第8课:从解析式看函数的性质
一次函数的图象和性质教案人教版

课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教材分析
本节课的教学内容是“一次函数的图象和性质”,所使用的是人教版教材。该章节内容主要涉及一次函数的图象特点、斜率与截距的概念、以及一次函数的性质。学生在学习本节课之前,应已掌握一次函数的基本概念,如函数、自变量、因变量等。
- 自主阅读预习资料:按照预习要求,自主阅读预习资料,理解一次函数的基本概念。
- 思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
三、学习者分析
1. 学生已经掌握了哪些相关知识:在开始本节课之前,学生应该已经学习了初中阶段的一次函数、直线方程等相关知识,对于函数的基本概念、自变量与因变量的关系有一定的了解。他们应该能够理解函数的基本性质,如单调性、连续性等,并能够运用这些知识解决一些简单的问题。
2. 学生的学习兴趣、能力和学习风格:学生的兴趣可能在于通过观察和实验来发现一次函数的图象和性质,他们可能对通过实际例子来理解数学概念感兴趣。在学习能力方面,学生可能需要通过具体的例子和实践活动来理解和掌握一次函数的图象和性质。他们的学习风格可能偏向于动手操作和合作学习。
3. 实践评价:通过实践活动,了解学生对一次函数的应用能力,及时发现问题并进行解决。教师可以通过设计实践活动,如小组讨论、实验等,了解学生对一次函数的应用能力,针对存在的问题进行针对性教学。
4. 期末评价:通过期末考试,了解学生对一次函数的图象和性质的掌握程度,及时发现问题并进行解决。期末考试是对学生学习成果的一次全面检验,教师应认真分析考试结果,针对存在的问题进行针对性教学。
函数的表示法(公开课)省公开课获奖课件说课比赛一等奖课件

y
y
2
A
2
B
0
2
y
x
2
C
0
2x
0y 2
x
2
D
0
x
2
思索交流
x+2, (x≤-1)
5. 已知函数f (x)= x2, (-1<x<2)
2x, ( x≥2 )
若f(x)=3, 则x旳值是( D )
A. 1
B.
1或
3 2
C. 1,
3,
3 2
D. 3
怎样求函数解析式
一、【配凑法(整体代换法)】
若已知 f (g(x)) 旳体现式,欲求 f (x) 旳体现式, 可把 g(x)看成一种整体,把右边变为由 g(x) 构成 旳式子,再换元求出 f (x) 旳式子。
x
例3 、国内跨省市之间邮寄信函,每封信函旳质量和相应旳邮资如表.
信函质量 (m)/g
0<m≤20
邮资(M)/元 1.20
20<m≤40 2.40
40<m≤60 3.60
60<m≤80 4.80
80<m≤100 6.00
画出图像,并写出函数旳解析式.
解:邮资是信函质量旳函数,函数图像如图。
函数旳解析式为
7.0
9.4
10.0
11.0
y 9 x 32 5
解析法
(6)某气象站测得本地某一天旳气温变化情况如图所示:
温度
8
T (℃)
6
4
2
0
2
时间
2 4 6 81
1
1
1
1
2
2
t2
( 时
高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
函数的性质教案8篇

函数的性质教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!函数的性质教案8篇教案是教师与学生之间沟通的桥梁,教案是教学的路线图,帮助我们不偏离轨道,以下是本店铺精心为您推荐的函数的性质教案8篇,供大家参考。
北师大版数学八年级上册第5章第8课时用二元一次方程组确定一次函数表达式课件

1. 在平面直角坐标系中,直线l经过点(2,3), (-1,-3),求直线l的解析式.
【例2】(课本P127习题)在弹性限度内,弹簧的长度 y(cm)是所挂物体质量x(kg)的一次函数.当所挂物体 的质量为1 kg时,弹簧长15 cm;当所挂物体的质量为3 kg 时,弹簧长16 cm. (1)写出y与x之间的关系式; (2)求当所挂物体的质量为4 kg时,弹簧的长度.
D. t=2-0.008R
知识点三 根据图象求一次函数表达式
选取图象上的___两__个_____特殊点,再用待定系数法求出一 次函数的表达式.
3. 已知一次函数的图象如图5-8-1,则此函数的解析式 为____y_=__2_x_-__8____.
课堂导练
【例1】已知一次函数y=kx+b,当x=-4时,y的值为9; 当x=6时,y的值为3,求该一次函数的关系式.
3. (创新变式)已知一次函数y=kx+b的自变量的取值范围 是-4≤x≤2,相应函数值的取值范围是-5≤y≤7,求此 函数的解析式.
谢谢
根据实际问题给出的条件选取___两__个_______等量关系,再 用待定系数法求出一次函数的表达式.
2. 有一段导线,在0 ℃时电阻为2 Ω,温度每增加1 ℃,
电阻增加0.008 Ω,那么电阻R(Ω)关于温度t(℃)的函数
Байду номын сангаас
关系式为( A )
A. R=2+0.008t
B. R=2-0.008t
C. t=2+0.008R
探究新知
知识点一 用待定系数法确定一次函数表达式
高考第8课函数的图象和周期性

