一次函数压轴题精选
一次函数压轴题(含答案)

一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。
$x$ 轴分别交于$A$。
$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。
1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。
2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。
3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。
考点:一次函数综合题。
分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。
解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。
因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。
又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。
一次函数压轴题(提高,有答案)

1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=,BC=(用含t的代数式表示);②当点D是线段BC的中点时,S=;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE 为腰的等腰三角形时,直接写出点C的坐标.2.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(0,﹣3),点E(3,m)在直线y=2x上,将△AOB沿射线OE方向平移,使点O与点E重合,得到△CED(点A、B分别与点C,D对应),线段CE与y轴交于点F,线段AB,CD分别与直线y=2x交于点P,Q.(1)求点C的坐标;(2)如图②,连接AC,四边形ACQP的面积为(直接填空);(3)过点C的直线CN与直线y=2x交于点N,当∠NCE=∠POB时,请直接写出点N的坐标.3.如图1,A(﹣4,0).正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.4.如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE =S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.5.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α=45°,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,请直接写出点P的坐标;若不能,试说明理由.6.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S△ABC=;(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.7.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.8.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO的面积为S,求S 与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE的延长线上取点F,连接OF、AF,且OF=OD,当∠DF A=30°时,求S的值.9.如图,直线y=﹣x+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO 方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤1.5).(1)直接写出A,B两点的坐标.(2)当t为何值时,PQ∥OB?(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△APQ为直角三角形?(直接写出结果)10.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P 作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.11.在平面直角坐标系xOy中,对于图形G和图形M,它们关于原点O的“中位形”定义如下,图形G上的任意一点P,图形M上的任意一点Q,作△OPQ平行于PQ的中位线,由所有这样的中位线构成的图形,叫图形G和图形M关于原点O的“中位形”.已知直线y=x+b分别与x轴,y轴交于A、B,图形S是中心为坐标原点,且边长为2的正方形.(1)如图1,当b=2时,点A和点B关于原点O的“中位形”的长度是(请直接写出答案);(2)如图2,若点A和点B关于原点O的“中位形”与图形S有公共点,求b的取值范围;(3)如图3,当b=﹣6时,图形S沿直线y=x平移得到图形T,若图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,请直接写出图形T的中心的横坐标t的取值范围.12.如图1,在平面直角坐标系中,直线AC:y=﹣3x+3与直线AB:y=ax+b交于点A,且B(﹣9,0).(1)若F是第一象限位于直线AB上方的一点,过F作FE⊥AB于E,过F作FD∥y轴交直线AB于D,D 为AB中点,其中△DFF的周长是12+4,若M为线段AC上一动点,连接EM,求EM+MC的最小值,此时y轴上有一个动点G,当|BG﹣MG|最大时,求G点坐标;(2)在(1)的情况下,将△AOC绕O点顺时针旋转60°后得到△A′OC',如图2,将线段OA′沿着x轴平移,记平移过程中的线段OA′为O′A″,在平面直角坐标系中是否存在点P,使得以点O′,A″,E,P为顶点的四边形为菱形,若存在,请求出点P的坐标,若不存在,请说明理由.13.如图,在平面直角坐标系xOy中,点A是一次函数y=3x﹣20与y=﹣x+12的交点,过点A分别作x,y轴的垂线段,垂足分别是B和C,动点P和Q以1个单位/秒的速度,分别从点C和B出发,沿线段CA和BO 方向,向终点A和O运动,设运动时间为t秒.(1)证明:无论运动时间t(0<t<8)取何值,四边形OP AQ始终为平行四边形;(2)当四边形OP AQ为菱形时,请求出此时PQ的长及直线PQ的函数解析式;(3)当OP满足2≤OP≤5时,连接PQ,直线PQ与y轴交于点M,取线段AC的中点N,试确定三角形MNP的面积S与运动时间t之间的函数关系,并求出S的取值范围.14.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.15.如图,已知直线AB与正比例函数y=kx(k≠0)的图象交于点A(5,5),与x轴交于点B与y轴交于点C (0,).点P为直线OA上的动点,点P的横坐标为t,以点P为顶点,作长方形PDEF,满足PD∥x轴,且PD=1,PF=2.(1)求k值及直线AB的函数表达式;并判定t=1时,点E是否落在直线AB上,请说明理由;(2)在点P运动的过程中,当点F落在直线AB上时,求t的值;16.对于平面直角坐标系xOy中的点A和点P,若将点P绕点A逆时针旋转90°后得到点Q,则称点Q为点P 关于点A的“垂链点”,图1为点P关于点A的“垂链点”Q的示意图.(1)已知点A的坐标为(0,0),点P关于点A的“垂链点”为点Q;①若点P的坐标为(2,0),则点Q的坐标为.②若点Q的坐标为(﹣2,1),则点P的坐标为.(2)如图2,已知点C的坐标为(1,0),点D在直线y=x+1上,若点D关于点C的“垂链点”在坐标轴上,试求出点D的坐标.(3)如图3,已知图形G是端点为(1,0)和(0,﹣2)的线段,图形H是以点O为中心,各边分别与坐标轴平行的边长为6的正方形,点M为图形G上的动点,点N为图形H上的动点,若存在点T(0,t),使得点M关于点T的“垂链点”恰为点N,请直接写出t的取值范围.17.如图,存平面直角坐标系中,直线AC与x轴交手点C,与y轴交于点A,OA=,OC=OA,分别以OA,OC力作矩形OABC,直线OD:y=x交AB于点D,交直线AC于点H.(1)求直线AC的解析式及点H的坐标;(2)如图2,P为直线OD上一动点,E点,F点为直线AC上两动点(E在上,F在下),满足EF=,当(3)如图3,将△AHD绕着点O顺时针旋转α(0°≤α≤60°),记旋转后的三角形为△A′H′D′.线段A′H′所在的直线交直线AC于点M(M不与A、C重合),交x轴于点N,在平面内是否存在一点Q,使得以C,M,N,Q四点形成的四边形为菱形?若存在,直接写出Q点的坐标;若不存在,请说出理由.18.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y=4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.19.如图,直线y=x+6与y轴交于点A,与x轴交于点B,点E为线段AB的中点,∠ABO的平分线BD 与y轴相交于点D,A、C两点关于x轴对称.(1)一动点P从点E出发,沿适当的路径运动到直线BC上的点F,再沿适当的路径运动到点D处.当P的运动路径最短时,求此时点F的坐标及点P所走最短路径的长;(2)点E沿直线y=3水平向右运动得点E',平面内是否存在点M使得以D、B、M、E'为顶点的四边形为菱形,若存在,请直接写出点E′的坐标;若不存在,请说明理由.20.若两个一次函数与x轴的交点关于y轴对称,则称这两个一次函数为“对心函数”,这两个与x轴的交点为“对心点”.(1)写出一个y=2x+6的对心函数:,这两个“对心点”为;(2)直线l1,经过点A(﹣1,0)和B(0,﹣3),直线l1的“对心函数”直线l2与y轴的交点D位于点(0,1)的上方,且直线l1与直线l2交于点E,点C为直线l2的“对心点”,点G是动直线l2上不与C重合的一个动点,且BG=BA,试探究∠ABG与∠ECA之间的数量关系,并说明理由;(3)如图,直线l3:y=x+2与其“对心函数”直线l4的交点F位于第一象限,M.N分别为直线l3、l4的“对心点”,点P为线段MF上一点(不含端点),连接NP;一动点H从N出发,沿线段NP以1单位/秒的速度运动到点P,再沿线段PF以单位/秒的速度运动到点F后停止,点H在整个运动过程中所用最短时间为6秒,求直线l4的解析式.21.