磁控管原理 - 入门及动画演示.
磁控管原理 - 入门及动画演示

3、磁控管的自激
现在我们设想一种“展开”式的磁控管,组成阳极块的谐 振腔不象平常一样排列在圆周上,而是排列成一条直线(图 12)。阳极与阴极之间有外加电源Ua构成足够大的电位差,并 有一均匀磁场方向垂直图面向里。电子流在恒定磁场与电场作 用下,“吹过”电谐振器,此时,电子流就按摆线的轨迹运动 电子流的速度达到固定值Ve时,在谐振器中建立起振荡。
输出
天线
阳极板
-+-
+
+
K
-
-
+-+
三、磁控管结构
屏蔽盒
支架组件
支架
穿心电容
滤波组件
扼流线圈
黑球
密封垫片
射频密封垫 圈
安装底板
磁铁
散热片
标签
屏蔽盒盖
螺丝
黑球
白球
天线帽
输出组件
阳极组件 阴极组件
A侧磁极
A侧磁极
管芯构造
天线 磁极A侧 阳极板
磁极K侧
天线帽 绝缘环 均压环 阳极筒 灯丝
均压环(大) 天线安装位置 均压环(小)
在电子运动的全过程中,电场力F始终保持不变。但磁场力不但 大小要变,而且方向也变
1、静态磁控管中电子的运动
当磁通密度B=0时为直线1; B﹤BKP时为曲线2; B=BKP时为曲线3; B﹥BKP时为曲线4。
2、磁控管中的谐振系统
多腔磁控管中的高频系统是一个有许多小的谐振腔组成的 谐振系统,这些小的谐振腔的数目在厘米波段上的管子中,一般 可有8~32个,毫米波段会更多些。这些谐振腔均匀的分布在阳极 圆周上,而且每一腔的缝隙口均与相互作用空间相通,每个小腔 不是孤立的,他们通过相互作用空间和管子的顶部空间相互耦合 在一起,从而形成一个复杂的多腔谐振系统。
磁控管原理 入门及动画演示课件

微波的生成与传播过程
微波的产生
在磁控管中,电子与磁场相互作用,
产生高频交变电磁场,即微波。
微波的传播
微波通过特定的波导结构传播,实现
能量的传输和辐射。
06
磁控管使用注意事项
安全操作规范
01
02
03
04
确保电源电压与磁控管
操作时应佩戴防电击手
避免在磁控管工作过程
保持工作区域整洁,避
额定电压相符,避免过
states on that on a realist on coreic to onic.
on the剂 on the such a on core,1-强制 on
this. on on -R. the
磁控管的工作流程
• on controller of circuit on\", for1
磁控管的工作流程
expected about the >
c of › thehah0飞跃 Nim the however gl › the during the forhah Jug彻 (彻ander彻彻霸
道彻可笑 itemprop he of d彻取 on(/^Phaso of in铺 , has c生理 (只不过 on cons彻 has
磁控管的工作流程
,
,主打 a 一发草地 pun,
磁控管工作原理磁控管(Magnetron)是一种常用的微波发生器,广泛应用于微波炉、雷达、医疗设备等领域。
磁控管的工作原理基于电子的运动和磁场的相互作用,通过这种相互作用产生高频电磁波。
1. 基本结构磁控管主要由阴极、阳极、磁场系统和腔体组成。
阴极是一个发射电子的热阴极,阳极是一个带有孔洞的金属腔体,磁场系统则是由永磁体或电磁体产生的磁场。
2. 工作原理磁控管的工作原理可以分为电子发射、电子注和电磁波产生三个过程。
2.1 电子发射磁控管中的阴极通过加热,使其表面的电子获得足够的能量,从而跨越阴极表面的势垒,进入阳极的孔洞区域。
这些发射的电子称为电子云。
2.2 电子注磁控管中的磁场系统产生强磁场,使得电子云在进入阳极孔洞时发生偏转,形成电子注。
电子注在磁场的作用下,以螺旋形运动,同时沿着阳极孔洞的方向前进。
2.3 电磁波产生当电子注通过阳极孔洞时,由于电子在磁场中的运动速度和加速度的变化,会产生变化的电流。
