2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)
2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)

2021年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(本大题共10小题,共30.0分)1.将一元二次方程2x2−1=3x化成一般形式后,二次项系数和一次项系数分别是()A. 2,−1B. 2,0C. 2,3D. 2,−32.下列垃圾分类标识中,是中心对称图形的是()A. B. C. D.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A. B. C. D.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O外C. 点P在⊙O上D. 无法确定5.一元二次方程x2−4x−1=0配方后可化为()A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=56.在平面直角坐标系中,抛物线y=(x+2)(x−4)经变换后得到抛物线y=(x−2)(x+4),则下列变换正确的是()A. 向左平移6个单位B. 向右平移6个单位C. 向左平移2个单位D. 向右平移2个单位7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A. 63°B. 58°C. 54°D. 52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A. 49B. 59C. 1727D. 799.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=√3+1,则⊙O的半径是()A. √2B. √3C. 32D. 34√310.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A. 2020B. 2021C. 2022D. 2023二、填空题(本大题共6小题,共18.0分)11.在直角坐标系中,点(−1,2)关于原点对称点的坐标是______.12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是______ .13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是______ .14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是______ .15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是______ .16.下列关于二次函数y=x2−2mx+1(m为常数)的结论:①该函数的图象与函数y=−x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=−x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是______ (填写序号).三、解答题(本大题共8小题,共72.0分)17.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=FA.21.如图,正方形ABCD内接于⊙O,E是BC⏜的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等的值.边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求DFDE 拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.24.如图,经过定点A的直线y=k(x−2)+1(k<0)交抛物线y=−x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.答案和解析1.【答案】D【解析】解:将一元二次方程2x2−1=3x化成一般形式是2x2−3x−1=0,二次项的系数和一次项系数分别是2和−3,故选:D.先化成一般形式,即可得出答案.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.【答案】B【解析】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.利用中心对称图形的定义进行解答即可.此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:第一个袋子摸到红球的可能性=110;第二个袋子摸到红球的可能性=210=15;第三个袋子摸到红球的可能性=510=12;第四个袋子摸到红球的可能性=610=35.故选:A.要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.【答案】B【解析】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.【答案】C【解析】解:y=(x+2)(x−4)=(x−1)2−9,顶点坐标是(1,9).y=(x−2)(x+4)=(x+1)2−9,顶点坐标是(−1,9).所以将抛物线y=(x+2)(x−4)向左平移2个单位长度得到抛物线y=(x−2)(x+4),故选:C.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】C【解析】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°−∠ACD−∠BCE=180°−63°−63°=54°.故选:C.先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.【答案】B【解析】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是1527=59.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=12OA=12r,OH=√3AH=√32r,在Rt△ACH中,(12r)2+(r+√32r)2=(√3+1)2,解得r=√2,即⊙O的半径为√2.故选:A.连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH=12r,OH=√32r,利用勾股定理得到(12r)2+(r+√32r)2=(√3+1)2,然后解方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.【答案】C【解析】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=−20212020,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(−20212020)2+2021⋅(−20212020)+2022=2022.故选:C.根据题意得出x=x1+x2=−20212020,代入函数的解析式即可求得二次函数的值.本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.11.【答案】(1,−2)【解析】解:在直角坐标系中,点(−1,2)关于原点对称点的坐标是(1,−2),故答案为:(1,−2).根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),可得答案.本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【答案】14【解析】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形ABCD,∴点A落在阴影区域内的概率为14,故答案为:14.用阴影部分的面积除以平行四边形的总面积即可求得答案.此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.【答案】50%【解析】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1−x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】125°或145°【解析】解:∵O是△ABC的外心,∴∠BAC=12∠BOC=12×140°=70°(如图1)或∠BAC=180°−70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+12∠BAC,当∠BAC=70°时,∠BIC=90°+12×70°=125°;当∠BAC=110°时,∠BIC=90°+12×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+12∠BAC,然后把∠BAC的度数代入计算即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.【答案】32π【解析】解:点O所经过的路径长=3×90π⋅1180=32π.故答案为:32π.点O所经过的路径是三个14圆周长.本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】①③【解析】解:①∵二次函数y=x2−2mx+1的对称轴为直线x=−−2m2×1=m,二次函数y=−x2+2mx的对称轴为直线x=−2m2×(−1)=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(−2m)2−4×1×1=4m2−4≥0,∴m≥1,故结论②错误;③∵y=x2−2mx+1=(x−m)2+1−m2,∴顶点为(m,−m2+1),∴该函数的图象的顶点在函数y=−x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴x1+x22<m,∵二次函数y=x2−2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.利用二次函数的性质一一判断即可.本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:∵关于x的一元二次方程x2−bx+2=0有一个根是x=1,∴1−b+2=0,解得:b=3,把b=3代入方程得:x2−3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【解析】把x=1代入方程计算求出b的值,进而求出另一根即可.此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【答案】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【解析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为24=12;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为812=23.