如图,在平面直角坐标系中,矩形OABC的边OA、OC的边分别在y轴、x轴正半轴上,OA=6,OC=8,点P从点O出发以每秒2个单位长度的速度向终点C运动,点P不与点O重合,以OP为边在OC上方作正方形OPEF,设正方形OPEF与△AOC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).(1)直线AC所在直线的解析式是;(2)当点E落在线段AC上时,求t的值;(3)在点P运动的过程中,求S与t之间的函数关系式;(4)设边OC的中点为K,点C关于点P的对称点为C′,以KC′为边在OC上方作正方形KC′MN,当正方形KC′MN与△ABC重叠部分图形为三角形时,直接写出t的取值范围.(提示:根据P点的运动,可在草纸上画出正方形KC′MN与△ABC重叠部分图形为不同图形的临界状态去研究)22.在平面直角坐标系中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形“.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,4),F(3,2),G(4,0)中,能够成为点M,P的“极好菱形“的顶点的是;(2)若点M,P的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标;(3)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为12,且与直线y=x+b有公共点时,请写出b的取值范围.23.在平面直角坐标系中,四边形OABC是菱形,点A坐标为(3,4),直线AC交y轴于点D,AB边交y轴于点E.(1)如图1,求直线AC解析式;(2)如图2,点F从点C出发沿射线CA运动,点F的横坐标为m,△FOD面积为S,求S与m的函数关系式,并写出自变量取值范围;(3)如图3,在(2)的条件下,当∠OFD+∠ABD=∠FDO时,求点F坐标.24.图1,在平面直角坐标系xOy中,直线l1,l2都经过点A(﹣6,0),它们与y轴的正半轴分别相交于点B,C,且∠BAO=∠ACO=30⁰(1)求直线l1,l2的函数表达式;(2)设P是第一象限内直线l1上一点,连接PC,有S△ACP=24.M,N分别是直线l1,l2上的动点,连接CM,MN,MP,求CM+MN+NP的最小值;(3)如图2,在(2)的条件下,将△ACP沿射线P A方向平移,记平移后的三角形为△A′C′P′,在平移过程中,若以A,C',P为顶点的三角形是等腰三角形,请直接写出所有满足条件的点C′的坐标.25.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:距离地面高度(千米)012345所在位置的温度(℃)201482﹣4(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?26.如图1,已知平行四边形ABCD,BC∥x轴,BC=6,点A的坐标为(1,4),点B的坐标为(﹣3,﹣4),点C在第四象限,点P是平行四边形ABCD边上的一个动点.(1)若点P在边CD上,BC=CP,求点P的坐标;(2)如图2,若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=﹣x+1上,求点P的坐标;(3)若点P在边AB,AD,BC上,点E是AB与y轴的交点,如图3,过点P作y轴的平行线PF,过点E 作x轴的平行线E,它们相交于点F,将△PEF沿直线PE翻折,当点F的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)27.如图,直线y=﹣2x+b分别于x轴、y轴交于A、B两点,与直线y=kx交于点C(2,4),平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,直线l分别交直线AB、直线OC于点D、E,以DE为边向左侧作正方形DEFG,当直线l经过点A时停止运动,设直线l的运动时间为t(秒).(1)b=,k=;(2)设线段DE的长度为d(d>0),求d与t之间的函数关系式;(3)当正方形DEFG的边GF落在y轴上,求出t的值;(4)当0≤t<2时,若正方形DEFG和△OCB重叠部分面积为4,则t的值为.28.如图,在平面真角坐标系中,点A的坐标是(﹣,0),点B的坐标是(0,1).点B和点C关于原点对称.点P是直线AB位于y轴右侧部分图象上一点,连接CP,已知S△BPC=S△ABC,(1)求直线AC的解析式;(2)如图2,△AOC沿着直线AC平移得△A′O′C′,平移后的点A′与点C重合点F为直线AC上的一动点,当PF+FC′的值最小时,请求出PF+FC′的最小值及此时点F的坐标;(3)如图3,将△PBC沿直线P A翻折得△PBG,点N为平面内任意一动点,在直线P A上是否存在点M,使得以点M、N、P、G为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.29.在平面直角坐标系xOy中,中心为点C,正方形的各边分别与两坐标轴平行,点P是与C不重合的点,点P 关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ =2CM,则称Q为点P关于正方形的仿射点.图1为点P关于正方形的仿射点Q的示意图.(1)如图2当正方形的中心为原点O,边长为2时.①判断点F(2,0),H(3,3)关于该正方形的仿射点存在的是,对于存在的点,直接写出其仿射点的坐标为;②若点P在直线y=﹣x+3上,且点P关于该正方形的仿射点Q存在,则点P的横坐标的取值范围是;(2)若正方形的中心C在x轴上,边长为2,直线y=﹣x+2与x轴、y轴分别交于点A、B,若线段AB上存在点P,使得点P关于该正方形的仿射点Q存在,并使Q所有仿射点在正方形的内部或边上,直接写出正方形的中心C的横坐标的取值范围是.30.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)点A(2,1)的“伴随点”A′的坐标为.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)在(2)的条件下,点C在函数y=kx+3的图象上,点D是点C关于原点的对称点,点D的“伴随点为D'.若点C在第一象限,且CD=DD',直接写出此时“伴随点”D′的坐标,31.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.32.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于C.(1)如图1若直线AB的解析式:y=﹣2x+12①求点C的坐标;②求△OAC的面积;(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,是探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.33.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C 点的横坐标为1.(1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由.34.已知:如图,在平面直角坐标系中,O为坐标原点.直线AB:y=mx+8m(m≠0)交x轴负半轴于A,交y 轴正半轴于B,直线BC:y=nx+2n(n≠0)交x轴负半轴于C,且∠OAB=2∠OBC.(1)求m、n的值;(2)点P(t,0)是x轴上一动点,过P作y轴的平行线,交AB于Q,交BC于R,设QR=d,求d与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,当点P在线段OA上,且d=9时,作点Q关于y轴的对称点T,连接CT,过B作BH⊥CT于H,在直线AB上取点M,过M作MN∥OH交直线BC于点N,若以O、H、M、N为顶点的四边形是平行四边形,求点N的坐标.35.如图,在平面直角坐标系中,O为坐标原点,直线y=kx﹣3k与y轴交于点A,与x轴交于点B,OA=OB.(1)求直线AB的解析式;(2)点C在第二象限,AC∥x轴,连接OC,将线段OC绕着点C逆时针旋转90°得到线段CD,连接OD 交线段AB于点E,设点C的横坐标为t,点E的纵坐标为m,求m与t的函数关系式;(3)在(2)的条件下,连接AD、BD,过点C作CF⊥BD于点F,交AD于点G,若CG=DE,求点E的坐标.36.【感知】如图①,在平面直角坐标系中,点C的坐标为(0,0.5),点A的坐标为(1,0),将线段CA绕着点C按逆时针方向旋转90°至线段CB,过点B作BM⊥y轴,垂足为点M,易知△AOC≌△CMB,得到点B的坐标为(0.5,1.5).【探究】如图②,在平面直角坐标系中,点A的坐标为(1,0),点C的坐标为(0,m)(m>0),将线段CA绕着点C按逆时针方向旋转90°至线段CB(1)求点B的坐标.(用含m的代数式表示)(2)直接写出点B所在直线对应的函数表达式.【拓展】如图③,在平面直角坐标系中,点A的坐标为(1,0),点C在y轴上,将线段CA绕着点C按逆时针方向旋转90°至线段CB,连结BO、BA,则BO+BA的最小值为.37.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.38.如图1,已知直线l:y=﹣2x+4交y轴于点A,交x轴于点B,点C(﹣3,0),D是直线l上的一个动点.(1)求点B的坐标,并求当S△BCD=S△BOA时点D的坐标;(2)如图2,以CD为边在CD上方作正方形CDEF,请画出当正方形CDEF的另一顶点也落在直线上的图形,并求出此时D点的坐标;(3)当D点在l上运动时,点F是否也在某个函数图象上运动?若是请直接写出该函数的解析式:若不在,请说明理由.39.在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.40.平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K(﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=t,BC=t+(用含t的代数式表示);②当点D是线段BC的中点时,S=2;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE 为腰的等腰三角形时,直接写出点C的坐标.