这种变化的电流在阳极上形成高频振荡,从而产生了微波电磁波。
3. 特点和应用磁控管具有以下特点:- 高功率输出:磁控管可以产生高功率的微波电磁波,适用于需要大功率输出的应用,如微波炉。
- 高频稳定性:磁控管的频率稳定性较高,适用于需要精确频率控制的应用,如雷达。
- 长寿命:磁控管的寿命较长,可以连续工作数千小时。
- 调制性能好:磁控管可以通过调制电源的方式实现对微波信号的调制,适用于需要调制功能的应用,如通信设备。
磁控管的应用非常广泛,包括但不限于:- 微波炉:磁控管作为微波炉的核心部件,通过产生微波电磁波来加热食物。
- 雷达:磁控管作为雷达的发射源,产生高功率的微波信号,用于探测和跟踪目标。
- 医疗设备:磁控管在医疗设备中用于产生微波电磁波,如医用热疗设备。
总结:磁控管是一种基于电子运动和磁场相互作用的微波发生器。
通过加热阴极产生电子云,利用磁场使电子云形成电子注,最终产生高频电磁波。
磁控管具有高功率输出、高频稳定性、长寿命和调制性能好等特点,广泛应用于微波炉、雷达和医疗设备等领域。
磁控管工作原理

磁控管工作原理
磁控管(Magnetron)是一种常见的微波发生器,广泛应用于微波炉、雷达系统、通信设备等领域。
它利用磁场和电场的相互作用,将直流电能转化为微波能量。
磁控管的主要组成部份包括阴极、阳极、聚束极和磁场线圈。
阴极是磁控管的
电子发射源,阳极则是采集电子的地方。
聚束极通过一定的电场和磁场来控制电子的运动轨迹,使其聚焦在阳极上。
磁控管的工作原理如下:
1. 电子发射:当磁控管通电后,阴极会发射出大量的自由电子。
这些电子通过
加热阴极来激发,加热可以提高阴极表面的电子发射效率。
2. 电子聚束:聚束极的作用是通过调节电场和磁场,将电子束聚焦在阳极上。
电子束的聚束效果取决于电场和磁场的强度和分布。
3. 磁场作用:磁场线圈产生的磁场垂直于电子束的运动方向,它使得电子在运
动过程中发生螺旋轨迹。
这种螺旋轨迹使得电子能够与磁场中的电磁波发生相互作用。
4. 电磁波产生:当电子与磁场中的电磁波相互作用时,电子会受到电磁波的作
用力,并将其动能转化为电磁波的能量。
这样就产生了微波信号,这些信号通过输出窗口传输到外部设备。
总结起来,磁控管的工作原理可以归纳为:通过阴极发射出的电子束,在聚束
极的控制下,经过磁场的作用,与磁场中的电磁波相互作用,从而将电子动能转化为微波能量。
磁控管具有较高的功率、稳定性和可靠性,因此在许多领域得到广泛应用。
它
在微波炉中起到加热食物的作用,在雷达系统中用于探测和测量,还可以用于通信
设备中的信号发射和接收。
磁控管的工作原理的深入理解有助于我们更好地应用和改进这一技术。
磁控管工作原理

磁控管工作原理磁控管(Magnetron)是一种常用于产生高功率微波的电子器件。
它的工作原理基于电子在磁场中的运动和电磁场的相互作用。
本文将详细介绍磁控管的工作原理,并解释其在微波领域中的应用。
1. 磁控管的结构磁控管由阴极、阳极和磁场系统组成。
阴极是一个热电子发射器,通过加热阴极材料使其发射电子。
阳极是一个中空的金属腔体,用于收集电子并产生微波辐射。
磁场系统由永磁体或电磁线圈组成,用于在阳极周围形成一个强磁场。
2. 工作原理当磁控管通电时,阴极加热并发射出高速电子。
这些电子受到磁场的作用,沿着磁力线旋转运动。
在磁场的作用下,电子在阳极和阴极之间形成一个螺旋轨道。
同时,阳极上的电磁场与电子的运动方向垂直,导致电子在电磁场的作用下受到径向力的加速。
3. 电子的亥姆霍兹运动在磁场和电磁场的共同作用下,电子在阳极和阴极之间进行亥姆霍兹运动。
亥姆霍兹运动是一种螺旋运动,电子在这个运动过程中不断加速。
当电子靠近阳极时,它们的速度达到最高点,然后在离开阳极时速度逐渐减小。
这种周期性的加速和减速导致电子在阳极附近形成高频电场。
4. 微波辐射的产生由于电子在磁控管中的亥姆霍兹运动,产生了高频电场。
