线性代数历年考研题库
线性代数考研训练试题

线性代数考研训练试题一、单项选择题1.[] 若s a a a ,,,21 均为n 维列向量, A 是n m ⨯矩阵,下列选项正确的是 (A) 若s a a a ,,,21 线性相关,则s Aa Aa Aa ,,,21 线性相关. (B) 若s a a a ,,,21 线性相关,则s Aa Aa Aa ,,,21 线性无关. (C) 若s a a a ,,,21 线性无关,则s Aa Aa Aa ,,,21 线性相关.(D) 若s a a a ,,,21 线性无关,则s Aa Aa Aa ,,,21 线性无关. [ A ] 2.[、4] 设A 为3的阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记⎪⎪⎪⎭⎫ ⎝⎛=100010011P ,则(A) C =AP P 1-. (B)C =1-PAP . (C)C =AP P T . (D) C =T PAP . [ B ]3.[、4] 设向量组123,,ααα线性无关,则下列向量组线性相关的是 (A) 122331,,αααααα--- (B) 122331,,αααααα+++(C) 1223312,2,2αααααα--- (D) 1223312,2,2αααααα+++ [ A ]4[、4]设矩阵211121112A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭,100010000B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 与B(A)合同,且相似 (B)合同,但不相似(C)不合同,但相似 (D)不合同,也不相似 [ B ] 5. [] 设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若03=A ,则 (A) E A -不可逆,E A +不可逆. (B) E A -不可逆,E A +可逆.(C) E A -可逆,E A +可逆. (D) E A -可逆,E A +不可逆 [ C ]6. []设1221A ⎛⎫= ⎪⎝⎭,则在实数域上与A 合同的矩阵为 (A) ⎪⎪⎭⎫ ⎝⎛--2112(B) ⎪⎪⎭⎫ ⎝⎛--2112 (C) ⎪⎪⎭⎫ ⎝⎛2112 (D) ⎪⎪⎭⎫⎝⎛--1221 [ D ]7. [] 设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2A =,3B =,则分块矩阵A ⎛⎫⎪⎝⎭O B O 的伴随矩阵为(A) **32⎛⎫ ⎪⎝⎭O B A O (B) **23⎛⎫⎪⎝⎭O B AO (C) **32⎛⎫⎪⎝⎭O A B O (D) **23⎛⎫ ⎪⎝⎭O A B O [ B ] 8. [] 设,A P 均为3阶矩阵,T P 为P 的转置矩阵,且100010002T ⎛⎫ ⎪=⎪ ⎪⎝⎭P AP . 若123(,,)ααα=P ,1223(,,)αααα=+Q ,则T Q AQ 为(A) 210110002⎛⎫⎪ ⎪ ⎪⎝⎭(B)110120002⎛⎫⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫⎪ ⎪ ⎪⎝⎭(D) 100020002⎛⎫⎪ ⎪ ⎪⎝⎭[ A ] 9. []设向量组I:12,,,r ααα可由向量组II:12,,,s βββ线性表出.下列命题正确的是(A) 若向量组I 线性无关,则r s ≤ (B) 若向量组I 线性相关,则r s > (C) 若向量组II 线性无关,则r s ≤(D) 若向量组II 线性相关,则r s > [ A ]10. [] 设A 为4阶实对称矩阵,且2+=A A O .若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ (B)1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭ (C)1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ (D)1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ [ D ]11.[]设A 为3阶方阵,将A 的第2列加到第一列得到矩阵B ,再交换B 的第二行与第三行得单位矩阵,记12100100110,001001010P P ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则A= (A)12P P (B) 112P P - (C) 21P P (D) 112P P - [ D ] 12. []设A 为4×3矩阵,123,,ηηη是非齐次线性方程组Ax β=的3个线性无关的解,12,k k 为任意常数,则Ax β=的通解为(A)23121()2k ηηηη++- (B) 23121()2k ηηηη-+-(C) 23121231()()2k k ηηηηηη++-+- (D) 23121231()()2k k ηηηηηη-+-+- [C]二、填空题1.