【解答】解:(1)①AB=BD=t,则点B(t+1,0),则点C(t+1,t+),则BC=t+,故答案为:t,t+;②当点D是线段BC的中点时,则2t=(t+1),解得:t=2,S=CD×AB=2×2=2,故答案为:2;(2)点D(t+1,|t|),×(t++|t|)×t=,解得:t=﹣2或(不合题意的值已舍去);(3)C(t+1,t+),点D(t+1,t),∵CE⊥OC,则设直线CE的表达式为:y=﹣x+b,将点C的坐标代入上式并解得:b=(t+1),即直线CE的表达式为:y=﹣x+(t+1)…①,同理直线OD的表达式为:y=x…②,联立①②并解得:x=,故点E[,],①当DE=CD时,tan∠DOB==tanα,则cosα=,DE=(x E﹣x D)÷cosα=,CD=t+﹣t=t+=DE=,整理得:17t2+10t﹣7=0,解得:t=或﹣1(舍去﹣1),故点C(,);②当DE=CE时,由等腰三角形“三线合一”知:y E=(y C+y D),即=(t++t),化简得:t2+t﹣12=0,解得:t=3或﹣4(舍去﹣4),故点C(4,);综上,点C的坐标为:(,)或(4,).2.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(0,﹣3),点E(3,m)在直线y=2x上,将△AOB沿射线OE方向平移,使点O与点E重合,得到△CED(点A、B分别与点C,D对应),线段CE 与y轴交于点F,线段AB,CD分别与直线y=2x交于点P,Q.(1)求点C的坐标;(2)如图②,连接AC,四边形ACQP的面积为24(直接填空);(3)过点C的直线CN与直线y=2x交于点N,当∠NCE=∠POB时,请直接写出点N的坐标.【解答】解:(1)点E(3,m)在直线y=2x上,则m=6,故点E(3,6),CE=AO=4,故点C(﹣1,6);(2)根据图象的平移知,四边形ACQP的面积等于▱AOEC的面积,即S四边形ACQP=S▱AOEC=AO×y C=4×6=24,故答案为:24;(3)由直线y=2x得:tan∠POB=,当∠NCE=∠POB时,tan∠NCE=tan∠POB=,①当点N在CE上方时,则CN的表达式为:y=x+b,将点C的坐标代入上式并解得:b=,故直线CN的表达式为:y=x+,将上式与y=2x联立并解得:x=,y=,故点N(,);②当点N在CE下方时,直线CN的表达式是:y=﹣x+,同理可得:点N(,);综上,点N的坐标为:(,)或(,).3.如图1,A(﹣4,0).正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.【解答】解:(1)如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,则OH=2,EH=2,故点E(﹣2,2),∠EOM=30°,OM==,设EF的函数表达式为:y=kx+,将点E的坐标代入上式并解得:k=,故直线EF的表达式为:y=x+;(2)射线OQ与OA的夹角为α(α为锐角,tanα=).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=3a,则(a)2+(3a)2=42,解得:a2=,OE=3a,正方形OEFG的面积=(3a)2=;(3)设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=4,。
一次函数压轴题练习(试卷)

一次函数压轴题精选1.如图,在平面直角坐标系xOy 中,直线y=2x +2与y 轴交于点A ,与x 轴交于点B .直线l ⊥x 轴负半轴于点C ,点D 是直线l 上一点且位于x 轴上方.已知CO=CD=4.(1)求经过A ,D 两点的直线的函数关系式和点B 的坐标;(2)在直线l 上是否存在点P 使得△BDP 为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L :y=﹣x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点N (0,4),动点M 从A 点以每秒1个单位的速度匀速沿x 轴向左移动.(1)点A 的坐标:;点B 的坐标:;(2)求△NOM 的面积S 与M 的移动时间t 之间的函数关系式;(3)在y 轴右边,当t 为何值时,△NOM ≌△AOB ,求出此时点M 的坐标;(4)在(3)的条件下,若点G 是线段ON 上一点,连结MG ,△MGN 沿MG 折叠,点N 恰好落在x 轴上的点H 处,求点G的坐标.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C 在y轴上,一次函数y=x+3的图象经过点B、C.(1)点C的坐标为,点B的坐标为;(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x +6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E .(1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD ,AB ∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点P 是▱ABCD 边上的一个动点.(1)若点P 在边BC 上,PD=CD ,求点P 的坐标.(2)若点P 在边AB ,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x ﹣1上,求点P 的坐标.(3)若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO 为正方形,A 点坐标为(0,2),点P 为x 轴负半轴上一动点,以AP 为直角作等腰直角三角形APD ,∠APD=90°(点D 落在第四象限)(1)当点P 的坐标为(﹣1,0)时,求点D 的坐标;(2)点P 在移动的过程中,点D 是否在直线y=x ﹣2上?请说明理由;(3)连接OB 交AD 于点G ,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y 轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根(Ⅰ)试问:直线AC 与直线AB 是否垂直?请说明理由;(Ⅱ)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD 上寻找点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED 经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证△BEC≌△CDA;(2)模型应用:①已知直线y=x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出所有符合条件的点D的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A (,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△A′OP,连接BA′,当BA′取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A 坐标为(﹣4,4),点B 的坐标为(4,0).(1)求直线AB 的解析式;(2)点M 是坐标轴上的一个点,若AB 为直角边构造直角三角形△ABM ,请求出满足条件的所有点M 的坐标;(3)如图2,以点A 为直角顶点作∠CAD=90°,射线AC 交x 轴的负半轴与点C ,射线AD 交y 轴的负半轴与点D ,当∠CAD 绕点A 旋转时,OC ﹣OD 的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A 、B 分别在x 轴与y 轴上,已知OA=6,OB=10.点D 为y 轴上一点,其坐标为(0,2),点P 从点A 出发以每秒2个单位的速度沿线段AC ﹣CB 的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)①求△OPD 的面积S 关于t 的函数解析式;②如图②,把长方形沿着OP 折叠,点B 的对应点B′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt △OAB 的两直角边OA 、OB 分别在x 轴和y 轴上,如图1,A ,B 坐标分别为(﹣2,0),(0,4),将△OAB 绕O 点顺时针旋转90°得△OCD ,连接AC 、BD 交于点E .(1)求证:△ABE ≌△DCE .(2)M 为直线BD 上动点,N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边形,求出所有符合条件的M 点的坐标.(3)如图2,过E 点作y 轴的平行线交x 轴于点F ,在直线EF 上找一点P ,使△PAC 的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l 1:y=﹣x +3与x 轴交于点A ,与y 轴交于点B ,直线l 2:y=kx +2k 与x 轴交于点C ,与直线l 1交于点P .(1)当k=1时,求点P 的坐标;(2)如图1,点D 为PA 的中点,过点D 作DE ⊥x 轴于E ,交直线l 2于点F ,若DF=2DE ,求k 的值;(3)如图2,点P 在第二象限内,PM ⊥x 轴于M ,以PM 为边向左作正方形PMNQ ,NQ 的延长线交直线l 1于点R ,若PR=PC ,求点P的坐标.19.如图,直线y=kx +k 交x 轴,y 轴分别于A ,C ,直线BC 过点C 交x 轴于B ,OC=3OA ,∠CBA=45°.(1)求直线BC 的解析式;(2)动点P 从A 出发沿射线AB 匀速运动,速度为2个单位/秒,连接CP ,设△PBC 的面积为S ,点P 的运动时间为t 秒,求S 与t 之间的函数关系式,直接写出t 的取值范围;(3)在(2)的条件下,当点P 在AB 的延长线上运动时,过点O 作OD ⊥PC 于D ,交BC 于点E ,连接AE ,当∠EAB=∠CPA 时,在坐标轴上有点K ,且KC=KP ,求点K的坐标.20.