【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.【答案】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【解析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,D,连接FR,DR,作DR交⊙P于G,连接FG,可证FA=FR=FG,线段FG即为所求作.本题考查作图−应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴AB⏜=CD⏜,∵E是BC⏜的中点,∴BE⏜=EC⏜,∴AE⏜=DE⏜,∴AE=DE.(2)解:连接BD,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=90°−45°=45°,∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,{∠ADE=∠CDF ∠AED=∠FDA=DC,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=√2DE=EC+DE,EC=1,∴1+DE=√2DE,∴DE=√2+1,∴S△DEF=12DE2=√2+32.【解析】(1)欲证明AE=DE,只要证明AE⏜=DE⏜.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE= CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.【答案】解:(1)∵顶点坐标为(30,900),∴设y=a(x−30)2+900,将(0,0)代入,得:900a+900=0,解得a=−1,∴y=−(x−30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y−40x=−(x−30)2+900−40x=−x2+60x−900+900−40x=−x2+20x=−(x−10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:−(4+m)2+60(4+m)−40×4−(40+12)m=0,整理得:−m2+64=0,解得:m1=8,m2=−8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【解析】(1)由顶点坐标为(30,900),可设y=a(x−30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y−40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.【答案】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=12DF,设BF=x,则CF=DF=2x,DE=3x,∴DFDE =2x3x=23;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=12AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠PAC=90°,PA=AC,∵∠EAD=90°,∴∠PAE=∠CAD,∴△CAD≌△PAE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE=√AE2+AB2=√12+22=√5,∴BP≤BE+PE=√5+1,∴BP的最大值为√5+1.【解析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,DF,则可得出答案;得出∠BDF=30°,由直角三角形的性质得出BF=12拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE 的长,则可得出答案.本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.【答案】解:(1)∵A为直线y=k(x−2)+1上的定点,∴A的坐标与k无关,∴x−2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=−x2+4x=−(x −2)2+4,∴顶点D 的坐标为(2,4),∵点A 的坐标为(2,1),∴AD ⊥x 轴.如图(1),分别过点B ,C 作直线AD 的垂线,垂足分别为M ,N ,设B ,C 的横坐标分别为x 1,x 2,∵△ACD 的面积是△ABD 面积的两倍,∴CN =2BM ,∴x 2−2=2(2−x 1),∴2x 1+x 2=6.联立{y =−x 2+4x y =kx −2k +1,得x 2+(k −4)x −2k +1=0,① 解得x 1=4−k−√k2+122,x 2=4−k+√k 2+122, ∴2×4−k−√k 2+122+4−k+√k 2+122=6,化简得:√k 2+12=−3k ,解得k =−√62. 另解:接上解,由①得x 1+x 2=4−k ,又由2x 1+x 2=6,得x 1=2+k .∴(2+k)2+(k −4)(2+k)−2k +1=0,解得k =±√62. ∵k <0,∴k =−√62; (3)如图(2),设⊙E 与直线y =t 交于点G ,H ,点C 的坐标为(a,−a 2+4a). ∵E 是AC 的中点,∴将线段AE 沿AC 方向平移与EC 重合,∴x E −x A =x C −x E ,y E −y A =y C −y E ,∴x E =12(x A +x C ),y E =12(y A +y C ).∴E(1+a 2,−a 2+4a +12). 分别过点E ,A 作x 轴,y 轴的平行线交于点F ,在Rt △AEF 中,由勾股定理得:EA 2=(1+a 2−2)2+(−a 2+4a +12−1)2 =(a 2−1)2+(−a 2+4a+12−1)2,过点E 作PE ⊥GH ,垂足为P ,连接EH ,∴GH =2PH ,EP 2=(−a 2+4a+12−t)2,又∵AE =EH ,∴GH 2=4PH 2=4(EH 2−EP 2)=4(EA 2−EP 2)=4[(a 2−1)2+(−a 2+4a +12−1)2−(−a 2+4a +12−t)2] =4[a 24−a +1+(−a 2+4a +12)2−(−a 2+4a +1)+1−(−a 2+4a +12)2+t(−a 2+4a +1)−t 2]=4[(54−t)a 2+(4t −5)a +1+t −t 2]. ∵GH 的长为定值,∴54−t =0,且4t −5=0, ∴t =54.【解析】(1)由A为直线y=k(x−2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x−2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,−a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.。
2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程x2−8x=10化成一元二次方程的一般形式,其中二次项系数为1,常数项为()A. −8B. 8C. 10D. −102.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.3.若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A. y=2x2+3B. y=2x2−3C. y=2(x−3)2D. y=2(x+3)24.如图,在⊙O中,∠BOC=100°,则∠A等于()A. 100°B. 50°C. 40°D. 25°5.抛物线y=−3(x−1)2−2的顶点坐标是()A. (1,2)B. (−1,2)C. (−1,−2)D. (1,−2)6.用配方法解方程x2+10x+9=0,配方正确的是()A. (x+5)2=16B. (x+5)2=34C. (x−5)2=16D. (x+5)2=257.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A. 12°B. 15°C. 25°D. 30°8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是()A. 5个B. 6个C. 7个D. 8个9.如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为()A. 3B. 6C. 9D. 1210.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.已知方程x2−4x+1=0的两个根是x1和x2,则x1+x2=______.12.已知点A(−2,a)与点B(b,3)关于原点对称,则a−b=______13.已知点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,则y1,y2的大小关系是:y1______y2.(填“>”或“<”)14.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是______.15.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加______m.16.如图,矩形ABCD中,AB=2,AD=√3,O为AB的中点,将OA绕着点O旋转得到OE,连接DE.以DE为边作等边△DEF(点D、E、F按顺时针方向排列),连接CF,则CF的最小值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−x−1=0.四、解答题(本大题共7小题,共64.0分)18.二次函数y=ax2−2x+c中的x,y满足如表:x…−10123…y…0−3−4−3m…(1)求抛物线的解析式;(2)求m的值.19.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.20.请用无刻度直尺画出下列图形,并保留作图痕迹.(1)将线段AB绕点B顺时针旋转90°,得到线段BD;(2)过C作线段AB的垂线段CE,垂足为E;(3)作∠ABD的角平分线BF.21.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是BC⏜的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.22.