[、4] 已知21,a a 为2维列向量,矩阵()2121,2a a a a A -+=,),(21a a B =.若行列式==B A ,则6|| -2 .2.[204] 设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足矩阵E B BA 2+=,则B =⎪⎪⎭⎫ ⎝⎛-1111 3.[、4] 设矩阵0100001000010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为14. [] 设3阶矩阵A 的特征值是1, 2, 2,E 为3阶单位矩阵,则E A --14= _3___5. [] 设(1,1,1)T α=,(1,0,)T k β=。
考研试题(线性代数部分)

05年一、选择题(11)设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别是12,αα,则112,()A ααα+线性无关的充分必要条件是( )。
(A )10λ≠(B )20λ≠ (C )10λ=(D )20λ=(12)设A 为n(2)n ≥阶可逆矩阵,交换A的第一行与第二行得到矩阵B ,**,A B 分别是矩阵A ,B 的伴随矩阵,则( )。
(A )交换*A 的第一列与第二列得*B (B )交换*A 的第一行与第二行得*B (C )交换*A 的第一列与第二列得-*B (D )交换*A 的第一行与第二行得-*B 二、填空题(5)设123,,ααα是三维列向量,记矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,如果1A =,则B = 。
三、解答题(20)已知二次型22221231312(,,)(1)(1)22(1)f x x x a x a x x a x x =-+-+++的秩为2.①求a 的值;②求正交变换X QY =,把二次型123(,,)f x x x 化成标准形;③求方程123(,,)0f x x x =的解.(21)已知3阶矩阵A 的第一行是(,,)a b c ,,,a b c 不全为零,矩阵12324636B k ⎛⎫ ⎪= ⎪ ⎪⎝⎭(k 为常数),且0AB =,求线性方程组0AX =的通解.06年一、选择题(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A )1C P AP -= (B )1C PAP -= (C )TC P AP = (D )TC PAP = 【 】 二、填空题(4)点(2,1,0)到平面3450x y z ++=的距离z = . (数一)(4)已知12,a a 为2维列向量,矩阵1212(2,)A a a a a =+-,12(,)B a a =。
考研数学一(线性代数)历年真题试卷汇编6(题后含答案及解析)

考研数学一(线性代数)历年真题试卷汇编6(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.行列式等于( )A.(ad-bc)2B.-(ad-bc)2C.a2d2-b2c2D.-a2d2+b2c2正确答案:B解析:由行列式的展开定理展开第一列=-ad(ad-bc)+bc(ad-bc)=-( ad-bc) 22.设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( )A.B.C.D.正确答案:B解析:根据CC*=|C|E,则C*=|C|C-1,C-1=的行列式=(-1) 2×2|A||B|=2×3=6,即分块矩阵可逆。
故故答案为B。
3.设A为三阶矩阵,将A的第二行加到第一行得B,再将B的第一列的-1倍加到第二列得C,记则( )A.C=P-1APB.C=PAP-1C.C=PTAPD.C=PAPT正确答案:B解析:由题设可得则有C=PAP-1。
故应选B。
4.设A是m×n矩阵,B是n×m矩阵,则( )A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:B是n×m矩阵,当m>n时,则r(B)=n(系数矩阵的秩小于未知数的个数),方程组Bx=0必有非零解,即存在x0≠0,使得Bx0=0,两边左乘A,得ABx0=0,即ABx=0有非零解,从而|AB|=0,故选B。
5.设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B解析:把矩阵A,C列分块如下:A=(α1,α2,…,αn),C=(γ1,γ2,…,γn),由于AB=C,则可知得到矩阵C的列向量组可用矩阵A的列向量组线性表示。