如图,平面直角坐标系中,直线AB :y=﹣x +b 交y 轴于点A (0,1),交x 轴于点B ,过点E (1,0)作x 轴的垂线EF 交AB 于点D ,点P 从D 出发,沿着射线ED 的方向向上运动,设PD=n .(1)求直线AB 的表达式;(2)求△ABP 的面积(用含n 的代数式表示);(3)若以P 为直角顶点,PB 为直角边在第一象限作等腰直角△BPC ,请问随着点P 的运动,点C 是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=90°,且EF 交正方形外角的平分线CF 于点F .(1)如图1,若点E 是边BC 的中点,M 是边AB 的中点,连接EM ,求证:AE=EF .(2)如图2,若点E 在射线BC 上滑动(不与点B ,C 重合).①在点E 滑动过程中,AE=EF 是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E 滑动到某处时,点F 恰好落在直线y=﹣2x +6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC 放置在平面直角坐标系中,其中A (1,0),C (0,1),P 为AB 边上一个动点,折叠该纸片,使O 点与P 点重合,折痕l 与OP 交于点M ,与对角线AC 交于Q 点(Ⅰ)若点P 的坐标为(1,),求点M 的坐标;(Ⅱ)若点P 的坐标为(1,t )①求点M 的坐标(用含t 的式子表示)(直接写出答案)②求点Q 的坐标(用含t 的式子表示)(直接写出答案)(Ⅲ)当点P 在边AB 上移动时,∠QOP 的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P (,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B 的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,b )(b >0),点P 是直线AB 上位于第二象限内的一个动点,过点P 作PC ⊥x 轴于点C ,记点P 关于y 轴的对称点为Q ,设点P 的横坐标为a .(1)当b=3时,①求直线AB 的解析式;②若QO=QA ,求P 点的坐标.(2)是否同时存在a 、b ,使得△QAC 是等腰直角三角形?若存在,求出所有满足条件的a 、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ;直线AB 与直线y=x 交于点A ,连接CD ,直线CD 与直线y=x 交于点Q .(1)求证:OB=OC ;(2)当点C 坐标为(0,3)时,求点Q 的坐标;(3)当△OPC ≌△ADP 时,直接写出C点的坐标.29.如图1,直线AB :y=﹣x ﹣b 分别与x ,y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴与C ,且OB :OC=3:1.(1)求直线BC 的函数表达式;(2)直线EF :y=x ﹣k (k ≠0)交直线AB 于E ,交直线BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD ?若存在,求出k 的值;若不存在,说明理由.(3)如图2,P 为x 轴上A 点右侧的一动点,以P 为直角顶点,BP 为一腰在第一象限内作等腰直角三角形△BPQ ,连接QA 并延长交y 轴于点K .当P 点运动时,K 点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是(﹣8,0),点B 的坐标是(0,n )(n >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P′(点P′不在y 轴上),连接PP′,P′A ,P′C .设点P 的横坐标为m .(1)若点P 在第一象限,记直线AB 与P′C 的交点为D .当P′D :DC=5:13时,求m 的值;(2)若∠ACP′=60°,试用m 的代数式表示n ;(3)若点P 在第一象限,是否同时存在m ,n ,使△P′CA 为等腰直角三角形?若存在,请求出所有满足要求的m ,n的值;若不存在,请说明理由.31.如图①所示,直线L :y=m (x +10)与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.(1)当OA=OB 时,试确定直线L 的解析式;(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=8,BN=6,求MN 的长;(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x 轴、y 轴分别交于点A 、B ,以线段AB为直角边在第一象限内作Rt △ABC ,且使∠ABC=30°;(1)如果点P (m ,)在第二象限内,试用含m 的代数式表示四边形AOPB 的面积,并求当△APB 与△ABC 面积相等时m 的值;(2)如果△QAB 是等腰三角形并且点Q 在坐标轴上,请求出点Q 所有可能的坐标;(3)是否存在实数a ,b 使一次函数和y=ax +b 的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.。
一次函数习题集锦(含答案)经典 新课标 压轴题 详解

数学八年级上册一次函数练习题 出题人:刘鸿英一、填空题(每小题3分,共24分) 1.正比例函数12y x =-中,y 值随x 的增大而 . 2.已知y=(k-1)x+k 2-1是正比例函数,则k = .3.若y+3与x 成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点( ,0),(0, ).5.已知直线y=ax-2经过点(-3,-8)和12b ⎛⎫ ⎪⎝⎭,两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为 (写出一个即可). 7.在同一坐标系内函数112y x =+,112y x =-,12y x =的图象有什么特点 .8.下表中,y 是x 的一次函数,则该函数解析式为 ,并补全下表.x 2- 1- 0 1 2y26二、选择题(每小题3分,共24分)1.下列函数中是正比例函数的是( ) A .8y x=B .28y =C .2(1)y x =-D .(21)3xy +=-2.下列说法中的两个变量成正比例的是( ) A .少年儿童的身高与年龄 B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数y=|x |+3不是一次函数D .在y=kx+b(k 、b 都是不为零的常数)中, y-b 与x 成正比例 4.一次函数y=-x-1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.函数y=kx-2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( ) A .322y x =- B .122y x =- C .122y x =+ D .322y x =+7.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限三、解答题(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线;(2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形ABCD的一边BC上的点P从B点运动到C点,设PB=x,梯形APCD 的面积为S.(1)写出S与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一次函数检测卷 出题人:刘鸿英一、选择题:1. 一次函数1-=x y 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量( ) A. 小于3吨 B. 大于3吨 C. 小于4吨 D. 大于4吨3. 若正比例函数x m y )21(-=的图象经过点),(11y x A 和点),(22y x B ,当21x x <时,21y y >,则m 的 取值范围是( )A. 0<mB. 0>mC. 21<m D. 21>m 4. 结合正比例函数x y 4=的图象回答:当1>x 时,y 的取值范围是( )A. 1<yB.1≤x <4C. 4=yD. 4>y5. 若1-<m ,则下列函数:①)0(>=x xmy ;②1+-=mx y ;③mx y =; ④x m y )1(+=中,y 随x 的增大而增大的是( ) A. ①② B. ②③ C. ①③ D. ③④6. 两条直线b ax y +=1与a bx y +=2在同一坐标系中的图象可能是下图中的( )O x yA O x yB O x yC O xyD7.有一个装有进、出水管的容器,单位时间内进、出的水量都是一定. 已知容器的容积为600升,又知单开进水管10分钟可把空容器注满. 若同时打开进、出水管,20分钟可把满容器的水放完. 现已知容器内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放,直至把容器中的水放完,则正确反映这一过程中容器中的水量Q (升)随时间t (分)变化的图象是( ))(365分钟t 升)(Q O 200 5005)(350分钟t 升)(Q O 200 5005)(365分钟t 升)(Q O 200 5005)(995分钟t 升)(Q O 2005005ABCD8.小明8.某天放学后,17时从学校出发,回家途中离家的路程 s(百米)与所走的时间t (分钟)之间的函数关系如图所示,那么这天 小明到家的时间为( )A. 17时15分B. 17时14分C. 17时12分D. 17时11分9.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时; (3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地其中符合图象描述的说法有( )A. 2个B. 3个C. 4个D. 5个 二、填空题:1. 如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.2. 在平面直角坐标系中,直线b kx y +=(k ,b 为常数k ≠0,b >0)可以看成是将直线kx y =沿y 轴向上平行移动b 个单位得到的,那么将直线kx y =沿x 轴向右平行移动m 个单位(m >0)得到的直线方程是____________.3. 