多元均值不等式及其应用
三元均值不等式的证明与应用

三元均值不等式的证明与应用1.三元均值不等式的证明:设a、b、c为非负实数,且不全为0。
根据三元均值不等式的表述,我们要证明以下不等式成立:(a+b+c)/3 ≥ √(abc)证明:我们可以先将不等式两边平方得到以下等价不等式:(a+b+c)²/9 ≥ abc展开得到:(a²+b²+c²+2ab+2ac+2bc)/9 ≥ abc化简得到:a²+b²+c²+2ab+2ac+2bc ≥ 9abc将不等式两边减去2ab、2ac和2bc,得到:a²-2ab+b² +c²-2ac+a² +c²-2bc+b² ≥ 5abc化简得到:(a-b)² + (b-c)² + (c-a)² ≥ 5abc不等式左边是三个数的平方和,而右边是它们的积,由于三个非负实数的平方和≥它们的积,因此不等式成立。
2.三元均值不等式的应用:(1)证明两个数的平均值大于等于它们的几何平均值:设a和b为非负实数,且不全为0。
根据三元均值不等式,有:(a+b)/2 ≥ √(ab)化简得到:a+b ≥ 2√(ab)这就证明了两个数的平均值大于等于它们的几何平均值。
(2)证明两个数的平方和大于等于它们的两倍乘积:设a和b为非负实数,且不全为0。
根据三元均值不等式,有:(a²+b²)/2 ≥ ab化简得到:a²+b² ≥ 2ab这就证明了两个数的平方和大于等于它们的两倍乘积。
(3)求证函数的不等式:设f(x)为一个定义在[a,b]上的连续函数,并且f(x)在[a,b]上不恒为0。
那么根据三元均值不等式可得:∫[a,b]f(x)dx / (b-a) ≥ √(∫[a,b]f²(x)dx / (b-a))这个不等式可以用于证明函数的平均值大于等于它的均方根。
均值不等式在实际生活中的应用

均值不等式在实际生活中的应用在日常生活中遇到的土地利用、机械制造、广告投资等问题可用均值不等式来解决.这节主要介绍均值不等式在以上三个方面中的应用.例1 利用已有足够长的一面围墙和100米的篱笆围成一个矩形场地,问如何围才能使围成的场地面积最大?解 设围墙的邻边长为x 米,则围墙对边长为(1002)x -米,那么所围场地面积为(1002)S x x =⋅-12(1002)2x x =⋅- 2121002()125022x x +-≤=, 当且仅当21002x x =-,即25x =米时,围成的面积最大,最大值为1250平方米.机械制造业是各行业技术装备的主要提供者,为其它行业的发展提供必不可少的基础条件,市场需要工厂生产不同规格的零件去满足不同的需求,如果要利用同样的材料制造不同特点的产品,那么此时会用到均值不等式.例2 用一块钢锭铸造一个厚度均匀,且全面积为2的正四棱锥形有盖容器,设容器高为h 米,盖子的边长为a 米,容器的容积为V ,问当a 为何值时,V 最大,并求最大值.解 因为底面积为2a,四个侧面积均为12242S a =+=,整理得a =(0)h <,而容积213V ha =21131h h =⋅+1113h h=⋅+, 由均值不等式,得11163()V h h =≤=+,当且仅当1h h=时,取等号,即1h =,2a =时,容器的容积最大,其最大值为16立方米. 近年来广告业一场突起,可以说为企业的生存和发展劈荆斩棘,在一定条件下,销售量是广告费的增函数,但销售应有极限,盲目加大投入,企业必将亏损,所以企业在策划这方面时,应该运用均值不等式检测是否合理.例3 某企业准备投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系式为311x Q x +=+ (0)x ≥,已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若每件售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之差,求年广告费投入多少时,企业年利润最大?解 设企业年利润为W 万元,由已知条件,知年成本为(323)Q +万元,年收入为(323)150%50%Q x +-万元,则年利润(323)150%50%(323)W Q x Q =+--+,整理得298352(1)x x W x -++=+ (0)x ≥. 由于2(1)100(1)642(1)x x W x -+++-=+13250()21x x +=-++5042≤-=, 因此当且仅当13221x x +=+,即7x =时,W 有最大值,最大值为42万元.。
均值不等式及其应用详解