考研数学三(线性代数)历年真题试卷汇编20(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编20(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2015年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)分别表示分块矩阵,则( ).A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(ATBT)正确答案:A解析:解一易知r(A,AB)≥r(A).又由分块矩阵的乘法,可知(A,AB)=A(E,B),因此r(A,AB)≤min{r(A),r(E,B)},从而r(A,AB)≤r(A) 所以r(A,AB)=r(A),故选项(A)正确.解二排除法对选项(B),取则r(A)=1,r(A,BA)=2.对选项(C),取则r(A)=r(B)=1,r(A,B)=2.对选项(D),取则r(A,B)=1,r(AT,BT)=2.知识模块:线性代数2.[2003年] 设三阶矩阵若A的伴随矩阵的秩等于1,则必有( ).A.a=b或a+2b=0B.a=b或a+2b≠0C.a≠b且a+2b=0D.a≠b且a+2b≠0正确答案:C解析:解一因秩(A*)=1,由A与其伴随矩阵A*的秩的关系知,秩(A)=n -1=3-1=2.因为使秩(A)=2,必有|A|=0,且即a≠b,故a≠b且a+2b=0.仅(C)入选.解二由|A|=(a+2b)(a-b)2=0,得到a+2b=0或a=b.但当a=b时,秩(A)=1≠2,故a+2b=0且a≠b.仅(C)入选.知识模块:线性代数3.[2005年] 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为( ).A.EB.-EC.AD.-A正确答案:A解析:解一仅(A)入选.由B=E+AB得到(E-A)B=E,两边左乘(E-A)-1得到B=(E-A)-1.由C=A+CA得到C(E-A)=A,两边右乘(E-A)-1,得到C=A(E—A)-1,则B-C=(E-A)-1-A(E-A)-1=(E-A)(E-A)-1=E.解二由B=E+AB,C=A+CA,有B-AB=E,C-CA=A.于是(E-A)B=E,C(E-A)=A,①则E—A与B可逆,且互为逆矩阵.于是有B(E -A)=E,②则由式②一式①,得到B(E-A)-C(E-A)=(B-C)(E-A)=E —A,即B-C=E.仅(A)入选.知识模块:线性代数4.[2006年] 设A为三阶矩阵,将A的第2行加到第1行得B,再将B 的第1列的-1倍加到第2列得C,记则( ).A.C=P-1APB.C=PAP-1C.C=PTAPD.C=PAPT正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等矩阵与初等变换的关系有B=PA.令矩阵则E的第1列的-1倍加到第2列即得矩阵Q.于是有C=BQ,从而有C=PAQ,由于则C=PAQ=PAP-1.仅(B)入选.知识模块:线性代数5.[2011年] 设A为三阶矩阵,将A的第2列加到第1列得到矩阵B,再交换B的第2行与第3行得到单位矩阵,记则A=( ).A.P1P2B.P1-1P2C.P2P1D.P2P1-1正确答案:D解析:解一由题设有B=AP1,P2B=E,即P2B=P2AP1=E.又因P2,P1可逆,且P2-1=P2,故A=P2-1EP1-1=P2EP1-1=P2P1-1.仅(D)入选.解二由命题2.2.5.1知,对A所进行的初等变换可表示为P2AP1而P2AP1=P2(AP1)=P2B=E,故A=P2-1P1-1=P2P1-1.仅(D)入选.注:命题2.2.5.1(初等变换与初等矩阵左、右乘的关系) 每一次初等变换都对应一个初等矩阵,且对矩阵A施行一次初等行(列)变换相当于左(右)乘相应的初等矩阵.知识模块:线性代数6.[2009年] 设A,P为三阶矩阵,PT为P的转置矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则QTAQ为( ).A. B. C. D. 正确答案:A解析:解一因Q=[α1+α2,α2,α3]=[α1,α2,α3]=PE21(1),利用命题2.2.5.2(1)及题设,得到解二仅(A)入选.故注:命题2.2.5.2 (1)初等矩阵的转置矩阵的性质:EiT(k)=Ei(k),EijT=Eij,EijT(k)=Eij(k).知识模块:线性代数7.[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A. B. C. D. 正确答案:B解析:解一因故于是解二用初等矩阵表示Q得到Q=PE12(1).由E12-1(1)=E12(-1)得到知识模块:线性代数8.[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).A.λ1≠0B.λ2≠0C.λ1=0D.λ2=0正确答案:B解析:解一首先注意α1,α2线性无关.在推导α1,A(α1+α2)线性无关的条件时要用到它.设k1α1+k2A(α1+α2)=0,则k1α1+k2λ1α1+k2λ2α2=0,(k1+k2λ1)α1+k2λ2α2=0.