大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连开往庄河,则汽车距庄河的路程s (千米)与行驶的速度t (小时)之间的函数关系式为_________________. 4. 若一次函数m x m y +-=)2(的图象经过第一、二、四象限,则m 的取值范围是________________. 三、解答题:1. 已知y 与2+x 成正比例,且1=x 时,6-=y .(1)求y 与x 之间的函数关系式;(2)若点)2,(a 在函数的图象上,求a 的值.0 3 6 8 8 1518t (分钟) s (百米) S (千米)18t (小时) 甲 乙 O 第10题图 0.5 1 2 2.52. 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例. 当x =20时,y =1600;当x =30时,y =2000. (1)求y 与x 之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么没2名运动员需要支付多少元?3. 在我省环岛高速公路上,一辆轿车和一辆货车沿相同路线从A 地到B 地,所经过的路程y (千米)与时间x (小时)的函数关系如图所示,试根据图象回答下列问题: (1)货车比轿车早出发__________小时,轿车追上货车时行驶了__________千米,A 地到B 地的距离为_________千米. (2)轿车追上货车需要多小时? (3)轿车比货车早到多少时间?0 1 5 150 300 x (小时)y (千米) PD N M K FE 轿车 货 车 C参考答案一、1.减小2.1-3.174.57-,5 5.2,1-6.略(答案不惟一) 7.三条直线互相平行8.22y x =+,表格从左到右依次填2-,0,4 二、1.D 2.D 3.A 4.A 5.D6.A7.D8.B三、1.y x =-(答案不惟一) 2.(1)2y x =+ (2)43.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+ (2)图略; (3)4四、1.(1)4S x =-; (2)02x <<; (3)图略 2.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元参考答案基础达标验收卷 一、选择题:题号 1 2 3 4 5 6 7 8 9 答案BDDDAA ACC二、填空题:题号 12 34答案x y 21=)(m x k y -=t s 80160-=(0≤t ≤2) 2>m三、解答题:1. 解:(1)42--=x y ;(2)3-=a .2. 解:(1)80040+=x y ;(2)每名运动员需支付56元.3. 解:(1)1,150,300.(2)根据图象提供的信息,可知点M 为ON 的中点,MK ∥NE ,∴5.221==OE OK . ∴5.1=-=OC OK CK ,即轿车追上货车需1.5小时. (3)根据图象提供的信息,可知M 为CD 的中点,且MK ∥DF , ∴K 是CF 的中点. ∴CF =3. ∴431=+=+=CF OC OF . ∴145=-=-=OF OE EF ,即轿车比货车早到1小时.。
(完整版)一次函数压轴题经典.docx

一次函数压轴题训练典型例题题型一、 A 卷压轴题一、 A 卷中涉及到的面积问题例 1、如图,在平面直角坐标系xOy 中,一次函数 y 12x 2 与 x 轴、 y 轴分别相交于点3A 和点B ,直线 y 2 kx b (k0) 经过点 C ( 1,0)且与线段 AB 交于点 P ,并把△ ABO 分成两部分.( 1)求△ ABO 的面积;( 2)若△ ABO 被直线 CP 分成的两部分的面积相等,求点 P 的坐标及直线CP 的函数表达式。
yy 1B PO CAxy 2练习 1、如图,直线 l 1 过点 A ( 0, 4),点 D ( 4, 0),直线 l 2 : y1x 1与 x 轴交于点 C ,2两直线 l 1 , l 2 相交于点 B 。
l 1y(1)、求直线 l 1 的解析式和点 AB 的坐标;l 2(2)、求△ ABC 的面积。
BCODx二、 A 卷中涉及到的平移问题例 2、正方形 ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且 A 点的坐标是(1, 0)。
4 8①直线 y=3x- 3经过点 C,且与 x 轴交与点E,求四边形AECD的面积;②若直线 l 经过点E且将正方形ABCD分成面积相等的两部分求直线l 的解析式,③若直线 l1经过点F3 .0 且与直线y=3x平行,将②中直线l沿着y轴向上平移2个单位23交 x 轴于点M , 交直线l1于点N , 求NMF 的面积.练习 1、如图,在平面直角坐标系中,直线l1: y4x 与直线 l2: y kx b 相交于3点 A,点 A 的横坐标为 3,直线l2交y轴于点 B,且OA 1OB 。
2(1)试求直线l 2函数表达式。
(6分)(2)若将直线l 1沿着x轴向左平移3个单位,交y 轴y 于点 C,交直线l2于点 D;试求△ BCD的面积。
(4分)。
L 2l 1A1x题型二、 B 卷压轴题一、一次函数与特殊四边形例 1、如图,在平面直角坐标系中,点A、B 分别在 x 轴、y 轴上,线段OA、 OB的长 (0A<OB)2x y2x 与直线是方程组的解,点 C是直线y3x y6AB的交点,点 D 在线段 OC上, OD=25(1)求点 C 的坐标;(2)求直线 AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以 0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习 1、. 如图 , 在平面直角坐标系xOy 中,已知直线PA是一次函数y=x+m( m>0)的图象,直线 PB是一次函数y3x n(n > m )的图象,点P是两直线的交点, 点 A、B、C、Q分别是两条直线与坐标轴的交点。
中考一次函数压轴题集锦及答案解析

中考一次函数压轴题集锦及答案解析一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.2.如图1,已知直线y=2某+2与y轴、某轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交某轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.3.如图直线:y=k某+6与某轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(某,y)是直线在第二象限内一个动点,试写出△OPA的面积S与某的函数关系式,并写出自变量某的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.4.如图,在平面直角坐标系某oy中,点A(1,0),点B(3,0),点,直线l经过点C,(1)若在某轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式;(2)若在某轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在某轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.5.如图1,直线y=﹣k某+6k(k>0)与某轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA﹣OB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与某轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作某轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=时,求t值.6.首先,我们看两个问题的解答:问题1:已知某>0,求的最小值.问题2:已知t>2,求的最小值.问题1解答:对于某>0,我们有:号,所以的最小值.≥.当,即时,上述不等式取等问题2解答:令某=t﹣2,则t=某+2,于是.由问题1的解答知,的最小值,所以的最小值是.弄清上述问题及解答方法之后,解答下述问题:在直角坐标系某Oy中,一次函数y=k某+b(k>0,b>0)的图象与某轴、y轴分别交于A、B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△AOB面积的最小值.7.如图①,过点(1,5)和(4,2)两点的直线分别与某轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有_________个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标_________;(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.8.如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ 的最大面积;(2)在前10秒内,求某两点之间的最小距离,并求此时点P,Q的坐标.9.若直线y=m某+8和y=n某+3都经过某轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A_________,C_________;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE 为等腰三角形,写出直线BE的解析式(只写结果).10.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(﹣4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥某轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连接PP',P'A,P'C.设点P的横坐标为a.