机械原理动画演示
110个液压原理FLASH动画演示,支持下载到电脑!

110个液压原理FLASH动画演⽰,⽀持下载到电脑!完整资料下载⽅式1.分享+评论+关注2.私信回复【液压原理】获取下载地址收集资料实属不易,如果有⽤,希望⼤家能够⽀持,点个赞也好,评个论也好,请给予我们更多的动⼒,万分感谢!采⽤蓄能器增速回路.swf测流量.SWF测速装置.SWF插装单向阀2.swf 插装阀.swf差动回路.swf差动回路2.swf差动回路3.swf差动液压缸.swf差压计测流量流速.swf差压计测液位.swf齿轮泵.swf齿轮泵原理图.SWF冲液阀回路.swf出⼝节流.swf淬⽕过程的冷却阶段.swf淬⽕过程的冷却阶段2004.swf单杆缸.swf单活塞往复泵⽰意图.swf单级调压回路.swf单项顺序阀平衡回路.swf单叶⽚摆动液压马达图4[1][1].28a.swf单作⽤增压回路.swf调速阀并联的两次进给速度换接.swf调速阀并联的两次进给速度换接B.swf调速阀并联的速度换接回路7_4_109[1].swf 多功能⽔泵控制阀原理图.swf多级离⼼泵.swf⼆级调压回路.SWF⼆级调压回路b.swf⽅向控制回路.swf分流集流阀.swf感应淬⽕原理改良后.swf各类退⽕⼯艺常⽤的加热温度范围.swf 换向阀的位通.swf回路起重机.swf回油节流调速回路.swf减压回路.swf进油节流调速回路.swf井式渗碳炉.swf静⼒平衡马达演⽰.swf快速慢速换接回路.swf扩散退⽕⼯艺曲线.swf雷诺试验.swf离⼼泵.swf连续增压.swf两种慢速换接回路.swf螺杆泵.swf螺杆泵⼯作原理动画 .swf内反馈限压式变量叶⽚泵图3[1][1].29.swf 旁路调节泵.swf旁路节流调速回路.swf千⽄顶.swf三级调压回路a.swf三级调压回路b.swf三级调压回路c.swf双泵增速回路.swf双动往复泵.swf双作⽤伸缩缸.swf双作⽤增压回路.swf⽔环真空泵.swf顺序阀控制的顺序动作回路.SWF伺服阀.swf锁紧回路.SWF碳化物溶断机理2.swf往复泵.swf⽆极减压回路.swf先导式YLF.swf先导式减压阀.swf斜盘式轴向柱塞泵.swf卸载式液控单向阀.swf⾏程阀控制顺序动作回路.SWF⾏程阀控制顺序回路.swf⾏程开关和电磁阀控制的顺序动作回路.SWF 蓄能器保压回路.swf压⼒继电器控制的顺序动作回路.SWF液压缸差动连接增速回路.swf液压卡紧.swf溢流阀动画.swf溢流节流阀.swf油⽔分离器图.swf增速缸回路.swf蒸汽喷射泵.swf直动式顺序阀(外控).swf直动式顺序阀.swf直动式溢流阀.swf轴向柱塞泵.swf注塑机⼯作原理图().swf漩涡泵.swf......。
动画演示11种泵的工作原理,很直观易懂!