解:设DQ长为y(m),则
x 4 xy 200
2
A
M
N
B
故:
200 x y 4x
2
E
F
(2)解: x 0
s 4200x 210 4xy 80 2 y 400000 2 38000 4000 x x2
2
2
400000 S 38000 4000 x x2
分析二、 挖掘隐含条件
∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 3 1 可用均值不等式法 ∵0<x< ,∴1-3x>0 3 1 1 3 x 1 3 x 1 2 ∴y=x(1-3x)= 3x(1-3x)≤ ( ) 3 12 当且仅当 3x=1-3x 即x=1 时 y
3
2
x 4000 当且仅当 200吨时,每吨的平均成本最低
不等式定理及其重要变形:
(定理) a b 2ab(a, b R)
2 2
ab ab (推论) 2
( a, b R )
ab
ab 2 ( ) 2
1 例1、已知:0<x< ,求函数y=x(1-3x)的最大值 3 分析一、 原函数式可化为:y=-3x2+x, 利用二次函数求某一区间的最值
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
即此时
1 y 2x x 而 2 2 2 x y 1 2 y 2 2
ymin 3 2 2
本题小结: 用均值不等式求最值时,要注意检验最值存在的 充要条件,特别地,如果多次运用均值不等式求
最值,则要考虑多次“≥”(或者“≤”)中取
均值不等式应用

均值不等式应用在实际应用中,均值不等式有一些常用的技巧,可以帮助我们更方便地应用和理解它们。
1.对称性:均值不等式对于多个变量的情况,通常具有对称性。
这意味着可以通过交换变量的位置来得到等价的不等式。
例如,对于实数$a,b,c$,有$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$ 和$\sqrt{\frac{b^2+c^2}{2}} \geq \frac{b+c}{2}$,可以通过交换$a$和$c$得到$\sqrt{\frac{a^2+c^2}{2}} \geq \frac{a+c}{2}$。
利用这个对称性,可以在一些情况下简化不等式的推导过程。
2.递增性:均值不等式通常对于多个变量的情况是递增的。
这意味着如果变量的取值不变,但其中一个变量增加了,那么均值不等式的左边将比右边更大。
例如,对于实数$a,b$,有$\sqrt{ab} \leq \frac{a+b}{2}$,如果将$b$增加为$b+c$,则有$\sqrt{a(b+c)} \leq \frac{a+b+c}{2}$。
利用这个递增性,可以在一些情况下通过增加变量的值来简化不等式的推导过程。
3.平方技巧:当不等式中涉及到平方时,可以通过对不等式同时两边取平方来简化推导过程。
例如,对于实数$a,b$,有$\sqrt{a^2b^2} \leq\frac{a^2+b^2}{2}$,两边同时平方得到$a^2b^2 \leq\frac{(a^2+b^2)^2}{4}$,再进行化简推导。
需要注意的是,平方技巧可能会引入额外的解,因此在使用此方法时需要注意检查这些额外的解是否符合原始问题的要求。
4.归纳思想:对于具有多个变量的复杂不等式问题,可以利用归纳思想逐步推导出目标不等式。
具体来说,可以先考虑两个变量的情况,再逐步增加变量的个数,通过观察和推导相应的不等式,逐步得到目标不等式的结论。
这种思想在解决一些较为复杂的均值不等式问题时非常有帮助。
多元均值不等式证明