(1)当b=3时,求直线AB的解析式;(2)在(1)的条件下,若点P'的坐标是(﹣1,m),求m的值;(3)若点P在第一像限,是否存在a,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a的值;若不存在,请说明理由.11.如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5.点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.(1)求直线AB的解析式;(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形?如果存在,直接写出点Q的坐标;如果不存在,请说明理由.12.如图所示,在平面直角坐标系中,已知点A(0,6),点B(8,0),动点P从A开始在线段AO上以每秒1个单位长度的速度向点O运动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向点A运动,设运动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△AP Q与△ABO相似?13.如图,在平面直角坐标系中,O为坐标原点,P(某,y),PA⊥某轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在某轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣某+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对?14.如图,在直角坐标平面中,Rt△ABC的斜边AB在某轴上,直角顶点C在y轴的负半轴上,co∠ABC=,点P在线段OC上,且PO、OC的长是方程某﹣15某+36=0的两根.(1)求P点坐标;(2)求AP的长;(3)在某轴上是否存在点Q,使四边形AQCP是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.215.已知函数y=(6+3m)某+(n﹣4).(1)如果已知函数的图象与y=3某的图象平行,且经过点(﹣1,1),先求该函数图象的解析式,再求该函数的图象与y=m某+n的图象以及y轴围成的三角形面积;(2)如果该函数是正比例函数,它与另一个反比例函数的交点P到轴和轴的距离都是1,求出m和n的值,写出这两个函数的解析式;(3)点Q是某轴上的一点,O是坐标原点,在(2)的条件下,如果△OPQ是等腰直角三角形,写出满足条件的点Q的坐标.16.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在某轴上,点C在y轴上,OA和OC是方程的两根(OA>OC),∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.(1)求线段OA和OC的长;(2)求点D的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,O为坐标原点,点A在某轴的正半轴上,△AOB为等腰三角形,且OA=OB,过点B作y轴的垂线,垂足为D,直线AB的解析式为y=﹣3某+30,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求点B坐标;(2)点P沿折线BC﹣OC以每秒1个单位的速度运动,当一点停止运动时,另一点也随之停止运动.设△PQC的面积为S,运动时间为t,求S与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°﹣∠AOB时,求t值.(参考数据:在(3)中,取.)18.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与某轴交于点B,且与直线(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作某轴的垂线,交直线使△PAB是直角三角形,请求出点P的坐标.于点N,在线段MN上求一点P,平行.19.已知如图,直线y=﹣某+4与某轴相交于点A,与直线y=某相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥某轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.20.如图,在平面直角坐标系中,点A(2,0),C(0,1),以OA、OC为边在第一象限内作矩形OABC,点D(某,0)(某>0),以BD为斜边在BD上方做等腰直角三角形BDM,作直线MA交y轴于点N,连接ND.(1)求证:①A、B、M、D四点在同一圆周上;②ON=OA;(2)若0<某≤4,记△NDM的面积为y,试求y关于某的函数关系式,并求出△NDM面积的最大值;(3)再点D运动过程中,是否存在某一位置,使DM⊥DN?若存在,请求出此时点D的坐标;若不存在,请说明理由.21.如图(1),直线y=k某+1与y轴正半轴交于A,与某轴正半轴交于B,以AB为边作正方形ABCD.(1)若C(3,m),求m的值;(2)如图2,连AC,作BM⊥AC于M,E为AB上一点,CE交BM于F,若BE=BF,求证:AC+AE=2AB;(3)经过B、C两点的⊙O1交AC于S,交AB的延长线于T,当⊙O1的大小发生变化时,不变证明并求其值;若变化,请说明理由.的值变吗?若22.如图:直线y=﹣某+18分别与某轴、y轴交于A、B两点;直线y=2某分别与AB交于C点,与过点A且平行于y轴的直线交于D点.点E从点A出发,以每秒1个单位的速度沿某轴向左运动,过点E作某轴的垂线,分别交直线AB、OD于P、Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)当0<t<12时,求S与t之间的函数关系式;(2)求(1)中S的最大值;(3)当t>0时,若点(10,10)落在正方形PQMN的内部,求t的取值范围.23.直线l:y=﹣某+3分别交某轴、y轴于B、A两点,等腰直角△CDM斜边落在某轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交某轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.(1)求运动后点M、点Q的坐标(用含t的代数式表示);(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.24.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在某轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与某轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3某平行.将(2)中直线l沿着y轴向上平移1个单位,交某轴于点M,交直线l1于点N,求△NMF的面积.25.如图,直线l1的解析表达式为:y=﹣3某+3,且l1与某轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△A DP与△ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.26.如图,直线y=某+6与某轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(某,y)是直线y=某+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积与某的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交某轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.27.如图,在平面直角坐标系中,直线AB与某轴交于点A,与y轴交于点B,与直线OC:y=某交于点C.(1)若直线AB解析式为y=﹣2某+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.28.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.29.如图,在平面直角坐标系某oy中,直线AP交某轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥某轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.30.如图,已知直线l1:y=﹣某+2与直线l2:y=2某+8相交于点F,l1、l2分别交某轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在某轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿某轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为,求关于t的函数关系式,并写出相应的t的取值范围.答案与评分标准一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.考点:一次函数综合题。
一次函数压轴题精选(含详细答案)