因α1,α2线性无关,故k1+k2λ1=0,k2λ2=0.当λ2≠0时,有k2=0,从而k1=0.于是当λ2≠0时,α1,A(α1+α2)线性无关.反之,若α1,A(α1+α2)=λ1α1+λ2α2线性无关,则必有λ2≠0.因为如果λ2=0,则α1与A(α1+α2)=λ1α1线性相关与题设矛盾.综上所述,仅(B)入选.解二因向量组α1,A(α1+α2)=λ1α1+λ2α2可看成线性无关向量α1,α2的线性组合,且[α1,A(α1+α2)]=[α1,λ1α1+λ2α2]=[α1,α2] 由命题2.3.2.2知,向量组α1,A(α1+α2)线性无关的充分必要条件是的秩等于2,而秩故仅(B)入选.(注:命题2.3.2.2 设向量组α1,α2,…,αs线性无关,β1,β2,…,βs为该向量组的线性组合:即其中A=[aij]s×t称为线性表示的系数矩阵.或则向量组β1,β2,…,βt线性无关线性表示的系数矩阵A=[aij]s×t或矩阵K=AT 的秩为t.) 知识模块:线性代数9.[2010年] 设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题中正确的是( ).A.若向量组(I)线性无关,则r≤sB.若向量组(I)线性相关,则r>sC.若向量组(Ⅱ)线性无关,则r≤sD.若向量组(Ⅱ)线性相关,则r>s正确答案:A解析:仅(A)入选.因向量组(I)可由向量组(Ⅱ)线性表示,故秩(I)≤秩(Ⅱ)=秩([β1,β2,…,βs)≤s.若向量组I线性无关,则秩(I)=秩([α1,α2,…,αr])=r,故r=秩([α1,α2,…,αr])≤秩([β1,β2,…,βs])≤s.知识模块:线性代数填空题10.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij 的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.正确答案:-1解析:因aij=-Aij,则(aij)=(-Aij),(aij)T=(-Aij)T=-(Aij),故AT=-A*,从而|A|=|AT|=|-A*|=(-1)3|A|3-1=-|A|2,即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=-1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=(ai12+ai22+ai32)=0(i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵,这与题设矛盾.故|A|=-1.知识模块:线性代数11.[2007年] 设矩阵则A3的秩为__________.正确答案:1解析:解一由矩阵乘法直接计算得到由于A3中非零子式的最高阶数为1,由矩阵的秩的定义知,秩(A3)=1.解二A3的秩等于1.设其中αi(i=1,2,3,4)为A的行向量,则知识模块:线性代数12.[2017年] 矩阵α1,α2,α3为线性无关的三维列向量组,则向量组Aα1,Aα2,Aα3的秩为___________.正确答案:2解析:解(Aα1,Aα2,Aα3)=A(α1,α2,α3),因为α1,α2,α3线性无关,所以(α1,α2,α3)可逆,从而秩[Aα1,Aα2,Aα3]=秩(A).由得,秩(A)=2,故向量组Aα1,Aα2,Aα3的秩为2.知识模块:线性代数13.[2002年] 设三阶矩阵三维列向量α=[a,1,1]T,已知Aα与α线性相关,则a=_______.正确答案:-1解析:解一因α=[a,1,1]T,Aα=[a,2a+3,3a+4]T,故[*]得a=-1.解二两个向量Aα与α线性相关[*]这两个向量中至少有一个向量可由另一个向量线性表出.即存在数k≠0,使Aα=kα(或α=μAα),亦即k为特征值,α为A的属于特征值k的特征向量.由Aα=kα得到[*]得a=-1,k=1.知识模块:线性代数14.[2005年] 设行向量组[2,1,1,1],[2,1,a,a],[3,2,1,a],[4,3,2,1]线性相关,且a≠1,则a=___________.正确答案:1/2解析:解一设所给的4个行向量依次为α1,α2,α3,α4,且令A=[α1T,α2T,α3T,α4T].因4个四维向量线性相关的充要条件是其行列式等于零,故由|A|=|α1T,α2T,α3T,α4T|=(1-a)(1-2a)=0,得到a=1或a=1/2.因a≠1,故a=1/2.解二用初等行变换求之.对AT作初等行变换,化为阶梯形矩阵,得到由于所给向量组线性相关,秩(AT)可经初等列变换化为矩阵15.求a;正确答案:由题设条件可知矩阵A与B等价,则r(A)=r(B).因为所以因此a=2. 涉及知识点:线性代数16.求满足AP=B的可逆矩阵P.正确答案:设矩阵对增广矩阵作初等变换可得解得所以又因P可逆,因此即k2≠k3.故其中k1,k2,k3为任意常数,且k2≠k3.涉及知识点:线性代数[2014年] 设E为三阶单位矩阵.17.