧化三铁的化学稳定性好,原料易得,价格便宜,广泛用于涂料、油墨等领域[5-7]。

四氧化三铁纳米粒子的磁性比大块本体材料的强许多倍,当四氧化三铁纳米粒子的粒径d<16nm,具有超顺磁性。

磁性四氧化三铁纳米粒子磁性能好,用于优质磁记录材料的制备,同时是制备α-Fe203等重要磁记录材料的中间体,还可作为微波吸收材料及催化剂。

近年来,四氧化三铁纳米粒子具有良好的磁性,在生物医学方面表现出潜在的广泛用途,如磁性四氧化三铁纳米粒子可作为药物的主要载体进行靶向给药,也可用于细胞及DNA的分离等,成为倍受关注的研究热点。

表面化学修饰法是指通过纳米表面与改性剂之间进行化学反应,改变纳米微粒的表面结构和状态,以达到表面改性的目的。

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用贾警(11081002) 蒙小飞(11091001)1引言自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。

铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。

引起了世界各国科学家的浓厚兴趣。

几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。

纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。

颗粒直径一般为1~100nm之间。

颗粒可以是晶体,亦可以是非晶体。

由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。

2纳米材料的制备方法纳米材料有很多制备方法,在此只简要介绍其中几种。

2.1溶胶-凝胶法溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。

溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。

2.2热合成法热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。

主要集中在陶瓷氧化物材料的制备中。

2.3有机液相合成有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。

通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。

最常用的反应方式就是在有机溶剂中进行回流制备。

2.4惰性气体冷凝法惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。

其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。

磁性纳米材料的合成与特性分析

磁性纳米材料的合成与特性分析

磁性纳米材料的合成与特性分析在当今的科学研究领域中,磁性纳米材料因其独特的物理和化学性质,成为了材料科学中的一个热门研究方向。

磁性纳米材料具有超顺磁性、高矫顽力、低居里温度等特性,在生物医学、电子信息、环境保护等众多领域都展现出了广阔的应用前景。

本文将重点探讨磁性纳米材料的合成方法以及对其特性的分析。

一、磁性纳米材料的合成方法1、化学共沉淀法化学共沉淀法是制备磁性纳米材料最常用的方法之一。

其基本原理是将含有二价和三价铁离子的盐溶液在一定条件下混合,通过加入碱液使金属离子沉淀,经过一系列的处理得到磁性纳米粒子。

这种方法操作简单、成本低,但所制备的纳米粒子尺寸分布较宽,且容易团聚。

2、水热合成法水热合成法是在高温高压的水热条件下,使反应物在水溶液中进行反应生成纳米材料。

该方法可以有效地控制纳米粒子的尺寸和形貌,所制备的磁性纳米粒子结晶度高、分散性好,但反应条件较为苛刻,对设备要求较高。

3、热分解法热分解法通常是在高沸点有机溶剂中,将金属有机前驱体在高温下分解,得到磁性纳米粒子。

这种方法能够制备出尺寸均匀、单分散性好的纳米粒子,但所用的前驱体往往较为昂贵,且反应过程中需要严格控制温度和气氛。

4、微乳液法微乳液法是利用微乳液体系中的微小“水池”作为反应场所,控制纳米粒子的成核和生长。

该方法可以制备出粒径小且分布均匀的磁性纳米粒子,但微乳液的制备和后续处理较为复杂。