一次函数压轴题精选(含详细答案答案)1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG的坐标.折叠,点N恰好落在x轴上的点H处,求点G3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y 轴上,一次函数y=x+3的图象经过点B、C.第1页(共99页)的坐标为 ;(1)点C的坐标为的坐标为 ,点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.两题中任选一题作答,我选择 题.请从下列A、B两题中任选一题作答,我选择A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC 边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)(1)当点P的坐标为(﹣1,0)时,求点D的坐标;(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;(3)连接OB交AD于点G,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根(Ⅰ)试问:直线AC 与直线AB 是否垂直?请说明理由;(Ⅱ)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD 上寻找点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证△BEC ≌△CDA ;(2)模型应用:①已知直线y=x +4与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y=2x ﹣6上的一点,若△APD 是不以A 为直角顶点的等腰Rt △,请直接写出所有符合条件的点D 的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△AʹOP,连接BAʹ,当BAʹ取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B 分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P 与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点Bʹ恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,当点C移动到点O时,得是等边三角形,当点始终保持△ACP是等边三角形,轴上移动时,始终保持△点C在x轴上移动时,到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为P A的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.19.如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45°.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,当点P在AB的延长线上运动时,过点O作OD⊥PC于D,交BC于点E,连接AE,当∠EAB=∠CPA时,在坐标轴上有点K,且KC=KP,求点K的坐标.20.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x 轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是边BC的中点,M是边AB的中点,连接EM,求证:AE=EF.(2)如图2,若点E在射线BC上滑动(不与点B,C重合).①在点E滑动过程中,AE=EF是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E滑动到某处时,点F恰好落在直线y=﹣2x+6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与,与 对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,为坐标原点,点点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD 2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC 上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a 2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B 的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,平面直角坐标系中,已知直线连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.(1)求证:OB=OC;(2)当点C坐标为(0,3)时,求点Q的坐标;(3)当△OPC≌△ADP时,直接写出C点的坐标.29.如图1,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B 的直线交x轴负半轴与C,且OB:OC=3:1.(1)求直线BC的函数表达式;(2)直线EF:y=x﹣k(k≠0)交直线AB于E,交直线BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为一腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣8,0),点B的坐标是(0,n)(n>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为Pʹ(点Pʹ不在y轴上),连接PPʹ,PʹA,PʹC.设点P的横坐标为m.(1)若点P在第一象限,记直线AB与PʹC的交点为D.当PʹD:DC=5:13时,求m的值;(2)若∠ACPʹ=60°,试用m的代数式表示n;(3)若点P在第一象限,是否同时存在m,n,使△PʹCA为等腰直角三角形?若存在,请求出所有满足要求的m,n的值;若不存在,请说明理由.31.如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y 轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.参考答案与试题解析1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【分析】(1)对于y=2x+2,分别令x与y为0求出A与B坐标,根据CO=CD=4,求出D坐标,确定出直线AD解析式即可;(2)存在,如图所示,设出P(﹣4,p),分三种情况考虑:当BD=P1D时;当BP3=BD时;当BP4=DP4,分别求出P坐标即可.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P 3(﹣4,﹣4);当BP 4=DP 4时,(﹣1+4)2+(0﹣p )2=(p ﹣4)2,解得:p=,此时P 4(﹣4,),综上,共有四个点满足要求.分别是P 1(﹣4,9),P 2(﹣4,﹣4),P 3(﹣4,﹣1),P 4(﹣4,).【点评】此题属于一次函数综合题,此题属于一次函数综合题,涉及的知识有:涉及的知识有:涉及的知识有:待定系数法求一次函数解析待定系数法求一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.2.如图,直线L :y=﹣x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点N (0,4),动点M 从A 点以每秒1个单位的速度匀速沿x 轴向左移动. (1)点A 的坐标:的坐标: (4,0) ;点B 的坐标:的坐标: (0,2) ;(2)求△NOM 的面积S 与M 的移动时间t 之间的函数关系式;(3)在y 轴右边,当t 为何值时,△NOM ≌△AOB ,求出此时点M 的坐标; (4)在(3)的条件下,若点G 是线段ON 上一点,连结MG ,△MGN 沿MG 折叠,点N 恰好落在x 轴上的点H 处,求点G 的坐标.【分析】(1)在y=﹣x+2中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.的坐标为 (﹣4,2);(1)点C的坐标为的坐标为 (0,3),点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.【分析】(1)设点C的坐标为(0,y),把x=0代入y=x+3中得y=3,即可求出C点的坐标;设点B的坐标为(﹣4,y),把x=﹣4代入y=x+3中得y=2,即可求出B点的坐标;(2)①根据对称的性质和平行线的性质,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.利用勾股定理求得CP的长度,然后结合坐标与图形的性质求得点M的坐标,利用待定系数法求得直线l的解析式即可.【解答】解:(1)如图①,∵A(﹣4,0),AB∥y轴,直线y=x+3经过点B、C,设点C的坐标为(0,y),把x=0代入y=x+3x+3中得y=3,∴C(0,3);设点B的坐标为(﹣4,y),把x=4代入y=x+3中得y=2,∴B(﹣4,2);故答案是:(0,3);(﹣4,2);(2)①证明:∵AB∥y轴,∴∠OCM=∠CMD.∵∠OCM=∠MCD,∴∠CMD=∠MCD,∴MD=CD,∴CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.在直角△DCP中,由勾股定理得到:CP==3,∴OP=AD=CO+CP=3+3=6,∴AB=AD﹣DM=6﹣5=1,∴点M的坐标是(﹣4,1).设直线l的解析式为y=kx+b(k≠0).把M(﹣4,1)、C(0,3)分别代入,得,解得,故直线l的解析式为y=x+3.【点评】此题考查了一次函数综合题,此题考查了一次函数综合题,需要综合利用勾股定理,需要综合利用勾股定理,需要综合利用勾股定理,等腰三角形的判等腰三角形的判定与性质,对称的性质以及待定系数法求一次函数解析式等知识点,难度不是很大,但是需要学生对所学知识有一个系统的掌握.4.如图1,在平面直角坐标系中,一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段AB ,BC ,AC 的长分别为AB= 8 ,BC= 4 ,AC= 4 ;(2)折叠图1中的△ABC ,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2. 