动画演⽰11种泵的⼯作原理,很直观易懂! 在化⼯⽣产中,泵是⼀种特别重要的设备,了解泵的⼯作原理不仅能够预防和减少流体泄漏事故、冒顶事故、错流或错配事故。
还能够在泵运⾏故障中快速诊断。
因此了解泵的⼯作原理是⼀件⾮常重要的事,今天⼩七就带领⼤家了解⼀下各种泵的⼯作原理,希望能够对⼤家有所帮助。
液压泵⼯作原理 液压泵是靠密封容腔容积的变化来⼯作的。
上图是液压泵的⼯作原理图。
当凸轮1由原动机带动旋转时,柱塞2便在凸轮1和弹簧4的作⽤下在缸体3内往复运动。
缸体内孔与柱塞外圆之间有良好的配合精度,使柱塞在缸体孔内作往复运动时基本没有油液泄漏,即具有良好的密封性。
柱塞右移时,缸体中密封⼯作腔a的容积变⼤,产⽣真空,油箱中的油液便在⼤⽓压⼒作⽤下通过吸油单向阀5吸⼊缸体内,实现吸油;柱塞左移时,缸体中密封⼯作腔a的容积变⼩,油液受挤压,便通过压油单向阀6输送到系统中去,实现压油。
如果偏⼼轮不断地旋转,液压泵就会不断地完成吸油和压油动作,因此就会连续不断地向液压系统供油。
从上述液压泵的⼯作过程可以看出,其基本⼯作条件是: 1. 具有密封的⼯作容腔; 2. 密封⼯作容腔的容积⼤⼩是交替变化的,变⼤、变⼩时分别对应吸油、压油过程; 3. 吸、压油过程对应的区域不能连通。
基于上述⼯作原理的液压泵叫做容积式液压泵,液压传动中⽤到的都是容积式液压泵。
齿轮泵的⼯作原理 上图是外啮合齿轮泵的⼯作原理图。
由图可见,这种泵的壳体内装有⼀对外啮合齿轮。
由于齿轮端⾯与壳体端盖之间的缝隙很⼩,齿轮齿顶与壳体内表⾯的间隙也很⼩,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。
当齿轮按图⽰⽅向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。
因此这⼀侧的密封容腔的体积逐渐增⼤,形成局部真空,油箱中的油液在⼤⽓压⼒的作⽤下经泵的吸油⼝进⼊这个腔体,因此这个容腔称为吸油腔。
随着齿轮的转动,每个齿间中的油液从右侧被带到了左侧。
在左侧的密封容腔中,轮齿逐渐进⼊啮合,使左侧密封容腔的体积逐渐减⼩,把齿间的油液从压油⼝挤压输出的容腔称为压油腔。
《机械原理》第四章 平面连杆机构及其设计

2. 急回特性和行程速比系数
判断下列机构是否具有急回特性:
双曲柄机构和对心曲柄滑块机构适 当组合后,也可能产生急回特性。
机械原理
小结:
第四章 平面连杆机构及其设计
2. 急回特性和行程速比系数
1)急回特性的作用:节省空回行程的时间,提高劳动生产 率。 2)急回特性具有方向性,当原动件的回转方向改变时,急 回的行程也跟着改变。 3)对于有急回运动要求的机械,先确定K,再求θ。
∆DB1C1 中 : a + d ≤ b + c ∆DB2C 2 中 : b ≤ (d-a ) + c
(a ) 即 a+b≤c+d 即 a+c ≤ b+d
c ≤ (d-a ) + b (a ) + (b ),得 a ≤ c (a ) + (c ),得 a ≤ b
(b ) + (c ),得 a ≤ d
手摇唧筒
固定滑块3成为唧筒外壳,导杆4的下端固结着汲水活塞,在 唧筒3的内部上下移动,实现汲水的目的。
机械原理
2 . 平面四杆机构的演化形式 ( ) 运动副元素的逆换 4
第四章 平面连杆机构及其设计
将移动副两元素的包容关系进行逆换,并不影响两构件 之间的相对运动,但却能演化成不同的机构。
构件2 包容 构件3 导杆机构
4-2
平面四杆机构的类型和应用
1. 平面四杆机构的基本形式 2. 平面四杆机构的演化形式
机械原理
第四章 平面连杆机构及其设计
铰链四杆机构 1. 平面四杆机构的基本形式:
机架:固定不动的构件,如AD 杆 连杆:不直接与机架相连的构件,如BC杆 连架杆:直接与机架相连的构件,如AB、CD 杆 曲柄:能作整周转动的连架杆,如AB 杆 摇杆:不能作整周转动的连架杆,如CD 杆
高级机械原理全动画图解

运动轨迹与运动规律
机构的运动轨迹是指机构中某一点或 某一构件在运动时所形成的轨迹。机 构的运动规律则是指机构中某一点或 某一构件在运动时所遵循的规律,如 简谐运动、匀速运动等。了解机构的 运动轨迹和运动规律对于确定机构的 运动性能和进行机构设计具有重要意 义。
03 连杆机构全动画图解
连杆机构类型及特点
运动副
连接两个构件并使它们之间产 生相对运动的装置,如铰链、
滑轨等。
机械原理发展历程及趋势
发展历程
机械原理经历了从手工制造到机械制造、从简单机械到复杂机械、从静态分析 到动态分析的发展历程。
发展趋势
随着计算机技术的飞速发展,机械原理正朝着数字化、智能化、集成化的方向 发展,未来将更加注重机械系统的动态性能、控制精度和节能环保等方面的研 究。
07 轮系全动画图解
轮系类型及特点
定轴轮系
所有齿轮的轴线都固定不动,适 用于传递固定传动比的运动和动
力。
周转轮系
至少有一个齿轮的轴线是绕其他齿 轮的轴线转动的,可实现复杂的运 动和动力传递。
混合轮系
定轴轮系和周转轮系的组合,兼具 两者的特点,可实现更为复杂的运 动和动力传递。
定轴轮系传动比计算方法
传动比定义
输入轴转速与输出轴转速之比, 或输出轴扭矩与输入轴扭矩之比。
传动比计算
传动比等于相邻两齿轮齿数的反 比,即i=n1/n2=z2/z1,其中n
为转速,z为齿数。
注意事项
计算传动比时需考虑齿轮的旋向, 以及是否存在变位齿轮等因素。
周转轮系传动比计算方法
传动比定义
与定轴轮系相同,为输入轴转速 与输出轴转速之比,或输出轴扭 矩与输入轴扭矩之比。
THANKS FOR WATCHING
机械原理第四章常用机构

B
B
AA
C γ
F”
FF”’ C γFα
F
F’
设计:潘存云
DD
当∠BCD最小或最大时,都有可能出现γmin
此位置一定是:主动件与机架共线两处之一。
机构的传动角一般在运动链 最终一个从动件上度量。
B2
A
l1
B1
l l C2γ2
2γ1
设计:潘存云
C1
3
D
l4
死点特性
摇杆为主动件, F 且连杆与曲柄两 γ=0 次共线时,有:
曲柄摇杆机构(crank-rocker)
何为曲柄摇杆机构? 既有曲柄又有摇杆的机构。如下动画中,两个
连架杆中一个是曲柄,一个是摇杆。
曲柄摇杆机构(crank-rocker)
日常生活中常见的雷达、缝纫机等就是有曲柄 摇杆机构构成的。
双曲柄机构(double-crank)
何为双曲柄机构? 两个连架杆都是曲柄的机构。如下动画
正弦机构
曲柄滑块机构的实例
内燃机实例
曲柄滑块机构的实例
往复式抽水机
运动副转化机构的演化
曲柄滑块机构
2
2
1 4
31
2
4
3
1
34
曲柄摇杆机构
曲柄移动导杆机构
三、曲柄摇杆机构的演化
(1)取不同构件为机架,曲柄摇杆机构、 双曲柄、双摇杆可以相互演化
2
1
3
4
曲柄摇杆
2
1
3
4
双曲柄
2
1
3
4
双摇杆
(2)曲柄存在的条件(GRASHOF)
滚子从动件
为减小摩擦磨损,在 从动件端部安装一个 滚轮,把从动件与凸 轮之间的滑动摩擦变 成滚动摩擦,因此摩 擦磨损较小,可用来 传递较大的动力,故 这种形式的从动件应 用很广。
动力输送辊轴原理动画演示

动力输送辊轴原理动画演示动力输送辊轴(Power roller conveyor)是一种常见的输送设备,广泛应用于物流仓储、生产线等领域。
它通过辊轴的转动来实现物品的运输和转移。