求方程组AX=0的一个基础解系;正确答案:为求AX=0的一个基础解系,只需用初等行变换将A化为含最高阶单位矩阵的矩阵:由基础解系的简便求法即可得到AX=0的一个基础解系只含一个解向量α,且α=[-1,2,3,1]T.涉及知识点:线性代数18.求满足AB=E的所有矩阵B.正确答案:因A不可逆,需用元素法求出满足AB=E的所有矩阵.由AB=E,A为3×4矩阵,E为3×3矩阵,则B必为4×3矩阵,设其元素为xij则B=(xij)4×3,即因而得到下述三个线性方程组:对上述三方程组的增广矩阵用初等行变换化为含最高阶单位矩阵的矩阵:由基础解系和特解的简便求法即得方程组①的一个特解η1及对应的齐次线性方程组的一个基础解系α分别为:η1=[2,-1,-1,0]T,α=[-1,2,3,1]T 于是该方程组的通解为X1=[x11,x21,x31,x41]T=Y1+η1=k1α+η1=[-k1+2,2k1-1,3k1-1,k1]T.同样由可得方程组②的通解为X2=[x12,x22,x32,x42]T=Y2+η2=k2α+η2=k2[-1,2,3,1]T+[6,-3,-4,0]T=[-k2+6,2k2-3,3k2-4,k2]T.由可得方程组③的通解为X3=[x13,x23,x33,x43]T=Y3+η3+=k2=k3α+η3=k3[-1,2,3,1]T+[-1,1,1,0]T=[-k3-1,2k3+1,3k3+1,k3]T 综上得到,涉及知识点:线性代数19.[2013年] 设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.正确答案:设则由AC-CA=B得到四元非齐次线性方程组:存在矩阵C使AC-CA=B成立,上述方程组必有解.为此将上述方程组的增广矩阵用初等行变换化为阶梯形矩阵:当a≠-1或b≠0时,因秩()≠秩(G),方程组无解.当a=-1且b=0时,秩()=秩(G)=2<n=4,方程组有解,且有无穷多解.由基础解系和特解的简便求法得到,其基础解系为:α1=[1,a,1,0]T=[1,-1,1,0]T,α2=[1,0,1,0]T则对应齐次线性方程组的通解为c1α1+c2α2.而方程组①的特解为[1,0,0,0]T,故方程组①的通解为X=c1[1,-1,1,0]T+c2[1,0,0,1]T+[1,0,0,0]T即X=[x1,x2,x3,x4]T=[c1+c2+1,-c1,c1,c2]T,亦即x1=c1+c2+1,x2=-c1,x3=c1,x4=c2(c1,c2为任意常数),故所求的所有矩阵为其中c1,c2任意常数.涉及知识点:线性代数[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,20.β不能由α1,α2,α3线性表示;正确答案:设有数k1,k2,k3,使得k1α1+k2α2+k3α3=β.①记A=[α1,α2,α3].对矩阵[A|β]施以初等行变换,有由于系数矩阵A 的秩取决于a及a-b是否为零,下面采用如下的二分法,分三种情况讨论.当a=0,b为任意常数时,有可知秩(A)≠秩([A|β]),故方程组①无解,β不能由α1,α2,α3线性表示.涉及知识点:线性代数21.β可由α1,α2,α3唯一地线性表示,并求出表示式;正确答案:当a≠0,且a≠b时,秩(A)=秩([A|β])=3,故方程组①有唯一解.由得到唯一解为k1=1-1/a,k2=1/a,k3=0,且β可由α1,α2,α3唯一地线性表示,其表示式为β=(1-1/a)α1+α2/a.涉及知识点:线性代数22.β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.正确答案:当a≠0且a-b=0,即a=b≠0时,对[A|β]施以初等行变换,有可知秩(A)=秩([A|β])=2,故方程组①有无穷多解.其一基础解系只含一个解向量α=[0,1,1]T,其一个特解为η=[1-1/a,1/a,0],故以k1,k2,k3为未知数的方程组①的通解为[k1,k2,k3=η+cα=[1-1/a,1/a,0]T+c[0,1,1]T=[1-1/a,1/a+c,c]T(c为任意常数).于是β可由α1,α2,α3线性表示,其一般表示式为β=k1α1+k2α2+k3α3=(1-1/a)α1+(1/a+c)α2+cα3 (c 为任意常数).由上式易知,由于c为任意常数,β由α1,α2,α3线性表出的一般表达式,常归结为求关于未知数k1,k2,k3的方程组β=k1α1+k2α2+k3β3的通解.涉及知识点:线性代数[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3.23.证明α1,α2,α3线性无关;正确答案:证一用向量组线性无关的定义证明.为利用题设条件Aα3=α2+α3易想到需用A同时左乘定义等式两边.设k1α1+k2α2+k3α3=0.①由题设,有Aα1=一α1,Aα2=α2,Aα3=α2+α3.用A左乘式①两边,得到k1Aα1+k2Aα2+k3Aα3=一k1α1+k2α2+k3α2+k3α3=0.