请从下列A 、B 两题中任选一题作答,我选择两题中任选一题作答,我选择 A 题. A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得△APD 为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由. B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点A ,P ,C 为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC ;(2)A 、①利用折叠的性质得出BD=8﹣AD ,最后用勾股定理即可得出结论; ②分三种情况利用方程的思想即可得出结论;B 、①利用折叠的性质得出AE ,利用勾股定理即可得出结论; ②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,∴A (4,0),C (0,8), ∴OA=4,OC=8,∵AB ⊥x 轴,CB ⊥y 轴,∠AOC=90°, ∴四边形OABC 是矩形, ∴AB=OC=8,BC=OA=4,在Rt △ABC 中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A 、①由(1)知,BC=4,AB=8, 由折叠知,CD=AD ,在Rt △BCD 中,BD=AB ﹣AD=8﹣AD , 根据勾股定理得,CD 2=BC 2+BD 2, 即:AD 2=16+(8﹣AD )2, ∴AD=5,②由①知,D (4,5), 设P (0,y ), ∵A (4,0),∴AP 2=16+y 2,DP 2=16+(y ﹣5)2, ∵△APD 为等腰三角形, ∴Ⅰ、AP=AD , ∴16+y 2=25,∴y=±3,∴P (0,3)或(0,﹣3) Ⅱ、AP=DP , ∴16+y2=16+(y ﹣5)2,∴y=, ∴P (0,),Ⅲ、AD=DP ,25=16+(y ﹣5)2, ∴y=2或8,∴P (0,2)或(0,8).B 、①、由A ①知,AD=5, 由折叠知,AE=AC=2,DE ⊥AC 于E ,在Rt △ADE 中,DE==,②、∵以点A ,P ,C 为顶点的三角形与△ABC 全等, ∴△APC ≌△ABC ,或△CPA ≌△ABC , ∴∠APC=∠ABC=90°, ∵四边形OABC 是矩形,∴△ACO ≌△CAB ,此时,符合条件,点P 和点O 重合, 即:P (0,0), 如图3,过点O 作ON ⊥AC 于N , 易证,△AON ∽△ACO , ∴,∴, ∴AN=,过点N 作NH ⊥OA , ∴NH ∥OA ,∴△ANH ∽△ACO , ∴,∴,∴NH=,AH=, ∴OH=, ∴N (,),而点P 2与点O 关于AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,), 即:满足条件的点P 的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,相似三角形的相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC ,解(2)的关键是利用分类讨论的思想解决问题.5.如图,一次函数y=x +6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E . (1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN 2 =(m﹣)2+,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA ﹣AC=3, ∴C (﹣3,0),∵∠EDB=∠AOB=90°,BD=BO ,∠EBD=∠ABO , ∴△EBD ≌△ABO , ∴BE=AB=10, ∴OE=BE ﹣OB=4, ∴E (0,﹣4),设直线CE 的解析式为y=kx ﹣4, ∴﹣3k ﹣4=0, ∴k=﹣,∴直线CE 的解析式为y=﹣x ﹣4,(2)解:存在,(﹣,),如图,∵点P 在直线y=x +6上,∴设P (﹣m ,﹣m +6),∴PN=m ,PM=﹣m +6,根据勾股定理得,MN 2=PN2+PM2=m2+(﹣m +6)2=(m ﹣)2+,∴当m=时,MN 2有最小值,则MN 有最小值,当m=时,y=﹣x +6=﹣×+6=,∴P (﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了待定系数法,主要考查了待定系数法,主要考查了待定系数法,全等三角形的判定和全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C 的坐标,解(2)的关键是得出MN 2的函数关系式,是一道中等难度的中考常考题.6.如图1,已知▱ABCD ,AB ∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点P 是▱ABCD 边上的一个动点. (1)若点P 在边BC 上,PD=CD ,求点P 的坐标.(2)若点P 在边AB ,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x ﹣1上,求点P 的坐标.(3)若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出答案)【分析】(1)由题意点P 与点C 重合,可得点P 坐标为(3,4);(2)分两种情形①当点P 在边AD 上时,②当点P 在边AB 上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P 在线段CD 上时.②如图2中,当点P 在AB 上时.③如图3中,当点P 在线段AD 上时.分别求解即可; 【解答】解:(1)∵CD=6, ∴点P 与点C 重合, ∴点P 坐标为(3,4).(2)①当点P 在边AD 上时, ∵直线AD 的解析式为y=﹣2x ﹣2, 设P (a ,﹣2a ﹣2),且﹣3≤a ≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNMʹ中,∵PM=PMʹ=6,PN=4,∴NMʹ==2,在Rt△OGMʹ中,∵OG 2+OMʹ2=GMʹ2,∴22+(2+m)2=m2,解得m=﹣, ∴P (﹣,4)根据对称性可知,P (,4)也满足条件.②如图2中,当点P 在AB 上时,易知四边形PMGMʹ是正方形,边长为2,此时P (2,﹣4).③如图3中,当点P 在线段AD 上时,设AD 交x 轴于R .易证∠MʹRG=∠MʹGR ,推出MʹR=MʹG=GM ,设MʹR=MʹG=GM=x .∵直线AD 的解析式为y=﹣2x ﹣2, ∴R (﹣1,0),在Rt △OGMʹ中,有x 2=22+(x ﹣1)2,解得x=,。
八年级数学一次函数压轴题练习题

一次函数典型例题题型一、A卷压轴题一、A卷中涉及到的面积问题例1、如图,在平面直角坐标系xOy中,一次函数122 3y x=-+与x轴、y轴分别相交于点A和点B,直线2 (0)y kx b k=+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.(1)求△ABO的面积;(2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。
练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :121+=x y与x 轴交于点C ,两直线1l ,2l 相交于点B 。
(1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。
二、A 卷中涉及到的平移问题例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-83经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,③若直线1l 经过点F ⎪⎭⎫⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.ABCODxy1l 2l练习1、如图,在平面直角坐标系中,直线1l :x y 34=与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 21=。
(1)试求直线2l 函数表达式。
(6分)(2)若将直线1l 沿着x 轴向左平移3个单位,交 y 轴于点C ,交直线2l 于点D ;试求 △BCD 的面积。
(4分)。
题型二、B 卷压轴题 一、一次函数与特殊四边形例1、如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A<OB)是方程组⎩⎨⎧=+-=632y x yx 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,OD=52(1)求点C 的坐标; (2)求直线AD 的解析式;(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.练习1、.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y=x+m (m>0)的图象,直线PB 是一次函数n n x y (3+-=>m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数压轴题精选
一次函数压轴题精选
一次函数是数学中的基础知识之一。
掌握了一次函数的基本概念和解题方法,可以为我们在学习数学的过程中打下坚实的基础。
下面是一些常见的一次函数压轴题,了解和掌握这些题目的解法,对于提高我们的数学水平有很大的帮助。
1、已知一次函数f(x)=4x-3,求当x=2时的函数值。
解法:将x=2代入函数f(x)中,即f(2)=4×2-3=5,所以当x=2时,函数值为5。
2、已知一次函数f(x)=3x+2,求其图像在坐标系中的截距。
解法:当x=0时,f(x)=3×0+2=2,所以函数图像在y轴上的截距为2。
3、已知一次函数kx+2y-4=0是直线L的解析式,求直线L在坐标系中的斜率。
解法:将kx+2y-4=0转化为y-intercept的形式为y=-(k/2)x+2,斜率即为-(k/2)。
4、已知一次函数f(x)=ax+b,若f(-3)=6,f(2)=7,则a和b的值分别为
多少?
解法:将x=-3代入函数f(x)中,得a(-3)+b=6,将x=2代入函数f(x)中,得a(2)+b=7。
将两式相加,得a=-1。
将a=-1代入其中一式,得-3-b=6,解得b=-9。
所以a=-1,b=-9。
5、已知一次函数y=kx,在坐标系中,直线y=kx与x轴的交点为(-3,0),且这条直线过点(1,5),则k的值为多少?
解法:将直线y=kx化为截距式为y=k(x-(-3))=kx+3k,根据已知条件可
以列出方程组:5=k(1)+3k,0=k(-3)+3k。
解得k=5/4。
所以k=5/4。
以上是一些常见的一次函数压轴题,希望大家都能够熟练掌握这些题
目的解法,更好地掌握一次函数的基本知识。