某超市销售一种成本为每千克40元的水产品,若按每千克50元销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)直接写出月销售量y(千克)与售价x(元/千克)之间的函数关系式:______;月销售利润w(元)与售价x(元/千克)之间的函数关系式:______;(2)该超市想在月销售量不低于250千克的情况下,使月销售利润达到8000元,销售单价应定为每千克多少元?(3)售价定为每千克多少元时会获得最大利润?求出最大利润.23.[学习概念]有一组对角互余的凸四边形称为对余四边形.[理解运用](1)如图1,在对余四边形ABCD中,连接AC,∠D=30°,∠ACD=105°,AB=AC,求∠BAD的度数;(2)如图2,在凸四边形ABCD中,DA=DB,DA⊥DB,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形?并证明你的结论;(3)[拓展提升]如图3,在对余四边形ABCD中,∠A=45°.∠ABD+∠BDC=180°,BC=4.求AB+CD的长.24.已知抛物线y=ax2经过点A(2,1).(1)求抛物线的解析式;(2)如图1,直线l经过点A且与抛物线对称轴右侧交于点B,若△ABO的面积为6,求直线l的解析式;(3)如图2,直线CD与抛物线交于C、D两点,与y轴交于点(0,m),直线PC、PD与抛物线均只有一个公共点,点P的纵坐标为n,求m与n的数量关系.答案和解析1.【答案】D【解析】解:方程整理得:x2−8x−10=0,其中二次项系数为1,常数项为−10.故选:D.方程整理后为一般形式,找出二次项系数与一次项系数即可.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c= 0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.【答案】C【解析】解:A、B、D中图形都不是中心对称图形,C中图形是中心对称图形,故选:C.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选:A.直接根据“上加下减、左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.4.【答案】B∠BOC=50°.【解析】解:∵∠BOC=100°,∴∠A=12故选:B.根据圆周角定理可求得∠A=50°.本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.【答案】D【解析】解:∵y=−3(x−1)2−2是抛物线的顶点式,∴顶点坐标为(1,−2).故选:D.直接根据顶点式的特点求顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).6.【答案】A【解析】解:x2+10x+9=0,x2+10x=−9,x2+10x+52=−9+52,(x+5)2=16.故选:A.移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.本题考查了用配方法解一元二次方程的应用,关键是能正确配方.7.【答案】B【解析】解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,(180°−30°)=75°,∴∠ABB′=∠AB′B=12∵∠BCB=90°,∴∠BB′C=90°−75°=15°,故选:B.利用旋转的性质,三角形面积和定理求解即可.本题考查旋转变化的性质,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【答案】B【解析】解:设参赛球队的个数是x,每个队都要赛(x−1)场,但两队之间只有一场比赛,由题意得:x(x−1)2=15,解得:x1=6,x2=−5(不合题意,舍去),则参赛球队的个数是6个;故选:B.根据赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=x(x−1)2,由此列出方程,然后求解即可.本题考查了由实际问题抽象一元二次方程的应用,读懂题意,得到总场数与球队之间的关系是解决本题的关键.9.【答案】A【解析】解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴AD⏜=CE⏜,∴AD=CE=2,∵BC=6,∴△BEC的面积为12BC⋅CE=12×6×2=6,∵OB=OE,∴△BOC的面积=12△BEC的面积=12×6=3,故选:A.延长BO交⊙O于E,连接CE,可得∠COE+∠BOC=180°,∠BCE=90°,由∠AOD+∠BOC=180°,∠AOD=∠COE,推出AD=CE=2,根据三角形的面积公式可求得△△BEC的面积.BEC的面积为6,由OB=OE,可得△BOC的面积=12本题主要考查了圆心角所对弧、弦的关系,圆周角定理,三角形面积公式,正确作出辅助线是解决问题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为;抛物线与y轴的交点坐标抛物线,当a>0,抛物线开口向上;对称轴为直线x=−b2a为(0,c);当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,由抛物线的对称轴为直=−1得b=2a,所以c−a=2;根据二次函数的最大值问题,当x=−1时,线x=−b2a二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.故选C.11.【答案】4【解析】解:根据题意得x1+x2=−−41=4.故答案为4.根据根与系数的关系求解.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.12.【答案】−5【解析】解:由题意,得:a=−3,b=2,a−b=−3−2=−5,故答案为:−5.根据关于原点对称的点的坐标,可得答案.本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.13.【答案】>【解析】解:∵点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,∴当x=−2时,y1=12−2=10,当x=1时,y2=3−2=1,∴y1>y2,故答案为>.将点A(−2,y1),点B(1,y2)分别代入y=3x2−2,求出相应的y1、y2,即可比较大小.本题考查二次函数的图象上点的特点;能够用代入法求二次函数点的坐标是解题的关键.14.【答案】36(1−x)2=25【解析】【分析】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=25,把相应数值代入即可求解.【解答】解:第一次降价后的价格为36×(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1−x)×(1−x),则列出的方程是36(1−x)2=25.故答案为:36(1−x)2=25.15.【答案】(2√6−4)【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(−2,0),到抛物线解析式得出:a=−0.5,所以抛物线解析式为y=−0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=−1时,对应的抛物线上两点之间的距离,也就是直线y=−1与抛物线相交的两点之间的距离,可以通过把y=−1代入抛物线解析式得出:−1=−0.5x2+2,解得:x=±√6,所以水面宽度增加到2√6米,比原先的宽度当然是增加了2√6−4,故答案为:(2√6−4).根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=−1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【答案】2√3−1【解析】解:如图,连接DO,延长OA到T,使得AT=OA,连接DT,FT,CT.∵四边形ABCD是矩形,∴∠OAD=90°,∵AD=√3,OA=OB=1,=√3,∴tan∠AOD=ADAO∴∠AOD=60°,∠ADO=30°,∴OD=2AO,∵AO=AT,∴OT=2AO,∴OT=OD,∴△ODT 是等边三角形,∵△DEF 是等边三角形,∴∠ODT =∠EDF =60°,DO =DT ,DE =DF ,∴∠DEO =∠FDT ,∴△DEO≌△FDT(SAS),∴FT =OE =OA =1,∵∠B =90°,BT =2+1=3,BC =√3,∴CT =√BT 2+BC 2=√32+(√3)2=2√3,∵CF ≥CT −TF ,∴CF ≥2√3−1,∴CF 的最小值为2√3−1.故答案为:2√3−1.如图,连接DO ,延长OA 到T ,使得AT =OA ,连接DT ,FT ,CT.证明△DEO≌△FDT(SAS),推出FT =OE =OA =1,利用勾股定理求出CT ,根据CF ≥CT −TF ,可得CF ≥2√3−1,由此即可解决问题.本题考查旋转变换的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【答案】解:x 2−x −1=0,x =−b±√b 2−4ac 2a=1±√1+42×1=1±√52, ∴x 1=1+√52,x 2=1−√52.【解析】本题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a 、b 、c 的值.18.【答案】解:(1)由题意可知,抛物线y =ax 2−2x +c 经过(−1,0),(0,−3), ∴{a +2+c =0c =−3, 解得:{a =1c =−3, 所以抛物线的解析式为:y =x 2−2x −3;(2)把x=3代入y=x2−2x−3,可得y=9−6−3=0,所以m=0.【解析】(1)取两组对应值代入y=ax2−2x+c得到关于a、c的方程组,然后解方程组即可;(2)把x=3代入二次函数的解析式求解即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.【答案】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+ 2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=−70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【解析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.20.【答案】解:(1)如图,线段BD即为所求.(2)如图,线段CE即为所求.(3)如图,射线BF即为所求.【解析】(1)根据旋转变换的性质画出图形即可.(2)取格点T,连接CT交AB于点E,线段CE即为所求.(3)取格点,G,H,连接GH,AD交于点F,作射线BF,射线BF即为所求.