【答案】
【解析】因为当x≥0时,
f(x)= (|x-a2|+|x-2a2|-3a2),
所以当0≤x≤a2时,
f(x)= (a2-x+2a2-x-3a2)=-x;
(3)要得到y=|f(x)|的图象,可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.
【解答】(1)因为y=1+ ,先作出函数y= 的图象,将其图象向右平移一个单位长度,再向上平移一个单位长度,即得到y= 的图象,如图(1)所示.
(2)作出y= 的图象,保留y= 图象中x≥0的部分,加上y= 的图象中x>0部分关于y轴的对称部分,即得y= 的图象,如图(2)实线部分所示.
利用函数图象解题
例2(2014·中华中学)已知函数y= 的图象与函数y=kx-2的图象恰有两个交点,那么实数k的取值范围是.
【思维引导】根据绝对值的意义作出函数y= 的图象,然后由于函数y=kx-2的图象是过定点(0,2)的一条直线,结合交点个数,确定参数k的范围.
【答案】(0,1)∪(1,4)
(例2)
2.(必修1P31练习2改编)已知f(x)的图象如图所示,则f(x)=.
(第2题)
【答案】
【解析】分段考虑,由于都是一次函数,所以从端点确定,分别过(-1,0),(0,1),(0,0),(2,-1),从而求出解析式.
3.(必修1P45习题9改编)已知函数f(x)是奇函数且周期为3,若f(1)=-1,则f(2 015)=.
湘教版高一英语必修一电子课本

湘教版高一英语必修一电子课本1.1 集合1.1.1 集合的含义和表示1.1.2 集合的包含关系1.1.3 集合的交与并1.2 函数的概念和性质1.2.1 对应、映射和函数阅读与思考1.2.2 表示函数的方法数学实验1.2.3 从图像看函数的性质1.2.4 从解析式看函数的性质1.2.5 函数的定义域和值域1.2.6 分段函数1.2.7 二次函数的图像和性质——增减性和最值1.2.8 二次函数的图像和性质——对称性数学实验小结与复习第2章指数函数、对数函数和幂函数问题探索阅读与思考2.1 指数函数2.1.1 指数概念的推广2.1.2 指数函数的图像和性质阅读与思考2.2 对数函数2.2.1 对数的概念和运算律2.2.2 换底公式阅读与思考2.2.3 对数函数的图像和性质2.3 幂函数2.3.1 幂函数的概念2.3.2 幂函数的图像和性质2.4 函数与方程2.4.1 方程的根与函数的零点2.4.2 计算函数零点的二分法数学实验2.5 函数模型及其应用2.5.1 几种函数增长快慢的比较2.5.2 形形色色的函数模型小结与复习2020高中新教材总体介绍必修课程包括五个主题,分别是预备知识、函数、几何与代数、概率与统计、数学建模活动与数学探究活动。
数学文化融入课程内容。
必修课程共8学分144课时选择性必修课程包括四个主题,分别是函数、几何与代数、概率与统计、数学建模活动与数学探究活动。
数学文化融入课程内容。
选择性必修课程共6学分108课时新教材以中国学生发展核心素养体系为指导,在理解数学学科本质,把我数学学科核心素养的内涵与价值、结构与要素、表现与水平的基础上,明确高中数学课程的育人功能。
在深入研究数学的育人价值、挖掘数学课程内容蕴含的育人资源的基础上,认真研究基于数学学习活动,构建作业系统(练习、习题、复习题以及应用性、开放性、探究性问题),创新呈现方式等。
中学数学课程与教学中的函数及其思想