本文将通过动力输送辊轴原理的动画演示,详细介绍其工作原理和应用。
动力输送辊轴的工作原理主要由电机、减速器、辊轴和传动机构组成。
电机通过减速器将电能转化为机械能,并传给辊轴,使其旋转。
传动机构将电机的动力传递给整个输送线的辊轴系统。
这种方式可以有效地提高工作效率和物流的流动性。
动力输送辊轴的运作过程可以分为三个关键步骤:装载、传送和卸载。
首先,物品被装载在输送线上的辊轴之上。
接着,辊轴启动并开始旋转,将物品连续传送到目的地。
最后,在目的地位置,辊轴停止旋转,物品被卸载。
动力输送辊轴的原理可以用一种简单的动画演示来进行说明。
在动画中,可以清晰地展示辊轴的旋转、物品的运动以及传送过程。
通过这样的动画形式,观众可以直观地了解到动力输送辊轴的工作原理和作用。
动画开始,观众可以看到一条长长的输送线,上面布满了辊轴。
当启动开关打开时,电机开始工作,传递动力给辊轴系统。
辊轴开始旋转,驱动物品沿着输送线移动。
观众可以清晰地看到物品在辊轴的推动下前进的过程。
在动画的后半部分,物品到达目的地位置。
电机停止工作,辊轴停止旋转。
物品停在辊轴上,并等待操作员将其从输送线上取下。
通过这样的动画演示,观众可以全方位地了解到动力输送辊轴的原理和操作步骤。
动力输送辊轴的应用非常广泛。
它可以用于物流仓储系统中的货物运输,大大提高了物流效率。
同时,在生产线上,动力输送辊轴也起到了重要的作用,将物品从一处传送到另一处,加快了生产速度。
总之,动力输送辊轴是一种高效、方便的输送设备。
通过动画演示,我们可以直观地了解到其工作原理和应用。
它的出现大大提高了物流行业和生产线的工作效率,为现代化生产与物流管理做出了重要贡献。
机械原理第四章速度瞬心及其应用一类教资

4.4 共轭曲线与共轭曲线机构(自学)
构件1曲线K1和构件2曲线K2 在点Q高副接触。
构件1、2之间的速度瞬心在点P
瞬心线S1是速度瞬心P 相对于构件1的轨迹线。
瞬心线S2是速度瞬心P 相对于构件2的轨迹线。
曲线K2包络了曲线K1的各个位置, 称K2为包络曲线, K1为被包络曲线
(大小、方向相等)
确定瞬心小结
4.2 速度瞬心在机构速度分析中的应用
P23
∞
P13
P12
情形1:求线速度
已知凸轮转速ω1,求推杆的速度。
求解过程: ①直接观察求瞬心P13、 P23 。
③求瞬心P12的速度 。
V2=V P12=μl(P13P12)·ω1
长度P13P12直接从图上量取。
ω1
1
2
3
P12
2
3
4
ω2
v2
P14→∞
P34
例题:如图所示的带有一移动副的平面四杆机构中, 已知原动件2以角速度w2等速度转动, 现需确定机构在图示位置时从动件4的速度v4。
求解过程:确定机构瞬心如图所示
P24 在P23、P34 连线和P12、P14 连线上。
P24
P13
ω2
情形2:求角速度
求解过程:①瞬心数为
高副低代的含义: 根据一定条件对平面高副机构的中高副虚拟地用低副来代替的方法。
高副低代的条件: ①代替前后机构的自由度不变; ②代替前后机构的瞬时速度和瞬时加速度不变。
高副低代的方法1
高副两元素均为圆弧
高副元素为非圆曲线
用一个含有两个低副的虚拟构件来代替高副,且两低副位置分别在两高副两元素接触点处的曲率中心。
机械原理第四章 速度瞬心及其应用概要

如图所示凸轮机构,设已知各构件尺寸和凸 轮的角速度w2,求从动件3的速度v3。
求解过程: 3 ω2 n K 2 确定构件2和3的相对瞬心P23
V3=V P23=μ l(P12P23)· ω2
P12 P23 1
n
动画演示1、2
例题:如图所示的带有一移动副的平面四杆机构中,