本题考查作图−旋转变换,角平分线,垂线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:延长DE交⊙O于点G,如图所示:∵AB为⊙O的直径,DE⊥AB,∴DE=GE,BD⏜=BG⏜,∵D是BC⏜的中点,∴CD⏜=BD⏜=BG⏜,∴BC⏜=DG⏜,∴BC=DG=2DE;(2)解:连接BD、OD,如图所示:∵CD⏜=BG⏜,∴∠DBC=∠BDF,∴DF=BF,∵AB为⊙O的直径,AB=10,∴∠ACB=90°,OB=OD=5,∴BC=√AB2−AC2=√102−62=8,BC=4,由(1)得:DE=12∵DE⊥AB,∴OE=√OD2−DE2=√52−42=3,∴BE=OB−OE=2,设DF=BF=a,则EF=4−a,在Rt△BEF中,由勾股定理得:22+(4−a)2=a2,,解得:a=52∴DF=5.2【解析】(1)延长DE交⊙O于点G,先由垂径定理得DE=GE,BD⏜=BG⏜,再证出BC⏜=DG⏜,由圆心角、弧、弦的关系即可得出结论;(2)连接BD、OD,先由圆周角定理得∠DBC=∠BDF,得DF=BF,由圆周角定理得BC=4,再由勾股定理求出OE=3,则BE=∠ACB=90°,勾股定理得BC=8,则DE=12OB−OE=2,设DF=BF=a,则EF=4−a,然后在Rt△BEF中,由勾股定理得出方程,解方程即可.本题考查了圆周角定理、垂径定理、圆心角、弧、弦的关系、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.22.【答案】y=−10x+1000w=−10x2+1400x−40000【解析】解:(1)月销售量y(千克)与售价x(元/千克)之间的函数关系式:y=500−10(x−50)=−10x+1000,即y=−10x+1000;月销售利润w(元)与售价x(元/千克)之间的函数关系式:w=(x−40)y=(x−40)(−10x+1000)=−10x2+1400x−40000,即w=−10x2+1400x−40000,故答案为:y=−10x+1000,w=−10x2+1400x−40000;(2)根据题意得:−10x2+1400x−40000=8000,解得:x1=80,x2=60,又∵月销售量不低于250千克,则有:−10x+1000≥250,解得:x≤75,∴x1=80>75(舍去),答:销售单价应定为60元时,月销售利润达到8000元;(3)由(2)得:w=−10x2+1400x−40000=−10(x−70)2+9000,∵a=−10<0,∴抛物线的开口向下,抛物线有最高点,函数有最大值,当x=70时,w取最大值,最大值为9000元,答:售价定为每千克70元时会获得最大利润?最大利润为9000元.(1)根据一个月可售出500千克,减去因涨价而减少的数量得到月销售量y(千克)与售价x(元/千克)之间的函数关系式,根据(售价−成本)×月销售量得到月销售利润w(元)与售价x(元/千克)之间的函数关系式;(2)将月销售利润8000元代入w=−10x2+1400x−40000,解方程即可得到结果;(3)将w=−10x2+1400x−40000化为顶点式就可以求出结果.本题考查了二次函数的应用,一元二次方程的运用,解答时求出函数的解析式是解题的关键.23.【答案】解:(1)∵四边形ABCD是对余四边形,依题意得,∠B+∠D=90°,∵∠D=30°,∴∠B=90°−∠D=60°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACD=105°,∴∠BCD=∠ACB+∠ACD=165°,在四边形ABCD中,∠BAD=360°−∠B−∠ACD−∠D=360°−60°−165°−30°= 105°;(2)四边形ABCD为对余四边形,证明:∵AD⊥BD,∴∠ADB=90°,∵DA=DB,∴∠BAD=∠ABD=45°,如图2,过点D作DM⊥CD,使CD=CM,连接CM,BM,∴∠DMC=∠DCM=45°,∵∠ADB=∠CDM=90°,∴∠ADB+∠BDC=∠CDM+∠BDC,∴∠ADC=∠BDM.在△ADC和△BDM中,{DA=DB∠ADC=∠BDM DC=DM,∴△ADC≌△BDM(SAS),∴AC=BM.在Rt△MDC中,根据勾股定理得,CM2=CD2+DM2=2CD2,∵2CD2+CB2=AC2,∴CM2+CB2=BM2,∴△BCM是直角三角形,且∠BCM=90°,∵∠DCM=45°,∴∠DCB=∠BCM−∠DCM=45°,∴∠DCB+∠DAB=90°,∴四边形ABCD为对余四边形;(3)如图3,过点B作BE⊥BC交CD的延长线于点E,∵四边形ABCD为对余四边形,依题意得,∠A+∠C=90°,∵∠A=45°,∴∠C=∠E=45°=∠A,∵∠ABD+∠BDC=180°,∠BDE+BDC=180°,∴∠ABD=∠EDB,在△ABD和△EDB中,{∠A=∠E∠ABD=∠EDB BD=DB,∴△ABD≌△EDB(AAS),∴AB =ED ,EB =BC =4,在Rt △EBC 中,根据勾股定理得,BE 2+BC 2=CE 2,∴CE =4√2, 即AB +CD =4√2.【解析】(1)先根据对余四边形求出∠B =60°,进而得出∠ACB =60°,∠BCD =165°,最后用四边形内角和定理,即可得出结论;(2)先判断出∠BAD =∠ABD =45°,进而判断出∠ADC =∠BDM ,即可判断出△ADC≌△BDM(SAS),得出AC =BM.再根据勾股定理得出CM 2=CD 2+DM 2=2CD 2,进而判断出∠BCM =90°,即可得出结论;(3)先判断出∠C =∠E =45°=∠A ,再判断出∠ABD =∠EDB ,进而得出△ABD≌△EDB(AAS),得出AB =ED ,EB =BC =4,最后用勾股定理求出CE =4√2,即可得出结论.此题是四边形综合题,主要考查了新定义,等边三角形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的判定和性质,构造出全等三角形是解本题的关键.24.【答案】解:(1)∵抛物线y =ax 2经过点A(2,1). ∴1=4a ,解得a =14,∴抛物线解析式为y =14x 2;(2)∵点A(2,1).∴直线OA 为y =12x ,如图1,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,∴12OE ×2=6,∴OE =6,∴点E(0,6),设直线BE 为y =12x +6,解{y =12x +6y =14x2得{x =6y =9或{x =−4y =4,∴B(6,9),设直线l 的解析式为y =kx +b ,∴{2k +b =16k +b =9,解得{k =2b =−3, ∴直线l 的解析式为y =2x −3;(3)设直线CD 的解析式为y =kx +m ,由{y =kx +m y =14x2去掉y 整理得14x 2−kx −m =0. 设C 、D 的坐标分别为(x C ,y C ),(x D ,y D ),∴x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,由{y =ax +c y =14x 2整理得,14x 2−ax −c =0. ∵CP 与抛物线只有一个公共点,∴△=a 2+c =0,∴c =−a 2,∴14x 2−ax +a 2=0,解得x C =2a ,同理:设直线DP 的解析式为y =bx +d ,可得x D =2b ,∴2a ⋅2b =−4m ,∴ab =−m ,联立{y =ax +c y =bx +d ,即{y =ax −a 2y =bx −b 2, 解得{x =a +b y =ab, ∴P(a +b,ab),∵点P 的纵坐标为n ,∴n =ab =−m .【解析】(1)利用待定系数法求抛物线解析式解答即可;(2)求得直线OA 的解析式,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,根据三角形面积求得OE ,得到E 的坐标,进而求得直线BE 的解析式,与抛物线解析式联立,解方程组求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式;(3)设直线CD 的解析式为y =kx +m ,与抛物线解析式联立整理得14x 2−kx −m =0.根据根与系数的关系得到x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,联立抛物线x2−ax−c=0.根据题意△=a2+c=0,解析式得到14x2−ax+a2=0,解得x C=2a,同理:设直线DP的解析式求得c=−a2,即可得到14为y=bx+d,可得x D=2b,所以4ab=−m,直线CP和直线DP联立,解方程求得交点P((a+b,ab),即可求得n=−m.本题考查了待定系数法求二次函数的解析式,待定系数法求一次函数的解析式,两条直线相交或平行问题,直线与抛物线的交点问题,方程思想的运用是解题的关键.。
2018武汉元调数学试卷及答案(Word精校版)

第1页 / 共10页2017-2018学年度武汉市部分学校九年级元月调考一.选择题(共10小题,每小题3分,共30分) 1.方程x (x -5)=0化成一般形式后,它的常数项是A .-5B .5C .0D .12.二次函数y =2(x -3)2-6A .最小值为-6B .最大值为-6C .最小值为3D .最大值为3 3.下列交通标志中,是中心对称图形的是A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则 A .事件①是必然事件,事件②是随机事件. B .事件①是随机事件,事件②是必然事件. C .事件①和②都是随机事件. D .事件①和②都是必然事件.5.投掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是 A .连续投掷2次必有1次正面朝上. B .连续投掷10次不可能都正面朝上.C .大量反复投掷每100次出现正面朝上50次.D .通过投掷硬币确定谁先发球的比赛规则是公平的.6.一元二次方程20x m ++=有两个不相等的实数根则A .3m >B .3m =C .3m <D .3m ≤7.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么直线和圆的位置关系是 A .相离 B .相切 C .相交 D .相交或相切8.如图,等边△ABC 的边长为4,D ,E ,F 分别为边AB ,BC ,AC 的中点,分别以A ,B ,C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D ,E ,F ,则下列等式:①∠EDF =∠B ,②2∠EDF =∠A +∠C ,③2∠A =∠FED +∠EDF ,④∠AED +∠BFE +∠CDF =180°,其中成立的个数是 A .1个 B .2个 C .3个 D .4个 10.二次函数y =-x 2-2x +c 在32x -≤≤的范围内有最小值-5,则c 的值是 A .-6 B .-2 C .2 D .3二.填空题(共6小题,每小题3分,共18分)B第2页 / 共10页11.一元二次方程20x a -=的一个根是2,则a 的值是 .12.把抛物线22y x =先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 . 13.