多元均值不等式证明多元均值不等式是数学中的基本不等式之一。
它是对于一组数的加权平均值与各个数的关系的一个不等式,它可以广泛应用于统计学、经济学和物理学等领域中。
多元均值不等式在解决平衡分配问题、几何平均问题、协方差问题等方面发挥着极为重要的作用,因此具有广泛的应用价值。
多元均值不等式的基本形式如下:设a1,a2,...,an为n个非负实数,k1,k2,...,kn为n个正实数且k1 + k2 + ... + kn = 1。
则有k1a1 + k2a2 + ... + knan >= a1^k1 * a2^k2 * ... * an^kn即加权平均数大于等于乘积平均数。
该不等式的证明方法主要有两种:第一种证明方法是利用Jensen不等式,对一般的凸函数进行推导,这种证明方法比较直接和简单,但是不利于人们深入理解不等式的物理本质。
第二种证明方法是利用拉格朗日乘数法和凹凸性质进行推导。
因为Jensen不等式本身是基于拉格朗日乘数法的,因此这种证明方法更加自然和直观,比较有利于人们深入理解不等式的物理本质。
对于第二种证明方法,我们可以通过以下步骤进行推导:假设不等式左侧的加权平均数为M,即M = k1a1 + k2a2 + ... + knan最大值出现在dM/dai = ki - λ = 0, i = 1,2,...,n,dM/dλ = k1 + k2 + ... + kn - 1 = 0。
因此,我们可以得到:ai = M / ki^(1/k), i = 1,2,...,n。
这里ki^(1/k)是几何平均数,而M是加权平均数,在这里它们同时达到最大值。
我们还需要证明不等式右侧的乘积平均数不小于M。
假设不等式右侧的乘积平均数为G,则有:G = (a1^k1 * a2^k2 * ... * an^kn)^(1/k1+k2+...+kn)根据均方差不等式,我们可以得到:a1^k1 * a2^k2 * ... * an^kn <= (k1a1^2 + k2a2^2 + ... + knan^2)因此,我们可以得到:G = (a1^k1 * a2^k2 * ... * an^kn)^(1/k1+k2+...+kn) <= (k1a1^2 + k2a2^2 + ... + knan^2)^(1/k1+k2+...+kn)其中,右侧的式子恰好是均值不等式的特例——加权平均数不小于均方根,并且在这里取等号。
三元均值不等式的加强及其应用

三元均值不等式的加强及其应用引言在数学中,不等式是研究各种数学问题的重要工具之一。
三元均值不等式是数学中一类常见的不等式,它在很多问题中起到了重要的作用。
本文将介绍三元均值不等式的加强及其应用。
一、三元均值不等式及其证明三元均值不等式是指对于任意的非负实数$a$、$b$和$c$,成立以下不等式关系:$$\f ra c{a+b}{2}\ge q\sq rt{a b}\q ua d\t e xt{(1)}$$$$\f ra c{a+b+c}{3}\g e q\sq rt[3]{ab c}\q ua d\te xt{(2)}$$这两个不等式是数学中常用的基本不等式。
下面我们来证明这两个不等式。
1.不等式(1)的证明设$x=\s qr t{a}$,$y=\sq rt{b}$,则$x$和$y$为非负实数。
根据算术-几何平均不等式,有:$$\f ra c{x+y}{2}\ge q\sq rt{x y}\q ua d\t e xt{(3)}$$由于$\sq rt{a+b}=\s qr t{x^2+y^2}\ge q\s qr t{x^2}=x$,同理$\sq rt{a+b}\ge qy$,故有:$$\f ra c{a+b}{2}=\fr a c{x^2+y^2}{2}\g e q\fr ac{x+y}{2}\g eq\s qr t{x y}=\sq rt{a b}$$因此,不等式(1)得证。
2.不等式(2)的证明设$x=\s qr t[3]{a}$,$y=\sq rt[3]{b}$,$z=\s qr t[3]{c}$,则$x$、$y$和$z$为非负实数。
根据算术-几何平均不等式,有:$$\f ra c{x+y+z}{3}\g e q\sq rt[3]{xy z}$$由于$\sq rt[3]{a+b+c}=\sq rt[3]{x^3+y^3+z^3}\g eq\s qr t[3]{x^3}=x $,同理$\sq rt[3]{a+b+c}\ge qy$,$\s qr t[3]{a+b+c}\g e qz$,故有:$$\f ra c{a+b+c}{3}=\f ra c{x^3+y^3+z^3}{3}\ge q\fr ac{x+y+z}{3}\ge q\sq rt[3]{xyz}=\sq rt[3]{ab c}$$因此,不等式(2)得证。
均值不等式及其应用