已知原动件2以角速度w2等速度转动, 现需确定机构 在图示位置时从动件4的速度v4。 求解过程:确定机构瞬心如图所示
vP 23 21 P21P23 vP 32 31 P31P32
∵ ∴ 2 A P21 1
Vk 31 K 21 31 3 B P31
21 // 31
P21 P23 // P31 P32
P21 、 P 31 、 P 32 位于同一条直线上。
确定瞬心小结
4.2
速度瞬心在机构速度分析中的应用
∴ω 3 =ω 2 · (P13P23/P12P23)
方向: ω 3与ω 2相反。
VP23
相对瞬心位于两绝对瞬心之间,两构件转向相反。
3.用瞬心法解题步骤:
①绘制机构运动简图; ②求瞬心的位置; ③求出相对瞬心的速度; ④求构件绝对速度V或角速度ω。
4.瞬心法的优缺点:
①适合于求简单机构的速度,机构复杂时因 瞬心数急剧增加而求解过程复杂。 ②有时瞬心点落在纸面外。 ③仅适机构(自学)
动画链接
定瞬心线:速度瞬心点相对于机架上的轨迹
动瞬心线:速度瞬心点相对于活动构件上的轨迹
由速度瞬心的概念可知:在机构的运动过程 中,动瞬心线上的每一点都有一个在定瞬心 线上相对应的点与之作无滑动的接触。
结论:动瞬心线沿定瞬心线作无滑动的滚动。
4.4 共轭曲线与共轭曲线机构(自学)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行双曲柄机构
当机构处于AB1C1D和AB2C2D时,机构的传动角γ=0,即为死点位置, 若在此位置由于偶然外力的影响,则可能使曲柄转向不定,出现误动作。 当原动件曲柄作匀速回转,从动曲柄也以相同角速度匀速同向回转,连 杆作平移运动。
机械原理动画演示
平行机构
该机构为机车驱动轮联动机构,是利用平行曲柄来消除机构死点位 置的运动不确定状态的。
机构中凸轮匀速旋转,带动从动件往复摆动,滚子接 触,摩擦阻力小,不易摩擦,承载能力较大,但运动 规律有局限性,滚子轴处有间隙,不宜高速。
该机构是通过将曲柄滑块机构中的曲柄固定演 化而成,它可将主动件的匀速回转转化为导杆 的非匀速摆动,且具有急回特性。
机械原理动画演示
插齿机
该机构由两个四杆机构组成,粉红色的杆、红色杆、绿色杆、机架组成曲柄摇杆机 构,绿色杆、橙色杆、黄色杆、机架组成摇杆滑块机构,当粉红色的曲柄匀速回转 时,绿色杆作变速摆动,通过橙色的连杆使黄色的滑块向下切削时作近似匀速运动, 往上则因曲柄摇杆机构的急回运动性质使插齿刀快速退回。
定块机构
该机构是通过将曲柄滑块机构中的滑 块固定而演化得出,它可把主动件的 回转或摆动转化为导杆相对于滑块的 往复移动。
机械原理动画演示
摇块机构
该机构是通过将曲柄滑块机构中的连杆固定而演化得出, 它可把主动件的匀速回转运动转化为导杆相对于滑块的往复 移动并随滑块摆动的形式。
机械原理动画演示
转动导杆机构
曲柄摇杆机构
曲柄AB为原动件作匀速转动,当它由AB1转到AB2位置时,转角 φ1=180°+θ,摇杆由右极限位置C1D摆到左极限位置C2D摆角为ψ,当 曲柄从AB2转到AB1时,转角φ2=180°-θ,摇杆由位置C2D返回C1D, 其摆角仍为ψ,因为 φ1>φ2 ,对应时间t1>t2,因此摇杆从C2D转到C1D较 快,即具有急回特性,其中θ为摇杆处于两极限位置时曲柄两个位置之间 所夹的锐角,称为极位夹角。
机构中凸轮匀速旋转,带动从动件往复移动,滚子接触,摩擦阻力小, 不易摩擦,承载能力较大,但运动规律有局限性,滚子轴处有间隙, 不宜高速。
机械原理动画演示
平底移动从动件盘形凸轮机构
机构中凸轮匀速旋转,带动从动件往复移动,压力角始终为零度,传力特性好, 结构紧凑,润滑性能好,摩擦阻力较小,适用于高速, 但凸轮轮廓不允许呈下 凹,因此实现准确的运动规律受到限制。