一个不透明的口袋中有四个完全相同的小球,把它们分别标记为1,2,3,4.随机摸取一个小球然后放回, 再随机摸出一个小球,两次取出的小球标号的和为5的概率是 .14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的比,可以增加视觉美感,按此比例,如果雕像的高为2m ,那么上部应设计为多高?设雕像的上部高为x m ,列方程,并化成一般形式为 .15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则AP AB=16.在O 中,AB 所对的圆心角108AOB ∠=︒,点C 为O 上的动点,以AO ,AC 为边构造AODC ,当∠A= °时,线段BD 最长.三.解答题(共8小题,共72分) 17. (本题8分)解方程230x x +-=AA第3页 / 共10页18. (本题8分)如图在O 中,半径OA 与弦BD 垂直,点C 在O 上,∠AOB=80°. (1)若点C 在优弧BD 上,求∠ACD 的大小; (2)若点C 在劣弧BD 上,直接写出∠ACD 的大小.19.(本题8分)甲,乙,丙三个盒子中分别装有除颜色以外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球,乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球. (1)请画树状图,列举所有可能的结果;(2)请直接写出事件“取出至少一个红球”的概率.20. (本题8分)如图,在平面直角坐标系中有点A(-4,0),B(0,3),点分别为C,D.(1)当a=-4时,①在图中画出线段CD,保留作图痕迹;②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21. (本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E.(1)求证:AC平分∠DAE.(2)若AB=6,BD=2,求CE的长.A第4页 / 共10页22. (本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m.设平行于墙的边长为xm.(1)设垂直于墙的一边长为y,请直接写出y与x之间的函数关系式.(2)若菜园面积为384m2,求x的值.(3)求菜园的最大面积.23. (本题10分)如图,点C为线段AB上一点,分别以AB,AC,CB为底作顶角为120°的等腰三角形,顶角顶点分别为D,E,F,(点E,F在AB的同侧,点D在另一侧).(1)如图1,若点C是AB的中点,则∠AED=__________;(2)如图2,若点C不是AB的中点,①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.AA第5页 / 共10页24.(本题12分)已知抛物线22=++与x轴交于A(-1,0),B(3,0)两点,一次函数y=kx+b的图象l经y ax x c过抛物线上的点C(m,n).(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上,当PD=PC时,求点P的坐标.第6页 / 共10页第7页 / 共10页2017-2018学年度武汉市部分学校九年级元月调考解析一.选择题9.如图:①∵∠EOF =2∠EDF ,∠EOF +∠B =180°, ∴2∠EDF +∠B =180°所以①错误②∵∠EOF =2∠EDF ,∠EOF +∠B =180°, ∠A +∠B +∠C =180°,∴2∠EDF =∠A +∠C 所以②正确③∵∠EDF +∠DEF =2x +y +z =90°+x ,∵∠A+∠EOD =180°,∴∠A =180°-2(y +z )=2x , ∴2(∠EDF +∠DEF )-180°=∠A 所以③错误④∠AED +∠BFE +∠CDF =90°-x +90°-y +90°-z =270°-(x +y +z )=270°-90°=180° 所以④正确二.填空题 11. 412. 2287y x x=++ 13.1414. 2-640x x +=15.16.27°16.延长AO 与O 交于点P ,连接DP ,如图,则 O CAO D P ∆∆≌ DP OC ∴=,即点D 的运动轨迹是以点P 为圆心,OC 长 为半径的圆.如图所示,连接BP ,BP 与P 的交点记作'DBD 最大值为'BD ,此时1'272A POD APB ∠=∠=∠=三.解答题17.1x 1x =PD’BOAC B第8页 / 共10页18. (1)∵OA ⊥BD , ∴AB =AD ,∴∠ACD =12∠AOB =40° (2)40°或140°19.(1)由题意可得如下树状图,由图可知共有12种等可能的情况.(2)5620.(1)如图所示 (2)2(3)72-21.(1)证明:连OC∵CD 与⊙O 切于点C , ∴OC ⊥DE ,∠OCD =90°∵AE ⊥DE , ∴∠E =90°,∴∠OCD =∠E =90°,∴OC //AE , ∴∠1=∠2 ∵OC =OA , ∴∠1=∠3, ∴∠2=∠3, ∴AC 平分∠DAE (2)解:作CH ⊥OD∵AB =6, ∴AO =OB =OC =3∵AC 平分∠DAE ,CH ⊥OD ,CE ⊥AE , ∴CE =CH ∵∠OCD =90°, ∴CD∵OCD S ∆=12OC ·CD =12OD ·CH , ∴CH =125, ∴CE =12522. (1)由题意可知: 200x +150⨯2y =10000化简得:210033y x =-+∴y 与x 之间的函数关系式210033y x =-+(024x <≤)(2)210038433x x ⎛⎫-+= ⎪⎝⎭整理得:()22549x -=解得:x 1=18,x 2=32∵024x <≤ ∴x =18即菜园面积为384m 2,x 的值为18. (3)设菜园的面积SS =210033x x ⎛⎫-+ ⎪⎝⎭=()2212502533x --+A第9页 / 共10页∵203-<,开口向下对称轴x =25∴当024x <≤时,y 随x 的增大而增大. ∴当x =24时,S 的最大值为416. 所以,菜园的最大面积为416 m 2 23. (1)90°(2)①证明:延长AE 、BF 交于G ,连DG .易证四边形ADBG 为菱形,△ADG 为等边三角形,四边形EGFC 为平行四边形. 可证∠DAE =∠DGF =60°,AE =CE =GF . 在△ADE 和△GDF 中. DA DG DAE DGF AE GF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△GDF (SAS ) ∴DE =DF ,∠ADE =∠GDF∴∠EDF =∠EDG +∠GDF =∠EDG +∠ADE =∠ADG =60° ∴△EDF 为等边三角形.②EF24.(1)将A (-1,0),B (3,0)代入22y ax x c =++中得:02096a ca c =-+⎧⎨=++⎩解得:a =-1,c =3∴抛物线的解析式为223y x x =-++(2)当m =3时,n =-9+6+3=0, ∴C (3,0), 将点C 代入y =kx +b 中得: 0=3k +b , ∴b =-3k , ∴l 的解析式为y =kx -3k联立:2323y kx ky x x =-⎧⎨=-++⎩得:()22330x k x k +---= ∵l 与抛物线只有一个交点BA第10页 / 共10页∴()()224330k k ∆=----=得:k =-4(3)当k =-2m +2时,y =(-2m +2)x +b 且m ≠1 将C (m ,n )代入y =(-2m +2)x +b 中得: n =(-2m +2)m +b ∵223n m m =-++∴23b m =+,l 的解析式为()2223y m x m =-+++ ∵D 为l 与抛物线对称轴的交点∴1D x =, 当x =1时,225y m m =-+ ∴()21,25D m m -+,()2,23C m m m -++ 设()1,P a , ∵PC =PD ,∴22PC PD =即()()()2222212325m m m a m m a -+-++-=-+-解得:154a =, ∴P 的坐标为(1,154)。
2015-2016学年度武汉市九年级元月调考数学试卷(word版有答案)

2015~2016学年度武汉市部分学校九年级元月调研测试数学试卷考试时间:2016年1月21日一、选择题(共10小题,每小题3分,共30分)1.将方程x 2-8x =10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( ) A .-8、-10B .-8、10C .8、-10D .8、102.如图汽车标志中不是中心对称图形的是( )A .B .C .D .3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球 B .摸到黑球、白球的可能性的大小一样 C .这个球可能是白球D .事先能确定摸到什么颜色的球 4.抛物线y =-3(x -1)2-2的对称轴是( )A .x =1B .x =-1C .x =2D .x =-25.某十字路口的交通信号灯每分钟绿灯亮30秒,红灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率为( ) A .121B .61 C .125 D .21 6.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为( )A .50°B .80°C .100°D .130°7.圆的直径为10 cm ,如果点P 到圆心O 的距离是d ,则( ) A .当d =8 cm 时,点P 在⊙O 内 B .当d =10 cm 时,点P 在⊙O 上 C .当d =5 cm 时,点P 在⊙O 上D .当d =6 cm 时,点P 在⊙O 内8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( ) A .2根小分支 B .3根小分支 C .4根小分支D .5根小分支 9.关于x 的方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m ≤3B .m ≥3C .m ≤3且m ≠2D .m <310.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为( ) A .π32B .πC .2D .32二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点A (-3,2)关于原点对称点的坐标为__________12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为__________13.某村种的水稻前年平均每公顷产7 200 kg ,今年平均每公顷产8 450 kg .设这两年该村水稻每公顷产量的年平均增长率为x ,根据题意,所列方程为________________________14.在直角坐标系中,将抛物线y =-x 2-2x 先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为____________________15.如图,要拧开一个边长为a =12 mm 的六角形螺帽,扳手张开的开口b 至少要________mm 16.我们把a 、b 、c 三个数的中位数记作Z |a ,b ,c |,直线y =kx +21(k >0)与函数y =Z |x 2-1,x +1,-x +1|的图象有且只有2个交点,则k 的取值为__________ 三、解答题(共8题,共72分)17.(本题8分)已知3是一元二次方程x 2-2x +a =0的一个根,求a 的值和方程的另一根18.(本题8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1) 一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2) 随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率19.(本题8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E.(1) 求证:AC 平分∠DAB ;(2) 连接CE ,若CE =6,AC =8,直接写出⊙O 直径的长20.(本题8分)如图,正方形ABCD 和直角△ABE ,∠AEB =90°,将△ABE 绕点O 旋转180°得到△CDF (1) 在图中画出点O 和△CDF ,并简要说明作图过程。