这个高频电场使得阳极上的电子受到加速,从而产生微波辐射。
微波辐射通过磁控管的输出窗口传播出来,用于各种应用,如雷达系统、通信设备和微波炉等。
5. 应用领域磁控管在微波领域中有广泛的应用。
其中最常见的应用是微波通信系统。
磁控管可以产生高功率的微波信号,用于传输和接收无线信号。
此外,磁控管还用于雷达系统中,用于探测和跟踪目标。
另外,磁控管在医疗领域中也有应用,如医学成像设备和肿瘤治疗设备等。
总结:磁控管是一种基于电子在磁场中的运动和电磁场的相互作用而工作的器件。
它通过加热阴极发射高速电子,并在磁场和电磁场的作用下使电子在阳极和阴极之间进行亥姆霍兹运动,从而产生微波辐射。
磁控管在微波通信、雷达系统和医疗设备等领域中有着广泛的应用。
磁控管工作原理

磁控管工作原理
磁控管(Magnetron)是一种常用于微波加热和雷达应用的真空电子设备。
它
利用磁场和电场的相互作用来产生和放大微波信号。
磁控管的工作原理涉及到电子束的产生、聚焦和调制。
1. 电子束的产生:
磁控管中的电子束是通过阴极和阳极之间的电场产生的。
当电子从阴极发射出
来后,受到阳极的吸引,形成一个电子束。
阴极通常是由钨丝制成,通过加热钨丝使其发射电子。
2. 电子束的聚焦:
为了将电子束聚焦到一个小的区域内,磁控管中使用了一个磁场。
这个磁场是
通过在阳极附近放置一个环形磁铁来产生的。
磁场的作用是使电子束发生螺旋运动,从而将其聚焦到阳极的小区域内。
3. 电子束的调制:
为了调制微波信号,磁控管中引入了一个调制极。
调制极是一个与阳极相连的
金属环,它的作用是改变电子束的轨迹,从而改变微波信号的强度。
当调制极的电压发生变化时,电子束的轨迹也会随之改变,从而调制微波信号。
总结:
磁控管的工作原理可以概括为:通过阴极发射电子,经过阳极的吸引形成电子束,通过磁场的作用将电子束聚焦到一个小的区域内,并通过调制极改变电子束的轨迹来调制微波信号。
磁控管在微波加热和雷达应用中具有广泛的应用,其工作原理的理解对于理解其工作性能和优化设计至关重要。
磁控管工作原理

磁控管工作原理磁控管是一种利用磁场控制电子束流的真空电子器件。
它由阴极、阳极和磁聚束系统组成。
磁控管的工作原理是通过施加磁场来控制电子束流的方向和聚束效果,从而实现对电子束流的精确操控。
首先,让我们来了解磁控管的组成部份。
1. 阴极:阴极是磁控管中的电子发射源,它通过加热或者光照等方式激发电子的发射。
阴极发射的电子形成电子束流,向阳极方向运动。
2. 阳极:阳极是磁控管中的电子采集极,它接收电子束流并进行电子能量的转化。
阳极通常由金属材料制成,能够有效吸收电子束流的能量。
3. 磁聚束系统:磁聚束系统由磁铁和磁场控制装置组成,用于产生磁场并控制磁场的强度和方向。
磁场的作用是使电子束流聚束成较为集中的束流,从而提高电子束流的精度和效率。
接下来,我们将详细介绍磁控管的工作原理。
1. 电子发射:当阴极受到适当的激励(如加热或者光照)时,它会释放出电子。
这些电子被称为热电子,它们具有一定的能量和速度。
2. 磁场产生:磁控管通过磁铁产生磁场。
磁铁通常位于磁控管的周围,可以产生一个较强的磁场。
3. 磁场控制:磁场控制装置用于调节磁场的强度和方向。
通过调节磁场的强度和方向,可以控制电子束流的运动轨迹和聚束效果。
4. 磁场对电子束流的影响:磁场对电子束流的运动产生力的作用。
根据洛伦兹力的原理,在磁场中运动的电子束流会受到一个垂直于磁场和电子速度方向的力,这个力被称为洛伦兹力。
洛伦兹力使得电子束流偏离原来的直线轨迹,并形成一个环绕磁场的螺旋轨迹。
5. 磁场调节:通过调节磁场的强度和方向,可以控制洛伦兹力的大小和方向。
通过适当的调节,可以使电子束流的运动轨迹变直,从而实现对电子束流的精确操控。
总结起来,磁控管的工作原理是通过施加磁场来控制电子束流的方向和聚束效果。
