磁性纳米粒子的制备与应用.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性纳米粒子的制备与应用

孙超

(上海大学环境与化工工程学院,上海200444)

摘要:磁性纳米材料(magnetic nanoparticle)是由Fe,Co,Ni等过渡金属及其氧化物组成的打下尺度介于1~100nm间的一种新型功能材料,磁性纳米材料具有磁性特征,还具有纳米材料的独特效应和生物亲和性,因而成为目前生物医学研究的热点之一。本文简要介绍了磁性纳米颗粒的制备方法,和目前磁性纳米颗粒在医用载药方面的研究进展。

关键词:磁性纳米材料;氧化铁;载药

Preparation and Application of Magnetic Nanoparticles

Sunchao

(School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China) Abstract: Magnetic nanoparticles are a kind of magnetic material with diameter of l~1 00nm,which are made of transition metal and their oxide such as Fe、Co、Ni and so on.They are new type of functional materials with characterization of special effect,magnetic responsibility and bioaffinity,and have been one of hot spots in recent biomedicine research.This paper introduces the preparation of magnetic nanoparticles and some recent studies about drug loading of magnetic nanoparticles in medicine。

Key words: Magnetic nanoparticles;Iron oxide;Drug loading

1.引言

磁性纳米材料作为一种新型的功能材料,因其同时兼具纳米材料的独特效应、磁响应性和生物亲和性等,近年来被广泛研究,特别是在生物医学、生物工程等领域的应用引起了各国研究者的高度重视,成为生物医药研究领域中的一个研究热点(如图1)。

图1 磁性纳米颗粒示意图

磁性纳米材料是大小尺度在1~100nm的磁性材料,如Fe3O4,Nd2Fe14B/a-Fe,CoPt3等[1-3],其中最具有广泛应用前景的磁性纳米材料为铁氧体纳米材料。铁氧体是由铁和其他一种或多种金属组成的复合氧化物。一般可分为永磁铁氧体、软磁铁氧体和旋磁铁氧体三种。如尖晶石型铁氧体的化学分子式为MeFe2O4,其中Me为离子半径与二价铁离子相近的二价金属离子(Mn2+,Zn2+,Co2+)等[4],随着替代金属种类和数量不同,可以有多种不同组成的复合物,这些磁性纳米材料最突出的性质就是此特性,当磁性颗粒粒径变小时,磁性颗粒会丧失大块材料的铁磁性或亚铁磁性,表现为顺磁性,在外加磁场的作用下产生的磁矩与外加磁场一致,进而受到外加磁场的吸引。粒径的改变也导致矫顽力的显著变化,当颗粒尺寸减小到20nm以下时,其矫顽力可增加1000倍,若进一步减小到6nm时,其矫顽力反而降低到零,没有剩磁,在一定温度范围内呈现出超顺磁性,这时磁相互作用很弱。在交变磁场中还存在磁导率频散,磁粘滞性,磁损耗而发热等现象。这些性质使得在生物医药方面有很宽的应用范围。

在最近几年,在磁性纳米粒子上的研究很多都集中在氧化铁及其复合物的性能及应用上,通过精确控制磁性纳米粒子的合成过程和表面功能基团可以控制复合粒子物理化学性能,胶体稳定性以及它们的生物活性。一般可用作生物药物载体的磁性纳米粒子的尺寸都很小,同时很具有很强的磁性。

Fe3O4和y-Fe2O3因具有很好的生物相容性和生物分散性,目前是磁性纳米粒子中典型的代表材料。Fe3O4的磁性主要来源于在八面体和四面体间隙中的Fe3+的反磁矩耦合。

2.制备方法简介

目前,合成磁性纳米粒子的主要方法有以下几种:

2.1物理方法

物理方法即利用物理手段如机械研磨等使反应前驱体发生反应生成所需的纳米晶。例如气相沉积法和电子束刻蚀法,然而这些方法很难将颗粒尺寸控制在纳米范围。

(1)气相沉淀法

这种合成方法主要用于合成一维的氧化铁纳米结构,这个过程是基于对分子前驱体的催化辅助的化学气相沉积过程。在基体表面的金颗粒的存在催化着氧化铁纳米粒子的生长。在低压力的情况下,Fe3+的热分解部分导致Fe3+转变为Fe2+,并且在一定温度下形成纳米结构的Fe3O4薄膜[5]。

(2)电子束光刻蚀法

这个物理方法主要是在一束电子束的照射下将铁的纳米粒子转变为氧化铁纳米粒子,电子束发射到覆盖有一层铁颗粒的表面,在电子束所聚集的高温下,铁转变为氧化铁纳米颗粒(Fe3O4)[6-7]。