2019年度武汉元调数学试卷及其规范标准答案(精校版)

2018-2019学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程式是( ) A .2316x x += B . 2316x x -= C . 2361x x += D . 2361x x -= 2.下列图形中,是中心对称图形的是( )3.若将抛物线2y x =先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .2(1)2y x =-+B . 2(1)2y x =--C . 2(1)2y x =++D . 2(1)2y x =+-4.投掷两枚质地均匀的骰子,骰子的六个面上分别有刻有1和6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1 C .两枚骰子向上一面的点数之和大于12 D .两枚骰子向上一面的点数之和等于125.已知O e 的半径等于8cm ,圆心O 到直线l 的距离为9cm ,则直线l 与O e 的公共点的个数为( ) A .0 B . 1 C . 2 D . 无法确定6.如图,“圆材埋壁” 是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O e 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B . 13寸C . 25寸D . 26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .16B .38C .58D .238.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在»AB 上,点B 的对应点为C ,连接BC ,则图中CD ,BC 和»BD围成的封闭图形面积是( ) A6p B .6p C .8pD .3p 9.古希腊数学家欧几里得的《几何原本》记载,形如22x ax b +=的方程的图解是:如图,画Rt ABC D ,∠ACB =90°,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B . BC 的长 C . AD 的长 D .CD 的长10.已知抛物线2(0)y ax bx c a =++<的对称轴为1x =-,与x 轴的一个交点为(2,0).若关于x 的一元一次方程2(0)ax bx c p p ++=>有整数根,则p 的值有( )D .C .B .A.CAA .2个B .3个C . 4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程2x p =的一个根,则另一个根是________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是________.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…….,不断重复上述过程,小刚共摸了100次,其中20次摸到黑球,根据上述数据,小刚可估计口袋中的白球大约有________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行.小明幸运获得了一张军运会吉祥物“兵兵”的照片,如图,该照片(中间的矩形)长29cm ,宽为20cm ,他想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的14,为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为________.15.如图是抛物线拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是________.三、解答题(共8题,共72分)17.(本题8分)解方程:2310x x --=18.(本题8分)如图,A ,B ,C ,D 是⊙O 上四点,且AD =CB ,求证:AB =C D .19.(本题8分)武汉的早点种类丰富,品种繁多.某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E ,F ,G ,H ),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A ,B ,E ,F )这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C ,D ,G ,H )这四种美食中选择一种.用列举法求小李和小王同时选择的美食都是甲类食品的概率.GDA20.(本题8分)如图,在边长为1的正方形网格中,点A 的坐标为(1,7),点B 的坐标为(5,5),点C 的坐标为(7,5),点D 的坐标为(5,1).(1)将线段AB 绕点B 逆时针旋转,得到对应线段BE ,当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2)小贝同学发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD 中,AD BC P ,AD CD ⊥,AC AB =,O e 为ABC ∆的外接圆. (1)如图1,求证:AD 是O e 的切线;(2)如图2,CD 交O e 于点E ,过点A 作AG BE ⊥,垂足为F ,交BC 于点G . ①求证:AG BG =②若2AD =,3CD =,求FG 的长.图1 图222.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x (元/件)满足一次函数关系,并且当x =25时,y =550元;当x =30时,y =500.物价部门规定,该商品的销售单价不能超过48元/件. (1)求出y 与x 的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元? (3)直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边ABC ∆与等腰EDC ∆有公共顶点C ,其中120EDC ∠=︒,AB CE ==BE ,P 为BE 的中点,连接PD AD 、.(1)小亮为了研究线段AD 与PD 的数量关系,将图1中的EDC ∆绕点C 旋转一个适当的角度,使CE 与CA 重合,如图2,请直接写出AD 与PD 的数量关系;(2)如图1,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由; (3)如图3,若45ACD ∠=︒,求PAD ∆的面积.图1图2 图3BBB24.(本题12分)如图,在平面直角坐标系中,抛物线2(1)y x m x m =+--交x 轴于A B 、两点(点A 在点B 的左边),交y 轴负半轴于点C .(1)如图1,3m =.①直接写出A B C 、、三点的坐标;②若抛物线上有一点D ,45ACD ∠=︒,求点D 的坐标.(2)如图2,过点(2)E m ,作一直线交抛物线于P Q 、两点,连接AP AQ 、,分别交y 轴于M N 、两点, 求证:OM ON ⋅是一个定值.图1图22018-2019学年度武汉市部分学校九年级元月调考数学试卷参考答案9解析:设AD 为x ,根据Rt ABC D ,222()()22x b +=+, 得:222244a a x axb ++=+,22x ax b +=,所以可以求出x ,所以AD 即所求. 10解析:依图形可知二、填空题(本大题共6个小题,每小题3分,共18分) 11. -3 12.(1,2) 13. 12 14.24981450x x +-= 15. 2 16.115.解析:以抛物线的顶点为原点,建立平面直角坐标系.则A (2,-2),B (-2,-2)∴212y x =-,令 4.5y =-,解得3x =±.∴此时水面宽度为6米,增加了2米 16.解析:∵∠AGB=90°,AB =4,∴G 在以AB 为直径的圆上运动 当CF 与圆相切时,∠BCF 最大,此时AF 最大 设AF =FG =x ,BC =CG=4,,则DF =4-x在Rt △FDC 中,DC 2+DF 2=FC 2,42+(4-x )2=(4+x )2,解得:x =1∴AF =1三、解答题(共8题,共72分) 17.解:∵a =1,b =-3,c =-1∴22=4(3)41(1)94130b ac ∆-=--⨯⨯-=+=> ∴x ==∴1x =2x =B A18.证明:∵AD =CB∴»»AD CB= ∴»»»»AD BD CB BD +=+ 即¼¼ADB CBD= ∴AB =CD19. 解:由树状图可知,小李和小王选择美食共有16种情况,且每种情况出现的可能性相等,同时都是甲类食品的情况共4种.∴P (两种都是甲类食品)=416=1420. 