磁场对电子束流的运动产生力的作用,使得电子束流偏离原来的直线轨迹,并形成一个环绕磁场的螺旋轨迹。
通过调节磁场的强度和方向,可以控制洛伦兹力的大小和方向,从而实现对电子束流的精确操控。
磁控管工作原理

磁控管工作原理磁控管,也称为磁控放电管,是一种利用磁场控制电子束流的真空电子器件。
它常用于电视显像管、荧光显示器、激光器等设备中。
磁控管的工作原理是基于磁场对电子运动轨迹的影响,通过调节磁场的强度和方向来控制电子束流的位置和速度。
磁控管的主要组成部份包括电子枪、聚焦系统、偏转系统和屏蔽系统。
1. 电子枪:电子枪是磁控管的核心部件,它由阴极和阳极组成。
阴极是一个发射电子的热阴极或者冷阴极,阳极则是一个带有孔径的金属板,用于聚焦电子束。
当电子枪受到加热或者电压激励时,阴极会发射出电子,形成电子束。
2. 聚焦系统:聚焦系统由磁聚焦线圈和聚焦电极组成。
磁聚焦线圈通过产生磁场,使电子束在经过时受到聚焦力的作用,从而使电子束变得更加集中和稳定。
聚焦电极则通过电压的调节来控制聚焦效果,使电子束的直径和强度满足要求。
3. 偏转系统:偏转系统由偏转线圈和偏转电极组成。
偏转线圈通过产生磁场,控制电子束的偏转方向和角度。
偏转电极则通过电压的调节来控制偏转效果,使电子束能够在屏幕上形成所需的图象。
4. 屏蔽系统:屏蔽系统主要由屏蔽电极和屏蔽板组成。
屏蔽电极通过电压的调节,控制电子束的穿透深度,从而调节图象的亮度。
屏蔽板则用于隔离电子束和其他部件之间的相互干扰。
磁控管的工作过程如下:1. 电子发射:当磁控管通电后,阴极开始发射电子。
这些电子经过电子枪的聚焦系统,形成一个集中的电子束。
2. 磁场控制:磁聚焦线圈和偏转线圈产生的磁场分别对电子束进行聚焦和偏转。
聚焦磁场使电子束变得更加集中,而偏转磁场则控制电子束的偏转方向和角度。
3. 屏蔽控制:屏蔽电极和屏蔽板通过电压的调节,控制电子束的穿透深度和图象亮度。
4. 显示效果:经过聚焦、偏转和屏蔽的控制,电子束最终在屏幕上形成所需的图象。
总结:磁控管是一种利用磁场控制电子束流的真空电子器件。
它通过电子枪、聚焦系统、偏转系统和屏蔽系统的协同工作,实现对电子束的位置、速度和亮度的精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
漏气/屏蔽 网烧焦 磁性线圈 烧焦 阳极温度 上升
热应力 电子发 射劣化 阴极变形
阳极热应力 散热损失
磁控管寿 命依赖性
阳极 的热应力 阴极
慢周期
冷启动
负荷条件 高负荷
ON-OFF 断续周期
电源回路
五、使用磁控管要注意的几个问题
1.负载要匹配
磁控管负载特性图(雷基图)
此区域为磁控管的负载工作 最佳区域,如微波炉的工作区域 偏离此区域将造成微波炉的输出 功率低、效率低及温升高、打火、 聚焦等不良现象
1、磁控管测试项目
常规项目
1、导波管实验 2、匹配性能测试 3、输入输出性能测试 4、温升试验 5、均匀性测试
6、EMI测试
7、寿命试验 8、磁控管动作特性测试
1、导波管实验
2、磁空管特性参数测量
一、试验方法 试验准备物:微波炉、调压器、电参 数测量仪、交流电流表(或钳流表)、 交流电压表、示波器、高压探头。 将微波炉外罩打开,按右图所示接 线 。 微波炉在额定电压和正常负载下启动 后,表V1显示的灯丝电压、表A1显示 的灯丝电流、示波器CH1通道显示的 阳极峰值电流、阳极平均电流和示波 CH2通道显示的阳极峰值电压、阳极 平均电压、电参数测量仪显示的输入 功率、其值应满足技术要求,CH1通 道显示阳极电流波形符合相应的技术 规定。
3、磁控管的自激
现在我们设想一种“展开”式的磁控管,组成阳极块的谐 振腔不象平常一样排列在圆周上,而是排列成一条直线(图 12)。阳极与阴极之间有外加电源Ua构成足够大的电位差,并 有一均匀磁场方向垂直图面向里。电子流在恒定磁场与电场作 用下,“吹过”电谐振器,此时,电子流就按摆线的轨迹运动 电子流的速度达到固定值Ve时,在谐振器中建立起振荡。