二、磁性纳米材料的特性1、磁学特性磁性纳米材料的磁学特性是其最重要的性质之一。

当纳米粒子的尺寸小于一定值时,会出现超顺磁性现象,即在没有外加磁场时,纳米粒子的磁性消失,而在外加磁场作用下,表现出较强的磁性。

此外,磁性纳米材料的矫顽力、饱和磁化强度等参数也会随着粒子尺寸、形状和晶体结构的变化而改变。

2、表面特性由于纳米粒子的比表面积大,表面原子所占比例高,因此表面特性对磁性纳米材料的性能有着重要影响。

表面活性剂的修饰可以改善纳米粒子的分散性和稳定性,同时也可以赋予其特定的功能,如生物相容性、靶向性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性纳米粒子的制备与应用孙超(上海大学环境与化工工程学院,上海200444)摘要:磁性纳米材料(magnetic nanoparticle)是由Fe,Co,Ni等过渡金属及其氧化物组成的打下尺度介于1~100nm间的一种新型功能材料,磁性纳米材料具有磁性特征,还具有纳米材料的独特效应和生物亲和性,因而成为目前生物医学研究的热点之一。

本文简要介绍了磁性纳米颗粒的制备方法,和目前磁性纳米颗粒在医用载药方面的研究进展。

关键词:磁性纳米材料;氧化铁;载药Preparation and Application of Magnetic NanoparticlesSunchao(School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China) Abstract: Magnetic nanoparticles are a kind of magnetic material with diameter of l~1 00nm,which are made of transition metal and their oxide such as Fe、Co、Ni and so on.They are new type of functional materials with characterization of special effect,magnetic responsibility and bioaffinity,and have been one of hot spots in recent biomedicine research.This paper introduces the preparation of magnetic nanoparticles and some recent studies about drug loading of magnetic nanoparticles in medicine。

Key words: Magnetic nanoparticles;Iron oxide;Drug loading1.引言磁性纳米材料作为一种新型的功能材料,因其同时兼具纳米材料的独特效应、磁响应性和生物亲和性等,近年来被广泛研究,特别是在生物医学、生物工程等领域的应用引起了各国研究者的高度重视,成为生物医药研究领域中的一个研究热点(如图1)。

图1 磁性纳米颗粒示意图磁性纳米材料是大小尺度在1~100nm的磁性材料,如Fe3O4,Nd2Fe14B/a-Fe,CoPt3等[1-3],其中最具有广泛应用前景的磁性纳米材料为铁氧体纳米材料。

铁氧体是由铁和其他一种或多种金属组成的复合氧化物。

一般可分为永磁铁氧体、软磁铁氧体和旋磁铁氧体三种。

如尖晶石型铁氧体的化学分子式为MeFe2O4,其中Me为离子半径与二价铁离子相近的二价金属离子(Mn2+,Zn2+,Co2+)等[4],随着替代金属种类和数量不同,可以有多种不同组成的复合物,这些磁性纳米材料最突出的性质就是此特性,当磁性颗粒粒径变小时,磁性颗粒会丧失大块材料的铁磁性或亚铁磁性,表现为顺磁性,在外加磁场的作用下产生的磁矩与外加磁场一致,进而受到外加磁场的吸引。

粒径的改变也导致矫顽力的显著变化,当颗粒尺寸减小到20nm以下时,其矫顽力可增加1000倍,若进一步减小到6nm时,其矫顽力反而降低到零,没有剩磁,在一定温度范围内呈现出超顺磁性,这时磁相互作用很弱。

在交变磁场中还存在磁导率频散,磁粘滞性,磁损耗而发热等现象。

这些性质使得在生物医药方面有很宽的应用范围。

在最近几年,在磁性纳米粒子上的研究很多都集中在氧化铁及其复合物的性能及应用上,通过精确控制磁性纳米粒子的合成过程和表面功能基团可以控制复合粒子物理化学性能,胶体稳定性以及它们的生物活性。