解:(画法如下)(2)情况一:作AD 和BC 的垂直平分线,交点即为旋转中心(6,6) 情况二:作AC 和BD 的垂直平分线,交点即为旋转中心(3,3)21(1)如图所示:连OC ,OB ,连AO 延长交BC 于点H ∵AB =AC ,∴点A 在BC 的垂直平分线上 又∵OB =OC , ∴O 在BC 的垂直平分线上∴AO 垂直平分BC , ∴AO ⊥BC ,CH =BH , ∴∠AHC =90° 又∵AD ∥BC , ∴∠OAD =90°, ∴AD 为O e 的切线 (2)如图所示:①法一:由(1)可知AH ⊥BC ,∴∠HAB +∠ABH =90° ∵AG ⊥BE ,∴∠F AB +∠ABF =90° ∵AO =BO ,∴∠HAB =∠FBA ∴∠ABH =∠F AB ,∴AG =BG法二:8字倒角可得:∠F AO =∠HBO ,又∵∠OAB =∠OBA ∴∠GAB =∠GBA ,∴AG =BG ②由(1)可知四边形ADCH 为矩形. ∴AH =CD =3,CH =HB =AD =2 ∴Rt ABH ∆中 AB=在AGH ∆和BGF ∆中90AHG BFG AGH BGFAG BG ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()AGH BGF AAS ∆∆≌ ∴GF GH =设GH =x ,∴AG =BG =2+x∴在Rt AGH ∆中:()22232x x +=+, 22944x x x +=++,∴54x =,∴54FG GH ==22. 解:(1)设y kx b =+将(25,550)和(30,500)代入可得: 550 =2550030k b k b +⎧⎨=+⎩ 解得:10800k b =-⎧⎨=⎩∴y 与x 的函数关系式为:10800y x =-+ (2)设利润为w 元.()()2010800w x x =--+ 21080020016000w x x x =-++- 210100016000w x x =-+-∴2800010100016000x x =-+- 即210024000x x -+= ∴()()40600x x --=解得:140x =,260x =,∵该商品的销售单价不能超过48元/件.∴x =40答:当销售单价定为40元时,商家销售该商品每天获得的利润是8000元. (3)8960元 23.(1)解:AD =2PD (2)仍然成立。
湖北省武汉市部分学校2013-2014学年度九年级物理元月调考暨十二月月考试题 新人教版

湖北省武汉市部分学校2013-2014学年度九年级物理元月调考暨十二月月考试题新人教版第I卷(选择题)一,选择题1.下列说法正确的是()A.一个电子所带的电荷量为1.9×10-16CB.扩散现象只发生在气体、液体之间C.对人体安全的电压是36VD.水结成冰后,分子间的作用力减小2.在密闭的房间里有一个开着门的电冰箱,给电冰箱通电,过一段时间后,房间的温度将A.升高 B.不变 C.降低 D.无法确定3.小明和小华同学在做“探究:比较水与煤油吸收热量时温度升高的快慢”的实验时, 使用了如图所示的装置.设计实验方案时,他们确定以下需控制的变量,其中多余的是A.采用完全相同的加热方式B.酒精灯里所加的酒精量相同C.取相同质量的水和煤油D.盛放水和煤油的容器相同4.煤油的热值大于酒精的热值,下列说法中正确的是A.煤油比酒精含有的热量多B.完全燃烧相同质量的煤油和酒精,煤油放出的热量要多些C.燃烧相同质量的煤油和酒精,利用煤油刚好能烧开一壶水,那么利用酒精则不能烧开这壶水D.通风条件越好,供氧越充足,两种燃料的热值就越大5.投影机的光源是强光灯泡,发光时必须用风扇给它降温.现要设计投影仪的电路,要求:带动风扇的电动机先启动后,灯泡才可以发光;电动机未启动,灯泡不可以发光.图中符合设计要求的是6.下列事例中,符合安全用电的是A.使用大功率的用电器后,熔丝总被熔断,可用铜丝代替熔丝B.发现有人触电,应立即用手拨开电线C.开关表面有污垢,用湿抹布擦拭开关D.家用电器的金属外壳一定要接地7.用如图所示的电路探究半导体的导电性能,电路中电源电压不变,R是一只光敏电阻,当光照射强度增大时,其电阻会减小.闭合开关,增大光敏电阻的光照强度,电压表和电流表示数的变化情况是A.电流表、电压表示数均减小B.电流表、电压表示数均增大C.电流表示数减小、电压表示数增大D.电流表示数增大、电压表示数减小8.如图所示,当开关S闭合后,发现电灯L不亮,用测电笔测试a、d两点时,氖管都发光,测试b、c两点时,两点都不能使氖管发光,则故障可能是A.火线与零线短路B.a、d之间某处断路C.电灯的灯丝断了D.b、c之间某处断路9.把标有“36V 15W”的甲灯和标有“36V 5W”的乙灯串联后接在电压是36V的电路中,下列说法正确的是A.因为甲灯额定功率较大,所以甲灯较亮B.因为乙灯实际功率较大,所以乙灯较亮C.因为甲灯的电阻较小,所以甲灯较亮D.因为通过它们的电流相等,所以一样亮10.质量和温度都相同的铜块和水,使它们分别放出相同的热量后,将铜块迅速投入水中后,他们的内能变化正确的是A.铜块的内能增大,水的内能减小B.铜块的内能减小,水的内能增大C.铜块和水的内能都增大D.铜块和谁的内能都减小11.如图所示的电路中,R为定值电阻。
2024年湖北省武汉市部分学校九年级中考五月调考数学试卷(含答案)

2024年湖北省武汉市部分学校九年级五月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数5的相反数是( )A.B .C .﹣5D .52.当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.如图图案是我国的一些国产新能源车企的车标,图案既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.投掷一枚普通的正方体骰子,下列事件中,确定事件是( )A .掷得的点数是2B .掷得的点数是奇数C .掷得的点数小于7D .掷得的点数是大于34.《清朝野史大观•清代述异》称:“中国讲求烹茶,以闽之汀、漳、泉三府,粤之潮州府功夫茶为最.”如图1是喝功夫茶的一个茶杯,关于该茶杯的三视图,下列说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .三视图都相同5.下列运算正确的是( )A .(a 3)2=a 5B .a 2•a 3=a 5C .(ab )2=ab 2D .6.如图是某款婴儿手推车的平面示意图,若AB ∥CD ,∠1=130°,∠3=25°,则∠2的度数为( )5151A.50°B.65°C.85°D.75°7.《周髀算经》《九章算术》《海岛算经》《孙子算经》都是中国古代数学著作,是中国古代数学文化的瑰宝.小华要从这四部著作中随机抽取两本学习,则抽取的两本恰好是《周髀算经》和《九章算术》的概率是( )A.B.C.D.8.圆圆想把一些相同规格的塑料杯,尽可能多地放入高40cm的柜子里(如图1).她把杯子按如图这样整齐地叠放成一摞(如图2),但她不知道一摞最多能叠几个可以一次性放进柜子里.圆圆测量后发现,按这样叠放,这摞杯子的总高度随着杯子数量的变化而变化,记录的数据如表所示:杯子的数量x(只)123456…总高度h(cm)1011.412.814.215.617…请帮圆圆算一算,一次性放进高40cm的柜子里,一摞最多能叠的杯子个数是( )A.21B.22C.23D.249.蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”.画法如下:在水平直线上取长度为1的线段AB,作一个等边三角形ABC,然后以点B 为圆心,AB为半径逆时针画圆弧交线段CB的延长线于点D(第一段圆弧),再以点C为圆心,CD为半径逆时针画圆弧交线段AC的延长线于点E,再以点A为圆心,AE为半径逆时针画圆弧…以此类推,当得到的“蚊香”恰好有12段圆弧时,“蚊香”的长度为( )A.36πB.52πC.72πD.80π10.已知抛物线y=x2+6ax﹣a的图象与x轴有两个不同的交点(x1,0),(x2,0),且﹣=8a﹣3,则a的值为( )A.a=0B.a=C.a=1D.a=0或a=二、填空题(共6小题,每小题3分,共18分)11.2024年“五一”假期首日,游客出游热情高涨,景区景点人气旺盛.据湖北省文旅厅数据显示,湖北省A级旅游景区共接待游客249.8万人次.将数据249.8万用科学记数法表示为 .12.请写出一个图象分布在第二、四象限的反比例函数的解析式为 .13.计算的结果是 .14.如图,在远离铁塔150m的D处,用测角仪测得塔顶的仰角为30°,已知测角仪高AD=2m,那么塔高BE= m(结果保留根号).15.如图,在平面直角坐标系xOy中,点A、D在第一象限内且点A(a﹣1,3a),点C(﹣1,0),点B (2,0),∠ACD=45°,点B到射线CD的最小值是 .16.抛物线y=ax2+bx+c(a、b、c是常数)的顶点在第一象限,且a﹣b+c<0.下列四个结论:①b>0;②2b﹣a﹣c>0;③若4a+c=0,则当时,y随x的增大而减小;④若抛物线的顶点为P(1,n),则方程ax2+bx+c+4a=0无实数根.其中正确的结论是 (填写序号).三、解答题(共8小题,共72分)17.(8分)解不等式组:并写出它的所有整数解.18.(8分)如图,E、F是平行四边形ABCD的对角线AC上两点,AF=CE.(1)求证:△ADF≌△CBE;(2)连接BF,DE和BD,请添加一个条件: 使得四边形BEDF为矩形.19.(8分)某学校七年级体育测试已经结束,现从七年级随机抽取部分学生的体育测试成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:60≥x≥54为优秀,B:53.9≥x≥45为良好,C:44.9≥x≥30为合格,D:x≤29.9为不合格),绘制了如下所示的统计图,请根据统计图信息解答下列问题:(1)请补全条形统计图;本次共调查了 名学生;(2)在扇形统计图中,m= ,本次调查的学生体育成绩中位数位于等级 ;(3)若该校共有900名七年级学生,请估计本次体育成绩为合格及以上的学生人数.20.(8分)如图,AB为⊙O的直径,BE与⊙O相交于点C,过点C的切线CD⊥AE,垂足为点D.(1)求证:AE=AB;(2)若AB=6,CB=4,求CD的长.21.(8分)如图,在由小正方形组成的6×6的网格中,每个小正方形的顶点叫做格点,图中A、B、C为格点,仅用无刻度直尺按要求作图:(1)在图1中,将线段AC绕某一点旋转90°得到线段BD(其中点B和点C对应),画出线段BD;延长BD交AC于点E,在BC上找点F,使得AF+EF的值最小.(2)在图2中,找点G,使得AG=BG=CG;找一格点M使得∠ACB+∠AMB=180°.(找出一个即可)22.(10分)一块土地上有一个蔬菜大棚(如图1),其横截面顶部为抛物线型,大棚的一端固定在墙体OA 上,另一端固定在墙体BC上(墙体足够高),其横截面有2根支架DE,FG,相关数据如图2所示,其中DE=BC,OF=DF=BD.(1)在图2中以点O为原点,OA所在直线为y轴建立平面直角坐标系,则A点坐标为( , ),E点坐标为( , ),抛物线的函数表达式为 ;(2)已知大棚有300根长为DE的支架和300根长为FG的支架,为增加棚内空间,拟将图2中棚顶向上调整,支架总数不变,对应支架的长度变化如图3所示,调整后C与E上升相同的高度,增加的支架单价为20元/米(接口忽略不计),现有改造经费30000元.①当CC′=1米,只考虑经费情况下,请通过计算说明能否完成改造;②只考虑经费情况下,直接写出CC′的最大值 .23.(10分)如图1,在菱形ABCD中,AB=2,∠B=60°,点F为CD边上的动点.(1)E为边AD上一点,连接EF,将△DEF沿EF进行翻折,点D恰好落在BC边的中点G处,①求DE的长;②tan∠GFC= .