机械原理动画演示
翻台机构
本机构为翻台震实式造型机的翻台机构, 是双摇杆机构,当造型完毕后,可将翻台 F翻转180°,转到起模工作台的上面,以 备起摸。
机械原理动画演示
对心曲柄滑块机构
因导路的中线通过曲柄的回转中心而得名。该机构能把回转运动转换为往 复直线运动或作相反的转变,广泛应用于蒸汽机、内燃机、空压机以及各 种冲压机器中。
机械原理动画演示
飞轮
该机构为一对心曲柄滑块机构的应用形式,滑块为 主动件,由于飞轮的惯性,使机构冲过了两个死点 位置。
机械原理动画演示
偏心轮
该机构本质上是曲柄滑块机构,偏心轮的回转中心A到 它的几何中心B之间的距离叫偏心距,即曲柄长度。这 种机构常用于冲床、剪床及润滑油泵中。
机械原理动画演示
滚子对心移动从动件盘形凸轮机构
机械原理动画演示
移动凸轮
当盘形凸轮的回转中心趋于无穷远时,即成为移动凸轮,一般作往 复移动,多用于靠模仿形机械中 。
机械原理动画演示
形锁合凸轮
为保证凸轮机构能正常工作,必须保持凸轮轮廓与从动件相接触, 该机构是靠凸轮与从动件的特殊几何结构来保持两者的接触。
机械原理动画演示
滚子摆动从动件盘形构的应用实例,利用连杆上E点的轨迹来进行搅拌。
机械原理动画演示
夹具机构
当工件被夹紧后,BCD成一直线,机构处于死点位置,即使工 件的反力很大,夹具也不会自动松脱,该例为利用死点位置的 自锁特性来实现工作要求的。
机械原理动画演示
K=1的曲柄摇杆机构
从动件摇杆处于两极限位置时,对应主动件曲柄位置AB1、 AB2共线,即极位夹角θ=0,K=1,机构没有急回特性。
机械原理动画演示
双摇杆机构
摇杆AB为原动件,通过连杆BC带动从动件CD也 作往复摆动,虚线AB1、AB2为摇杆AB的两极限 位置,也是当摇杆AB为原动件时,机构的两死点 位置。
机械原理动画演示
双曲柄机构
当曲柄AB为原动件作匀速回转时,曲柄CD跟随作周期性的匀速圆周回转, 当曲柄从位置AB1转过φ1角到位置AB2时,从动件CD转过180°,当曲柄从 位置AB2转过φ2角到位置AB1时,从动件CD转过180°,因为φ1>φ2 ,即 t1>t2,从动曲柄的角速度不是常数,而是作变角速度回转。
机械原理动画演示
牛头刨主机构
这是一个六杆机构,曲柄整周匀速转动,带 动刨刀往复移动,该机构利用摆动导杆机构的 急回特性使刨刀快速退回,以提高工作效率。
机械原理动画演示
插床导杆机构
利用摆动导杆机构的急回特性使插刀快速退回,以提高工作效率。
机械原理动画演示
双滑块机构
该机构由曲柄滑块机构和摇杆滑块机构组成,曲柄绕A点匀速整周旋 转,带动两滑块往复移动。
机械原理动画演示
偏置曲柄滑块机构
因导路的中线不通过曲柄的回转中心 而得名。偏心距为e,c1.c2为滑块的两极 限位置, 角为极位夹角,该机构具有急 回特性。
机械原理动画演示
摆动导杆机构
该机构具有急回运动性质,且其传动角始 终为90度,具有最好的传力性能,常用于 牛头刨床、插床和送料装置中。
机械原理动画演示
机械原理动画演示
正弦机构
该机构是具有2个移动副的四杆机构,因从动件的位移与原 动曲柄的转角的正弦成正比而得名,常用于缝纫机下针机构 和其他计算装置中。
机械原理动画演示
椭圆规
动杆联接两回转副,固定导杆联接两移动副,导杆呈 十字形,动杆上各点轨迹为长短径不同的椭圆。
机械原理动画演示
曲柄压力机
该机构由曲柄摇杆机构和摇杆滑块机构组成,其中CD杆是两机构的共用 件,该机构的特点是原动件在用力不太大的情况下,可产生很大的压力, 实现增力作用,常用于行程要求不大而压力要求很大的冲压、剪切等机 械中。