一般可用作生物药物载体的磁性纳米粒子的尺寸都很小,同时很具有很强的磁性。

Fe3O4和y-Fe2O3因具有很好的生物相容性和生物分散性,目前是磁性纳米粒子中典型的代表材料。

Fe3O4的磁性主要来源于在八面体和四面体间隙中的Fe3+的反磁矩耦合。

2.制备方法简介目前,合成磁性纳米粒子的主要方法有以下几种:2.1物理方法物理方法即利用物理手段如机械研磨等使反应前驱体发生反应生成所需的纳米晶。

例如气相沉积法和电子束刻蚀法,然而这些方法很难将颗粒尺寸控制在纳米范围。

(1)气相沉淀法这种合成方法主要用于合成一维的氧化铁纳米结构,这个过程是基于对分子前驱体的催化辅助的化学气相沉积过程。

在基体表面的金颗粒的存在催化着氧化铁纳米粒子的生长。

在低压力的情况下,Fe3+的热分解部分导致Fe3+转变为Fe2+,并且在一定温度下形成纳米结构的Fe3O4薄膜[5]。

(2)电子束光刻蚀法这个物理方法主要是在一束电子束的照射下将铁的纳米粒子转变为氧化铁纳米粒子,电子束发射到覆盖有一层铁颗粒的表面,在电子束所聚集的高温下,铁转变为氧化铁纳米颗粒(Fe3O4)[6-7]。

2.2化学方法化学方法主要是通过化学反应使反应物离子均匀混合,在相对低的温度下得到纳米尺寸产物。

利用化学法制备纳米材料是目前最常用的制备方法。

化学法较多,主要有化学共沉淀法、水热合成法、溶胶凝胶法,微乳液法、自蔓延高温合成技术、机械化学合成法、共沉淀催化相转化法。

其中溶胶凝胶法、化学共沉淀法和微乳液法等均为近几年来发展起来制备铁氧体纳米粉体的新方法。

这些方法各有优缺点,使用条件不同,得到的纳米材料的性能不尽一致。

(1)化学共沉淀法该法是最早采用的液相化学反应合成金属氧化物纳米颗粒的方法,它是在有两种或多种阳离子的溶液中加入沉淀剂,这种多元体系的溶液经过沉淀反应后,可得到成分均一的沉淀,实验结果具有很强的重复性。

目前普遍使用的方法是按照方程式Fe2++2Fe3++80H--Fe3O4+4H2O为原理进行的。

通常是将Fe2+与Fe3+的前驱物盐(氯化物,硝酸盐,硫酸盐)溶液以l:2的比例混合后,用过量的NH4OH或NaOH在一定温度和pH值下高速搅拌进行沉淀反应,控制pH值在8—11范围内,以一定速度均匀通入干净的压缩空气(或含氧气体),待溶液控制在50---70℃,即能沉淀出前驱体沉淀物,经锻烧后就得到具有铁磁性的磁性纳米材料。

但是粒子的饱和磁化强度一般低于块体90 emu/g为30.50 emu/g 之间。

在空气中极不稳定,很容易氧化或溶解在酸性基质中。

Kim等[8]采用此法在碱性溶液中成功地合成了粒径范围在2~14nm之间的CoFe2O4纳米粒,并发现随着处理温度升高其粒径增大。

该方法具有操作方便、设备简单和成本较低等优点,但沉淀过程中易分层,以致沉淀物的组成常偏离原始配方,还经常出现胶状沉淀,难以过滤和洗涤,热处理中的团聚较严重。

基于此方法制取的微粒易于凝聚对其进行改进从而开发出各种化学共沉淀的复合方法。

Suwalka等[9]报道采用NH3H2O溶液作沉淀剂,完全可以将Ni2+、Zn2+、Fe2+、CO2+共沉淀下来,制备出不同粒径球状纳米铁氧体。

龙春泉等[10]以FeCl3·4H2O、FeCl3·6H2O、BaCl2·2H2O、Na2CO3和氨水为原料,采用化学共沉淀—溶盐法制备纳米级沉淀前驱体Fe3O4和BaCO3混合粉,前驱体再和一定量NaCl混合在750℃一起焙烧2h可得到性能良好的纳米钡铁氧体。

NaCl在焙烧过程中主要起助溶剂的作用,不参与生成物的化学反应,生成的铁氧体单畴粒子分散在NaCl熔融态中,不易聚集成较大的晶粒,同时在前驱制备分离中利用r-Fe3O4的磁性,改善了胶状沉淀难于过滤和洗涤的问题。