2、磁控管中的谐振系统
多腔磁控管中的高频系统是一个有许多小的谐振腔组成的 谐振系统,这些小的谐振腔的数目在厘米波段上的管子中,一般 可有8~32个,毫米波段会更多些。这些谐振腔均匀的分布在阳极 圆周上,而且每一腔的缝隙口均与相互作用空间相通,每个小腔 不是孤立的,他们通过相互作用空间和管子的顶部空间相互耦合 在一起,从而形成一个复杂的多腔谐振系统。
若除电场之外,在阴极—阳极空间还有一个磁场,那么电子运 动的轨迹就不再是直线。假设磁场强度是B,磁场方向与图 面垂直,这时,电子就受到电场和磁场两种外力的作用。 磁场对电子的作用力是:
在电子运动的全过程中,电场力F始终保持不变。但磁场力不但 大小要变,而且方向也变
1、静态磁控管中电子的运动
当磁通密度B=0时为直线1; B﹤BKP时为曲线2; B=BKP时为曲线3; B﹥BKP时为曲线4。
二、工作原理
静态磁控管系统如下图所示:
假设两个无限大的相互平行的平板电极(近似磁控管的阴 极与阳极)间的距离为d,两个极板之间的直流电压为V,这时 两极之间的直流电场为E=V/d;两极板之间还同时存在一个与图 面垂直的均匀直流磁场,其磁感应强度为B。
1、静态磁控管中电子的运动(电场+磁场) 如无磁场,则电子逸出阴极之后,就会在电场力的作 用下直接向阳极运动,此电场力
现在用一个八腔磁控管来研究这一问题。N=10
模式编号 相位差
0 0
不同的模式对应的相位差 1 2 3 4 5 6 7 8 9 10 11 π /5 2π /5 3π /5 4π /5 π 6π /5 7π /5 8π /5 9π /5 2π π /5+2π
5、磁控管中电子与高频电磁场的相互作用 (能量转换) 当振荡已经产生时,在相互作用空间就同时存在有四个场: 恒定电场Eo、恒定磁场B0、高频电场E’、高频磁场B’。
2.对供电电源的要求
变压器与高压电容性能匹配图
电容与变压器匹配较差
电容与变压器匹配较好
3.微波炉设计和组装中要注意的问题
冷却是保证磁控管正常工作的条件之一,大功率磁控管的阳极常用 水冷,微波炉是采用强迫风冷,其风量设计一定要保证磁控管的使用 要求。冷却不良将使管子过热而不能正常工作,严重时将烧坏管子。 应严禁在冷却不足的条件下工作。 磁控管的灯丝为φ0.5mm的钍钨丝碳化而成的,因此这就决定了磁
如同所有其他振荡器自激的条件一样,电子沿阴极运动的 平均速度与阴极谐振腔口高频场相位变化的速度同步,使电 子运动经过各个腔口时始终都碰到是高频推斥场。 从物理意义上说,这一条件就意味着电子始终处于高频场 的减速场中,这样电子就最有效的把自己从直流电场中获得 的能量交给高频场而完成能量转换的任务
6、电子轮辐
阳极回路
天线 均压环(大) 天线安装位置 A侧磁极 均压环(小)
均压环(大) 均压环(小)
阳极板
阳极板 阳极筒 阳极筒 K侧磁极
阳极平面
阳极断面
阴极回路
阴极构造 灯丝线圈的横截面
端帽 钛帽 支持体 灯丝线圈
W2C
(碳化钨) 易碎的
W+ThO2
引出线
K侧管 (钍钨)
支持体本体
端子
步骤: ① 散热片压入 ② 密封垫片压入 ③ 螺钉紧固 ④ 滤波组件铆接 ⑤ 屏蔽盒盖铆接
5、EMI实验
检测项目: 150KHz—30MHz传导骚扰测试
150KHz—30MHz磁场骚扰测试
30MHz—1GHz电场辐射骚扰测试 1GHz—18GHz电磁场辐射骚扰测试
标准3M法电波暗室
反射箱
屏蔽室
微波炉辐射干扰的设计
屏蔽门结构 基本频率(2455MHz) 辐射干扰
门锁
炉门
炉腔
导波管
炉盖
/programs/view/0eykPiNyGjw/ /programs/view/9ScwL8mkA1k/
更多精彩动画
/home/_424705305/ 再见!