②本题中隐含了α1与α2线性无关,因为它们是属于不同特征值的特征向量.下面利用这一点证明k1=k2=k3=0.由式①一式②得到2k1α1一k2α2=0.因α1,α2为A的属于不同特征值的特征向量,故α1,α2线性无关.因而k1=k3=0,将其代入式①得到k2α2=0,又因α≠0,故k2=0.于是α1,α2,α3线性无关.证二用反证法证之.假设α1,α2,α3线性相关,由证一知,α1与α2线性无关,故α3可由α1,α2线性表出,不妨设α3=l1α1+l2α2,其中l1,l2不全为零(若l1,l2同时为零,则α3=0,由Aα3=α2+α3得到α2=0,这与α2为特征向量矛盾).因Aα1=一α1,Aα2=α2,故Aα3=α2+α3=α2+l1α1+l2α2.又一l1α1+l2α2=α2+l1α1+l2α2,即α2+2l1α1=0,则α1与α2线性相关.这与α1,α2线性无关矛盾.故α1,α2,α3线性无关.涉及知识点:线性代数24.令P=[α1,α2,α3],求P-1AP.正确答案:因α1,α2,α3线性无关,故P可逆.所以涉及知识点:线性代数[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.25.求a的值;正确答案:解一因α1,α2,α3不能用β1,β2,β3线性表示,故秩([α1,α2,α3])>秩([β1,β2,β3]),而|α1,α2,α3|==1≠0,故秩([α1,α2,α3])=3,秩([β1,β2,β3])<3,所以解二4个三维向量β1,β2,β3,αi(i=1,2,3)必线性相关.若β1,β2,β3线性无关,则αi 必可表示成β1,β2,β3的线性组合.这与题设矛盾,故β1,β2,β3线性相关.于是|β1,β2,β3|=a-5=0,即a=5.解三将下列向量组用初等行变换化为行阶梯形矩阵:易知秩([α1,α2,α3])=3.因α1,α2,α3不能由β1,β2,β3线性表出,故秩([β1,β2,β3])<3.因而所以a=5.涉及知识点:线性代数26.将β1,β2,β3用α1,α2,α3线性表示.正确答案:解一由上题的解三知,当a=5时,经初等行变换得到故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3.解二设[β1,β2,β3]=[α1,α2,α3]G.则因而即β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3.涉及知识点:线性代数27.[2006年] 四维向量组α1=[1+a,1,1,1]T,α2=[2,2+a,2,2]T,α3=[3,3,3+a,3]T,α4=[4,4,4,4+a]T.问a为什么数时,α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求其一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.正确答案:解一若α1,α2,α3,α4线性相关,即|α1,α2,α3,α4|=0,而|α1,α2,α3,α4|=a3(a+10),于是当a=0或-10时,α1,α2,α3,α4线性相关.当a=0时,α1是α1,α2,α3,α4的极大无关组,且α2=2α1,α3=3α1,α4=4α1.当a=-10时,用初等行变换求其极大无关组.显然β1,β2,β3为β1,β2,β3,β4的一个极大线性无关组,且β4=-β1-β2-β3.由于矩阵的初等行变换不改变矩阵列向量组之间的线性关系,故α1,α2,α3是α1,α2,α3,α4的一个极大无关组,且α4=-α1-α2-α3.解二设A=[α1,α2,α3,α4],对A进行初等行变换,得到当a=0时,A的秩等于1,因而α1,α2,α3,α4线性相关.此时α1为α1,α2,α3,α4的一个极大线性无关组,且α2=2α1,α3=3α1,α4=4α1.当a≠0时,再对B施以初等行变换,得到如果a≠-10,C的秩为4,从而A的秩也为4,故α1,α2,α3,α4线性无关.如果a=-10,C的秩为3,从而A的秩也为3,故α1,α2,α3,α4线性相关.由于v2,v3,v4为v1,v2,v3,v4的一个极大线性无关组,且v1=-v2-v3-v4,因矩阵的初等行变换不改变矩阵列向量组之间的关系,故α2,α3,α4为α1,α2,α3,α1的一个极大线性无关组,且α1=-α2-α3-α4.涉及知识点:线性代数。
《线性代数(经管类)》历年真题及参考答案

20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。
考研数学一(线性代数)历年真题试卷汇编16(题后含答案及解析)