因此比较容易得到分散性好的产物。

杨等[11]研究了共沉淀机械研磨法制备铁氧体的新方法,该方法是以氨水为沉淀剂,以一定比例的铁、钡、钴、锌的硝酸盐金属混合物溶液为原料,经化学共沉淀法得到纳米前驱物,通过冷冻干燥后,与NaCl及5mm 钢球一起放到球磨机中碾磨20h,其中前驱物与NaCl重量比为l:4。

前驱物为所添加金属的无定型氢氧化物或氧化物,其颗粒间的粘结力较弱,经与NaCl充分碾磨后,通过机械力打开了非化学键键合的纳米颗粒。

使其充分分散在NaCl中,再于1200℃煅烧2h,洗涤从而得到纳米铁氧体粉末。

(2)溶胶-凝胶法溶胶-凝胶法也是化学溶液共沉积法,是利用金属醇盐的水解和聚合反应制备金属氧化物的均匀溶胶,再浓缩成透明凝胶,凝胶经过干燥,热处理等后续步骤地处理,最终可以得到氧化物的超微粉。

在溶胶-凝胶法中通过控制调节工艺条件,可以制备出粒径大小均匀,尺寸在纳米微米级别,分布均匀,化学活性大的单组分或多组分分子级混合物,以及可以制备出传统方法不能或者难以制备出的产物等,这其中涉及到对凝胶-溶胶法中的主要参数如:pH值,反应温度,反应时间,溶液浓度等的控制。

所获得的晶体晶形的状况取决于凝胶热处理的过程[12-13],对于凝胶过程中的羟化和缩合,以及动力学方面的控制都可以对晶体的结构和形貌产生影响,尤其是pH,温度和盐溶液的浓度等条件[11,14-15],这种方法的主要优点是能够对晶粒的结构和尺寸进行一定的控制(如图2)。

图2 椭球形多晶F e3O4(2b),r-F e2O3(2c)和球形Fe3O4(3b)的SEM图溶胶-凝胶法很容易在溶液中添加表面活性剂下进行反应,随后晶体的成核和晶体生长将被控制,易于聚沉的盐溶液也将避免产生,最终形成纳米颗粒,然而表面活性剂的使用将对纳米颗粒的表面形貌和表面价态产生一定的影响,但对其结构不会造成很大影响[16]。

通过使用多元醇能够控制晶粒的生长,确保形成纳米颗粒的高结晶度,并且可以防止中间相的产生。

(3)微乳液法微乳液是由油,水,表面活性剂组成的透明,各向同性,低黏度的热力学稳定体系,其中不溶于水的非极性物质作为分散介质,反应物水溶液为分散相,表面活性剂为乳化剂,形成油包水或者水包油型微乳液,反相胶束的尺寸由水和表面活性剂的比例决定[17]。

图3 微乳液法一般的工艺流程两种水-油微乳液体系混合后,其胶束间不断碰撞,经破裂和复合,最后在胶束中形成沉淀,加入丙酮和乙醇等溶剂破乳,离心,过滤和洗涤即得到产物。

微乳胶束如同纳米粒子形成的微反应器。

上图为其一般的工艺流程。

通过微乳液法制的颗粒一般粒子形貌是多样的,即粒子形貌,粒径大小不均匀。

Kodak等[18]利用微乳和共沉淀结合的方法成功合成了Mn.Zn铁氧体纳米微粒。

十六烷三甲基胺(CTAB)为表面活性剂,合成主要步骤是以正己醇为油相,溴化Mn、Zn、Fe硫酸盐的混合液为水相,配制成微乳液,与NaOH沉淀剂反应后再加入氧化剂H2O2继续反应一段时间即得到目标产物,其粒径为7-25nm。

相关文档
最新文档