均值不等式及其应用均值不等式是初中数学中一种很重要的概念,被广泛应用在各个领域中,特别是在概率论、数论、统计学和实际问题中,都有着广泛的应用。
在本文中,我们将会介绍均值不等式的概念以及其在实际问题中的应用。
一、均值不等式的概念均值不等式是指对于一组非负实数,它们的算数平均数总是大于等于它们的几何平均数。
它的数学表达式为:若a1,a2,…,an≥0,则有:(a1+a2+…+an)/n≥(a1 * a2 * … * an)^(1/n)其中,a1,a2,…,an均为非负实数,/代表除法,*代表乘法,n代表a1,a2,…,an的个数。
这个不等式有时候也被称为算术平均值和几何平均值的不等关系。
二、均值不等式的应用1.求最大值和最小值在某些问题中,通过均值不等式,可以得到最大值或最小值。
例如,求函数f(x)=1/x在[1,2]上的最大值。
首先,我们可以对f(x)求导得到f’(x)=-1/x^2,然后将其置于均值不等式中,得到:1/2=(1+1/4)/2≥(1/x+1/y)/2化简后得到:xy≥4,因此,f(x)=1/x的最大值为f(2)=1/2。
2.证明不等式均值不等式可以用来证明某些不等式,特别是在不等式的证明中,一般都采用归纳法、绝对值法、平方和法、插叙法、套路变形法等方法来完成。
例如,我们来证明对于任意的正整数n,都有1/2+1/3+1/4+…+1/(n+1)≥ln(n+2)-1。
证明:首先,将1/2+1/3+1/4+…+1/n-1/n+1写成一个和式,得到:1/2+1/3+1/4+…+1/n-1/n+1=1/2+(1/3-1/2)+(1/4-1/3)+…+(1/n-1/n-1)+1/n+1=(1/2-1/3)+(1/3-1/4)+…+(1/n-1/n+1)+1/n+1=1/2-1/(n+1)接着,将该式和ln(n+2)-ln2相加,得到:1/2+1/3+1/4+…+1/n+1/(n+1)+ln(n+2)-ln2=1/2-1/(n+1)+ln(n+2)把该式与等式(1)做比较,我们发现不等式成立。
均值不等式公式总结及应用

均值不等式应用1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a=时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2 =6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x<,求函数14245y x x =-+-的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.已知a、b、c > 0,求证: a+b a+b+c 3 2( − ab ) ≤ 3( − abc ) 2 3
导 数 的应 用 : 1 2 2 3 1.已知f ( x ) = x + ln x,g( x ) = x 2 3 求证 : x > 1时,f ( x )的图像在g( x )的下方. 1 1 1 2.求证:∀n ∈ N , + ) > 2 − 3 ln(1 n n n
的几何平均数,当且仅当a=b=c时 的几何平均数,当且仅当a=b=c时, a=b=c 等号成立. 等号成立.
1.若0 < x < 1, 求 y = x (1 − x )的 max .
2
12 2.求 y = 3 x + 2 ( x > 0)的 min . x 3 3.求 y = 2 x + ( x > 0)的 min . 2x
n
a1 a 2 ⋯ a n 叫做这 个正数的几何平均数 叫做这n个正数的几何平均数。 个正数的几何平均数
a1 a 2 ⋯ a n n ∈ N * , a i ∈ R + ,1 ≤ i ≤ n
2.基本不等式: 基本不等式: 基本不等式
a1 + a 2 + ⋯ + a n ≥ n
n
语言表述: 语言表述:n个正数的算术平均数不小于它们
数学4-5 选修系列 数学
多元均值不等式及应用
mmqu
定理
a+b+c 3 ≥ abc , 若 a , b.c ∈ R , 那 么 3 当 且 仅 当 a = b = c时 , 等 号 成 立 。
+
推论: 推论
a+b+c 3 + ≥ abc (a, b, c ∈ R ) 3
(1)abc为定值时
当且仅当a = b = c时,等号成立.
2
16 4.求 y = 4 x + 2 min . 2的 ( x + 1)
2
1 5.已知a > b > 0,求a + 的 min b( a − b ) 6.求下列函数的最值: 1) f ( x ) = x (1 − x ),x ∈ (0, 1)
2
2) f ( x ) = x (1 − x ),x ∈ (0, 1)
*
2 3.已知f ( x ) = ln x + x +1 1)求f ( x )的最小值 1 1 1 1 2)求证: n + 1) > + + + … + ln( (n ∈ N * ) 3 5 7 2n + 1
(2)a + b + c为定值时
a + b + c ≥ 3 abc
3Hale Waihona Puke a+b+c 3 abc ≤ ( ) 3 当且仅当a = b = c时,等号成立.
关于“平均数”的概念: 关于“平均数”的概念: 1.如果 a1 , a2 ,⋯ , an ∈ R , n > 1且n ∈ N
+ *
推
则:
广
a1 + a 2 + ⋯ + a n 叫做这n个正数的算术平均数。 个正数的算术平均数 叫做这 个正数的算术平均数。 n