考研数学一(线性代数)历年真题试卷汇编16(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.B.(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.C.(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.D.(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.正确答案:A解析:若x满足Ax=0,两端左乘AT,得ATAx=0,故Ax=0的解都是ATAx=0的解;若x满足ATAx=0,两端左乘xT,得(xTAT)(Ax)=0,即(Ax)T(Ax)=0,或‖Ax‖2=0,得Ax=0,所以ATAx=0的解也都是Ax=0的解.因此(Ⅰ)与(Ⅱ)同解,只有选项A正确.知识模块:线性方程组2.4个平面aix+biy+ciz=di(i=1,2,3,4)交于一条直线的充要条件是对应的联立线性方程组的系数矩阵A与增广矩阵=A.1B.2C.3D.4正确答案:B解析:记4个平面方程联立所得方程组为Ax=b,则4个平面交于一条直线→Ax=b的通解为x=(x0,y0,z0)…+c(l,m,n)’→r(A)=r(A┆b)且Ax=0的基础解系所含解向量个数为3一r(A)=1→r(A)=r(A)=2,只有选项B正确.知识模块:线性方程组3.设A是n阶矩阵,α是n维列向量,且则线性方程组A.Ax=α必有无穷多解.B.Ax=α必有唯一解.C.=0仅有零解.D.=0必有非零解.正确答案:D解析:因为方程组=0是n+1元齐次线性方程组,而它的系数矩阵的秩为:秩=秩(A)≤n<n+1,故该齐次线性方程组必有非零解,即(D)正确.注意,在题设条件下,有秩(A)=秩[A┊α].故方程组AX=α必有解,但不能肯定它是有无穷多解还是有唯一解,故(A)、(B)都不对.知识模块:线性方程组4.设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有3个线性无关的解向量.正确答案:B解析:由A*≠0知A*至少有一个元素Aij=(一1)i+jMij≠0,故A的余子式Mij≠0,而Mij为A的n一1阶子式,故r(A)≥n一1,又由Ax=b有解且不唯一知r(A)<n,故r(A)=n一1.因此Ax=0的基础解系所含向量个数为n—r(A)=n 一(n一1)=1,只有B正确.知识模块:线性方程组5.设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为A.+k1(η2—η1).B.+k1(η2—η1).C.+k1(η2—η1)+k2(η3—η1).D.+k1(η2—η1)+k2(η3—η1).正确答案:C解析:首先,由A[(η2+η3)]=β,知(η2+η3)是Ax=β的一个特解;其次,由解的性质或直接验证,知η2—η1及η3—η1均为方程组Ax=0的解;再次,由η1,η2,η3线性无关,利用线性无关的定义,或由[η2—η1,η3—η1]=[η1,η2,η3]及矩阵的秩为2,知向量组η2—η1,η3—η1线性无关,因此,方程组Ax=0至少有2个线性无关的解,但它不可能有3个线性无关的解(否则,3一r(A)=3,→r(A)=0,→A=O,这与Aη1=β≠0矛盾),于是η2—η1,η3—η1可作为Ax=0的基础解系,Ax=0的通解为k1(η2—η1)+k2(η3—η1),再由非齐次线性方程组解的结构定理即知只有选项C正确.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。
考研数学二(线性代数)历年真题试卷汇编7(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编7(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A为n阶非零矩阵,E为n阶单位矩阵。
若A3=O,则( )A.E—A不可逆,E+A不可逆。
B.E—A不可逆,E+A可逆。
C.E—A可逆,E+A可逆。
D.E—A可逆,E+A不可逆。
正确答案:C解析:利用单位矩阵E,将A3=O变形为E—A3=E和A3+E=E,进一步分解为(E—A)(E+A+A2)=E一A3=E,(E+A)(E—A+A2)=E+A3=E,则E—A,E+A均可逆。
2.设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( )A.交换A*的第1列与第2列得B*。
B.交换A*的第1行与第2行得B*。
C.交换A*的第1列与第2列得一B*。
D.交换A*的第1行与第2行得一B*。
正确答案:C解析:由题设,存在初等矩阵E12(交换n阶单位矩阵的第1行与第2行所得),使得E12A=B,由于A可逆,可知B也可逆,故B*=(E12A)*一|E12A|(E12A)-1=一|A|A-1E12-1=一A*E12-1,即A*E12=-B*,故选C。
3.设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=。
若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=( )A.B.C.D.正确答案:B解析:4.设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则( )A.当r<s时,向量组Ⅱ必线性相关。