3、磁控管工作特性测试
磁控管工作特性图 磁控管负载特性图
4、匹配实验
技术要求
空载阻抗测试:微波炉按规 定的方法试验时,微波炉的电 压驻波比(VSWR)≤20,相位 在非下陷区(0.25λ),其图 如右图所示。 负载阻抗测试:微波炉按规 定的方法试验时,微波炉的电 压驻波比(VSWR)≤4,相位 在0.25λ-0.29λ,其图如图所 示
磁控管
摘要 一、概述 二、磁控管工作原理 三、磁控管结构 四、磁控管性能参数及测试 五、磁控管使用要注意的问题
一、概述
磁控管是微波电子管的一种,是一种重入式谐 振型正交场振荡器,通常作为高功率微波能发生器。 它最主要的特点是高效率和低工作电压,其次是由 于结构简单而带来的体积小、重量轻、使用方便、 工作可靠和成本低等特点。主要用于雷达、通讯、 电子对抗、微波加热等方面。 随着微波理疗、微波辐射武器、微波等离子推 进、微波促进化学反应等方面的发展,磁控管行业 也得到了较大发展。
Ib: 最大值360mA(标准测试条件300mA)Ef:2.8~3.75V(标准测试条件3.3V) 耐压:Et=10kVDC或Et=7.1kVAC t=60sec 绝缘:最小200MΩ
②2M217系列磁控管的性能参数: Ebm:3.9±0.2KV Po:580±30W fo:2456±10MHz If:10±2A Ib: 最大值250mA(标准测试条件200mA)Ef:2.8~3.75V(标准测试条件3.3V) 耐压:Et=10kVDC或Et=7.1kVAC t=60sec 绝缘:最小200MΩ
磁控管
or
铁氧体门
冷却风 电源变压器
窗口
前
后
6、寿命实验
实验方式:1、连续 2、2分通1分断 3、5秒通5秒断
阴极温度 阳极温度
真空管内多 余气体放出 阴极变形 均压环变形 电子发射 劣化 散热损失
阳极电流
阳极温度 上升 阴极温度 上升 均压环变形
真空漏气
阴极变形
异常电场发生 阳极温度上升 阴极温度上升
四、主要性能参数及测试
磁控管的几个常规电参数值如下:
1、Ebm ——阳极电压(KV)
5、If —— 灯丝电流 (A)
2、Po —— 平均功率(W)
3、η% —— 效率
4、fo —— 频率(MHz)
6、Ib ——阳极电流(mA) 7、Ef —— 灯丝电压(V) 8、绝缘耐压
9、微波泄漏 例如: ① 2M219系列磁控管的性能参数: Ebm:4.2±0.2KV Po:945±40W fo:2458±10MHz If:10±2A
由于受高频电场径向分量的作用,第一类电子在运动过程中落后 和第三类电子在运动过程中超前,而都逐渐接近于第四类电子。也 就是逐渐地改善了相对于高频场的相位,并落于推斥的切向场中, 因而转变为有利电子,使得磁控管的效率提高了。这种群聚的结果 就使从阴极出发的电子不再是均匀地绕着阴极运动,而是相对于第 四类电子形成电子群。这些电子群从阴极伸向阳极形成轮辐状,我 们称之为“电子轮辐”。
1.负载要匹配
微波炉与磁控管匹配特性测试图
空载效果较好的匹配图
空载效果差的匹配图
1.负载要匹配
微波炉与磁控管匹配特性测试图
负载效果较好的匹配图
负载效果差的匹配图
2.对供电电源的要求
磁控管电源接线图
注意:如右图所示(已标出同 名端)就应为A、C连接,接 反了会有影响: ① 浪涌电压将升高0.5KV。 ② 阳极温升将升高10℃左右。 ③ 微波炉效率将下降1~2%
输出
天线
阳极板
- +
+
- +
K
- +
- -
+
三、磁控管结构
黑球 屏蔽盒 密封垫片 射频密封垫 圈 安装底板
支架组件 磁铁
支架 散热片 滤波组件 穿心电容 标签 屏蔽盒盖 螺丝
扼流线圈
黑球
白球
天线帽
输出组件
阳极组件
ቤተ መጻሕፍቲ ባይዱ