2.2化学方法

化学方法主要是通过化学反应使反应物离子均匀混合,在相对低的温度下得到纳米尺寸产物。利用化学法制备纳米材料是目前最常用的制备方法。化学法较多,主要有化学共沉淀法、水热合成法、溶胶凝胶法,微乳液法、自蔓延高温合成技术、机械化学合成法、共沉淀催化相转化法。其中溶胶凝胶法、化学共沉淀法和微乳液法等均为近几年来发展起来制备铁氧体纳米粉体的新方法。这些方法各有优缺点,使用条件不同,得到的纳米材料的性能不尽一致。

(1)化学共沉淀法

该法是最早采用的液相化学反应合成金属氧化物纳米颗粒的方法,它是在有两种或多种阳离子的溶液中加入沉淀剂,这种多元体系的溶液经过沉淀反应后,可得到成分均一的沉淀,实验结果具有很强的重复性。目前普遍使用的方法是按照方程式Fe2++2Fe3++80H--Fe3O4+4H2O为原理进行的。通常是将Fe2+与Fe3+的前驱物盐(氯化物,硝酸盐,硫酸盐)溶液以l:2的比例混合后,用过量的NH4OH或NaOH在一定温度和pH值下高速搅拌进行沉淀反应,控制pH值在8—11范围内,以一定速度均匀通入干净的压缩空气(或含氧气体),待溶液控制在50---70℃,即能沉淀出前驱体沉淀物,经锻烧后就得到具有铁磁性的磁性纳米材料。。但是粒子的饱和磁化强度一般低于块体90 emu/g为30.50 emu/g 之间。在空气中极不稳定,很容易氧化或溶解在酸性基质中。Kim等[8]采用此法在碱性溶液中成功地合成了粒径范围在2~14nm之间的CoFe2O4纳米粒,并发现随着处理温度升高其粒径增大。该方法具有操作方便、设备简单和成本较低等优点,但沉淀过程中易分层,以致沉淀物的组成常偏离原始配方,还经常出现胶状沉淀,难以过滤和洗涤,热处理中的团聚较严重。基于此方法制取的微粒易于凝聚对其进行改进从而开发出各种化学共沉淀的复合方法。Suwalka等[9]报道采用NH3H2O溶液作沉淀剂,完全可以将Ni2+、Zn2+、Fe2+、CO2+共沉淀下来,制备出不同粒径球状纳米铁氧体。

龙春泉等[10]以FeCl3·4H2O、FeCl3·6H2O、BaCl2·2H2O、Na2CO3和氨水为原料,采用化学共沉淀—溶盐法制备纳米级沉淀前驱体Fe3O4和BaCO3混合粉,前驱体再和一定量NaCl混合在750℃一起焙烧2h可得到性能良好的纳米钡铁氧体。NaCl在焙烧过程中主要起助溶剂的作用,不参与生成物的化学反应,生成的铁氧体单畴粒子分散在NaCl熔融态中,不易聚集成较大的晶粒,同时在前驱制备分离中利用r-Fe3O4的磁性,改善了胶状沉淀难于过滤和洗涤的问题。因此比较容易得到分散性好的产物。杨等[11]研究了共沉淀机械研磨法制备铁氧体的新方法,该方法是以氨水为沉淀剂,以一定比例的铁、钡、钴、锌的硝酸盐金属混合物溶液为原料,经化学共沉淀法得到纳米前驱物,通过冷冻干燥后,与NaCl及5mm 钢球一起放到球磨机中碾磨20h,其中前驱物与NaCl重量比为l:4。前驱物为所添加金属的无定型氢氧化物或氧化物,其颗粒间的粘结力较弱,经与NaCl充分碾磨后,通过机械力打开了非化学键键合的纳米颗粒。使其充分分散在NaCl中,再于1200℃煅烧2h,洗涤从而得到纳米铁氧体粉末。

(2)溶胶-凝胶法

溶胶-凝胶法也是化学溶液共沉积法,是利用金属醇盐的水解和聚合反应制备金属氧化物的均匀溶胶,再浓缩成透明凝胶,凝胶经过干燥,热处理等后续步骤地处理,最终可以得到氧化物的超微粉。在溶胶-凝胶法中通过控制调节工艺条件,可以制备出粒径大小均匀,尺寸在纳米微米级别,分布均匀,化学活性大的单组分或多组分分子级混合物,以及可以制备出传统方法不能或者难以制备出的产物等,这其中涉及到对凝胶-溶胶法中的主要参数如:pH值,反应温度,反应时间,溶液浓度等的控制。所获得的晶体晶形的状况取决于凝胶热处理的过程[12-13],对于凝胶过程中的羟化和缩合,以及动力学方面的控制都可以对晶体的结

相关文档
最新文档