B.当r>s时,向量组Ⅱ必线性相关C.当r<s时,向量组Ⅰ必线性相关。
D.当r>s时,向量组Ⅰ必线性相关。
正确答案:D5.设向量组,α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( ) A.α1,α2,α3,kβ1+β2线性无关。
考研数学三(线性代数)历年真题汇编1.doc

考研数学三(线性代数)历年真题汇编1(总分:50.00,做题时间:90分钟)一、选择题(总题数:14,分数:28.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________2.设n阶方阵A的秩r(A)=r<n,那么在A的n个行向量中【】(分数:2.00)A.必有,一个行向量线性无关.B.任意r个行向量都线性无关.C.任意r个行向量都构成极大线性无关向量组.D.任意一个行向量都可以由其它r个行向量线性表出.3.设A为n阶方阵且∣A∣=0,则【】(分数:2.00)A.A中必有两行(列)的元素对应成比例.B.A中任意一行(列)向量是其余各行(列)向量的线性组合.C.A中必有一行(列)向量是其余各行(列)向量的线性组合.D.A中至少有一行(列)的元素全为0.4.向量组α1,α2,…,αs线性无关的充分条件是【】(分数:2.00)A.α1,α2,…,αs均不为零向量.B.α1,α2,…,αs中任意两个向量的分量不成比例.C.α1,α2,…,αs中任意一个向量均不能由其余s一1个向量线性表示.D.α1,α2,…,αs中有一部分向量线性无关.5.设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k 1,…,k m,使(λ1 +k 1 )α1 +…+(λm +k m )αm +(λ1一k 1 )β1 +…+(λm一k m )βm =0,则【】(分数:2.00)A.α1,…,αm和β1,…,βm都线性相关.B.α1,…,αm和β1,…,βm都线性无关.C.α1 +β1,…,αm +βm,α1一β1,…,αm一βm线性无关.D.α1 +β1,…,αm +βm,α1—β1,…,αm一βm线性相关.6.设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是【】(分数:2.00)A.α1 +α2,α2 +α3,α3一α1B.α1 +α2,α2 +α3,α1 +2α2 +α3C.α1 +2α2,2α2 +3α3,3α3 +α1D.α1 +α2 +α3,2α1一3α2 +22α3,3α1 +5α2一5α37.设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数历年考研题库
线性代数历年考研题库
线性代数是数学中的一门重要学科,它研究向量空间、线性映射和线性方程组等内容。
在考研数学中,线性代数是一个重要的考点,因此熟悉历年考研题库是非常必要的。
本文将介绍一些线性代数历年考研题库中的经典题目,帮助考生更好地备考。
一、向量空间
1. 设V是数域F上的线性空间,U是V的非空子集,证明U是V的子空间的充要条件是:对于V中任意两个向量α和β,如果α和β都属于U,则α+β也属于U,且对于任意标量k,有kα属于U。
2. 设V是数域F上的线性空间,U是V的非空子空间,证明V/U也是一个线性空间。
二、线性映射
1. 设V和W是数域F上的线性空间,T:V→W是一个线性映射。
证明:如果T 是单射,则T的核空间只包含零向量。
2. 设V和W是数域F上的线性空间,T:V→W是一个线性映射。
证明:如果T 是满射,则T的像空间等于W。
三、线性方程组
1. 设A是一个m×n的矩阵,b是一个m维向量。
证明:如果线性方程组Ax=b 有解,则对于任意标量k,线性方程组A(kx)=kb也有解。
2. 设A是一个n×n的矩阵,如果存在非零向量x使得Ax=0,证明A不是满秩矩阵。
四、特征值与特征向量
1. 设A是一个n×n的矩阵,λ是A的一个特征值,x是对应于λ的特征向量。
证明:对于任意标量k,kλ也是A的特征值,kx是对应于kλ的特征向量。
2. 设A是一个n×n的矩阵,λ是A的一个特征值,x是对应于λ的特征向量。
证明:如果A是可逆矩阵,则1/λ是A的逆矩阵的特征值,x是对应于1/λ的特征向量。
五、内积空间
1. 设V是一个实内积空间,证明:对于任意向量x和y,有||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)。
2. 设V是一个实内积空间,证明:对于任意向量x和y,有||x+y||^2 ≤ ||x||^2 + 2||x||·||y|| + ||y||^2。
以上只是线性代数历年考研题库中的一部分题目,通过解答这些题目,可以加深对线性代数的理解和掌握。
在备考过程中,考生还可以积极参加线性代数的习题课、模拟考试等,提高解题能力和应试水平。
祝愿所有考生在考试中取得好成绩!。