中学数学课程与教学中的函数及其思想---史宁中教授访谈录20 世纪以来, 世界各国中学数学中关于代数的内容逐渐从以解方程为中心转到以研究函数为中心。
[1 ] 现在, 函数概念已经成为中学数学中最为重要的概念之一。
因此, 在中学数学课程改革中, 理解函数思想, 把握函数本质, 处理好函数的教学是很重要的。
针对上述问题, 我对史宁中教授进行了访谈, 下面是经过整理后的访谈记录。
一、函数及其思想问: 函数概念是中学数学中最重要的概念之一, 函数定义的形成经历了较长的演变过程,您可以谈谈函数定义的发展历史吗?▲史教授: 是的, 函数定义的形成确实经历了较长的时间。
即使在今天, 在我们数学教科书中, 函数的定义在初中、高中、大学还是有所不同的, 这也从一个侧面反映了函数定义的发展历史。
最初, 是德国数学家莱布尼茨(Leibniz)在他的一部手稿中, 用到了Function 一词。
是用来表示任何一个随着曲线上的点变动而变动的量, 例如, 切线、法线、次切线等的长度和纵坐标等, 那是在17 世纪(1673 年) 。
[2 ]到了18 世纪(1718 年) ,贝努利(Bernoulli)给出了函数的解析定义: 是由变量x 和常数组成的式子。
欧拉( Euler) 首先给出了函数的变量定义(1755 年) : “如果某变量以如下方式依赖于另一些变量, 即当后者变化时, 前者本身也发生变化, 则称前一个变量是后一些变量的函数。
”可以看到, 我国初中数学教科书中关于函数的定义就采用了这一说法。
后来, 黎曼(Riemann) 给出了函数的对应定义(1851 年) : “我们假定Z 是一个变量, 如果对它的每一个值, 都有未知量W 的一个值与之对应, 则称W 是Z 的函数。
”这可以被看作我国高中数学教科书中关于函数定义的雏形。
到了上个世纪(1939 年) , 布尔巴基学派认为, 函数的定义应当强调关系, 于是借用了笛卡儿积: 若X 、Y 是两个集合, 二者的笛卡儿积是指集合{ ( x , y | x ∈X , y ∈Y) } , 笛卡儿积中的子集F 被称为x 与y 之间的一种关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是;当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是.
3、函数最大(小)值的定义
【探究3】利用单调性求函数的最值
求函数f(x)= 在区间[2,5]上的最大值与最小值.
当堂检测【熟能生巧】
检测内容
知识点运用清单(必填)
1、已知函数f(x)= 在区间[1,2]上的最大值为A,最小值为B,则A-B等于()
A. B.- C.1 D.-1
2、已知函数f(x)是定义域为R的奇函数,且f(-1)=2,则f(0)+f(1)=________.
3、已知函数y=f(x)+x是偶函数,且f(2)=1,则f(-2)等于()
A.-1 B.1 C.-5 D.5
4、函数y=x+ ()
A.有最小值 ,无最大值B.有最大值 ,无最小值
C.有最小值 ,有最大值2 D.无最大值,也无最小值
5、设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()
(1)下列函数为奇函数的是()
A.y=|x|B.y=3-x
C.y= D.y=-x2+14
(2)已知函数y=f(x)是R上的奇函数,且当x>0时,f(x)=x-x2,则f(-2)=_______.
证明f(x)在区间D上的单调性的步骤:
(1)设元:设x1、x2∈D且x1<x2;
(2)作差:将函数值f(x1)与f(x2)作差;
(3)变形:将上述差式(因式分解、配方等)变形;
(4)判号:对上述变形的结果的正、负加以判断;
(5)定论:对f(x)的单调性作出结论.其中变形为难点,变形一定要到位,即变形到能简单明了的判断符号的形式为止,切忌变形不到位就定号.
【探究2】函数单调性的证明
求证:函数f(x)=x+ 在[1,+∞)上是增函数.
A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)
C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)
探究案【养成分析习惯初步掌握方法】
学法指导
探究问题
自我小结
判断函数奇偶性的方法:(1)定义法:若函数定义域不关于原点对称,则函数为非奇非偶函数;若函数定义域关于原点对称,则应进一步判断f(-x)是否等于±f(x),或判断f(-x)±f(x)是否等于0,从而确定奇偶性.
【探究1】函数奇偶性的判断与应用
函数单调性的判断与证明
预习案【适记内容理解关键】
学法指导
预习内容
我的疑惑
参看教材P38—P40,从解析式的角度掌握函数的奇偶性、单调性、最值.
1、函数奇偶性的定义
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做;如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做.
1.当函数图象不易作或无法作出时,往往运用函数单调性求最值.
2.函数的最值与单调性的关系:
(1)若函数在闭区间[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a),最小值为f(b);(2)若函数在闭区间[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b),最小值为f(a);(3)求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最大(小)值.
高一年级数学必修(一)导学案编号BX1—08编制:李国龙审核:审批:使用时间:
课题:从解析式看函数的性质
【学习目标】
1、从解析式的理解函数奇偶性、单调性、最值的定义;
23、函数奇偶性、单调性的应用.
【学习重点】
函数奇偶性判断与应用;利用函数的单调性求最值
【学习难点】
一般地,设函数y=f(x)的定义域为I.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≤M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的.
如果存在实数M满足:(1)对于任意x∈I,都有f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的.