(2)如图2,延长CD到M,使DM=DF,连接BM与AF,BM与AF交于点N,连接DN,设DF=x (x>0),DN=y,求y关于x的函数表达式.24.(12分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A、C(C在A的左侧),与y轴交于点B.(1)若A(3,0),B(0,﹣3),C(﹣1,0).①直接写出抛物线解析式: ;②若D点与C点关于y轴对称,在直线AB上是否存在点M使△ABC与△ADM相似,若存在,求出点M的坐标;(2)如图2,点P和点Q在抛物线y=ax2+bx+c上,其中P在点C左侧抛物线上,Q点在y轴右侧抛物线上,直线CQ交y轴于点F,直线PC交y轴于点H,设直线PQ解析式为y=kx+t,当S△HCQ=2S △BCQ,试证明为一个定值,并求出定值.参考答案一、选择题(共10小题,每小题3分,共30分)1.C.2.D.3.C.4.A.5.B.6.D.7.B.8.B.9.B.10.B.二、填空题(共6小题,每小题3分,共18分)11.2.498×106.12.y=﹣(答案不唯一).13..14.(50+2).15..16.①②④.三、解答题(共8小题,共72分)17.解:∵解不等式①得:x<4,解不等式②得:x≥1,∴不等式组的解集为1≤x<4,∴不等式组的整数解为1,2,3.18.(1)证明:∵在平行四边形ABCD中,AD∥BC,AD=BC,∴∠DAF=∠BCE,又∵AF=CE,∴△ADF≌△CBE(SAS);(2)解:添加一个条件:BD=EF,理由:连接BF,DE,BD,由(1)得△ADF≌△CBE,∴∠DFA=∠BEC,DF=BE,∴DF∥BE,∴四边形BEDF是平行四边形,∵BD=EF,∴四边形BEDF为矩形,故答案为:BD=EF.19.解:(1)本次调查的总人数为6÷12%=50(名),C等级人数为50﹣(10+14+6)=20(人),补全图形如下:故答案为:50;(2)m%=×100%=40%,即m=40,本次调查的学生体育成绩的中位数位于等级C,故答案为:40;C;(3)900×=792(名),答:估计本次体育成绩为合格及以上的学生人数为792名.20.(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD,又∵CD⊥AE,∴AE∥OC,∴∠E=∠OCB,∵OC=OB,∴∠ABC=∠OCB,∴∠ABC=∠E,∴AE=AB;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得,∵AB=AE,AC⊥BE,∴∠EAC=∠BAC,又∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,即,∴.21.解:(1)如图,线段BD,点F即为所求;(2)如图,点G,点M即为所求.22.解:(1)∵OA=1,∴A点坐标为(0,1).∵DE=BC=4,OF=DF=BD,OB=6,∴OD=4.∴点E的坐标为(4,4),点C的坐标为(6,4).设抛物线的函数表达式为:y=ax2+bx+c(a≠0).∴.解得:.∴抛物线的函数表达式为:y=﹣x2+x+1.故答案为:0,1;4,4;y=﹣x2+x+1;(2)①∵CC′=1,∴点C′的坐标为(6,5).∴点E′的坐标为(4,5).设向上调整后的抛物线解析式为:y=mx2+nx+p(m≠0).∴.解得:.∴向上调整后的抛物线解析式为:y=﹣x2+x+1.当x=2时,FG=﹣×22+×2+1=3,FG′=﹣×22+×2+1=.∴增加的高度GG′=﹣3=(米).∵EE′=CC′=1米,∴所需经费为:(300×+1×300)×20=10000(元).∵10000<30000,∴能完成改造.(3)由题意得:调整后抛物线的对称轴是直线x=5.∴设调整后的抛物线解析式为:y=d(x﹣5)2+e(d≠0).∵经过点(0,1),∴1=d(0﹣5)2+e.∴e=1﹣25d.∴调整后的抛物线解析式为:y=d(x﹣5)2+1﹣25d.当x=2时,FG=3,FG′=1﹣16d.∴增加的高度GG′=1﹣16d﹣3=(﹣2﹣16d)米.当x=4时,DE=﹣×42+×4+1=4,DE′=1﹣24d.∴增加的高度EE′=1﹣24d﹣4=(﹣3﹣24d)米.∴所需经费为:(﹣2﹣16d﹣3﹣24d)×300×20=(﹣240000d﹣30000)元.∵﹣240000d﹣30000≤30000,解得:d≥﹣.∴d=﹣时,所需经费最少,此时CC′=EE′=3米.23.解:(1)①连接AC,AG,如图,∵四边形ABCD是菱形,∴AB=BC=2,∵∠ABC=60°,∴△ABC为等边三角形,∵BG=GC,∴AG⊥BC,BG=GC=1.∴.∵AD∥BC,∴AG⊥AD.由题意得ED=EG.设EG=ED=x,则AE=2﹣x,在Rt△AEG中,∠GAE=90°,∴AG2+AE2=EG2,∴,∴.∴;②过点G作GH⊥CD,交CD的延长线于点H,如图,∵AB∥CD,∴∠BCH=∠B=60°,∴∠CGH=30°,∴,.由题意得FD=FG,设FG=FD=m,则FC=2﹣m,在Rt△FHG中,∠GHF=90°,∴GH2+FH2=FG2,∴,∴,,∴.(2)延长DN交AB于点K,连接AC交DK于点P,连接BP交CD的延长线交于点Q,如图,∵四边形ABCD是菱形,∴AB∥CP,∴△AKN∽△FDN,△BKN∽△MDN,∴,,∴,∵DM=DF,∴.过点D作DL⊥AB交BA延长线于L,在Rt△ALD中,∠ALD=90°,∠LAD=60°,AD=2,∴,,∴KL=AL+AK=2,∴,∵DF=x(x>0),DN=y,∴,.24.解:(1)①将A(3,0),B(0,﹣3),C(﹣1,0)代入y=ax2+bx+c得:,解得:,故抛物线解析式为y=x2﹣2x﹣3,故答案为:y=x2﹣2x﹣3;②在直线AB上存在点M使△ABC与△ADM相似;理由如下:过M作MF⊥x轴,如图1,∵点D与点C关于y轴对称,∴D(1,0),AC=4,AB=3,AD=2,当△ADM∽△ACB时,∴AM=,∵OA=OB,∴∠OAB=45°,∴AF=MF=,∴M(,);当△AMD∽△ACB时,∴=,∴AM=,∵OA=OB,∴∠OAB=45°,∴AF=MF=;∴M(,),故M(,﹣)或M(,);(2)∵抛物线解析式为y=ax2+bx+c,当x=0时,y=c,∴B(0,c),设直线PC的解析式为y=mx+n,直线CQ的解析式为y=dx+e,∴H(0,n),F(0,e),∴FH=y F﹣y H=e﹣n,FB=y F﹣y B=e﹣c,∵S△HCQ=2S△BCQ,∴FH×(x Q﹣x C)=2×BF×(x Q﹣x C),∴e﹣n=2(e﹣c),∴e=2c﹣n(即=c=y B,即点B是FH的中点),∵,∴ax2+(b﹣m)x+c﹣n=0,∴x P x C=,∵,∴ax2+(b﹣d)x+c﹣e=0,∴x Q x C===,∴x P x C=,x Q x C=,x C≠0,∴x p x C+x Q x C=x C(x P+x Q)=0,∴xp+x Q=0,又∵直线y=kx+t经过抛物线y=ax2+bx+c上两点P、Q,∴,∴ax2+(b﹣k)x+c﹣t=0的两个根为xp和x Q,∴x P+x Q=﹣,∴﹣=0而a≠0,∴b=k,∴=1,∴为定值1.。
2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程2x2+1=6x化成一般形式后,一次项和常数项分别是()A. 2x2、1B. 2、6C. −6x、1D. −6、12.下列食品图案中,是中心对称图形的是()A. B. C. D.3.解方程x2−6x+3=0,可用配方法将其变形为()A. (x+3)2=3B. (x−6)2=3C. (x−3)2=3D. (x−3)2=64.平面直角坐标系中,点(−2,9)关于原点对称的点坐标是()A. (−9,2)B. (2,−9)C. (2,9)D. (−2,−9)5.关于x的一元二次方程2x2+5x−1=0根的说法,正确的是()A. 方程没有实数根B. 方程有两个相等实数根C. 方程有两个不相等实数根D. 方程有一个实数根6.将抛物线y=2(x−1)2+3向右移1单位,上移2单位所得到的新抛物线解析式为()A. y=2(x−2)2−5B. y=2x2+4C. y=2(x−3)2+1D. y=2(x−2)2+57.二次函数y=−x2−2x+c在−3≤x≤2的范围内有最大值为−5,则c的值是()A. −2B. 3C. −3D. −68.抛物线y=ax2+bx+c(a>0)与直线y=bx+c在同一坐标系中的大致图象可能为()A. B.C. D.9.如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为()A. 50mB. 45mC. 40mD. 60m10.如图,正方形ABCD中,∠EAF=45°,有以下四个结论:①BE+DF=EF;②BM2+DN2=MN2③若AB=3,BE=1,则BN=3;④若CE=2,则DN=√2,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.若x=2是方程x2−mx+2=0的根,则m=______.12.如图,△ABC是⊙O的内接三角形,∠C=45°,AB=6,则⊙O的半径为______.13.如图,已知A(4,0)、B(0,3),以点B为圆心,AB的长为半径画圆,交y轴正半轴于点C,则线段AC的长度等于______.14.在平面直角坐标系中,以点(2,0)为旋转中心,将点(1,3)顺时针旋转90°所得到的点坐标为______.15.已知抛物线y=a(x−ℎ)2+k与x轴交于(−2,0)、(3,0),则关于x的一元二次方程:a(x−ℎ+6)2+k=0的解为______.16.已知关于x的二次函数y=ax2−4ax+3a2−6,当x<0时,y随x的增大而减小.并且,当−1≤x≤3时,y有最小值1.则a的值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:2x2−3x+1=0.四、解答题(本大题共7小题,共64.0分)18.如图为二次函数y=−x2−x+2的图象,试根据图象回答下列问题:(1)方程−x2−x+2=0的解为______;(2)当y>0时,x的取值范围是______;(3)当−3<x<0时,y的取值范围是______.19.湖北省预计将于今年年底实现全省贫困人口全部脱贫.2018年,湖北省精准脱贫专项资金合计约30亿元,据扶贫办报告,2020年湖北省政府将合计拨款43.2亿元用于脱贫攻坚最后一战.根据以上信息,请你计算在2018~2020年期间,湖北省脱贫专项资金年平均增长率为多少?20.请用直尺按要求在网格中作图,并标明字母(辅助线可用虚线作出,以下作图请勿超出网格范围).(1)作出平行四边形ABDC;(2)以AC为边,作出正方形ACMN;(3)作出一条同时平分平行四边形ABDC与正方形ACMN面积的直线.21.如图,△ABC为⊙O的内接三角形,∠ACB=60°,弦CD平分∠ADB.(1)求证:△ABC为等边三角形;(2)若BD=3,AD=5,过C点作BD的平行线交DA的延长线于点E,试求△CAE面积.22.某商场主营玩具销售,经市场调查发现,某种玩具的月销量y(件)是售价x(元/件)的一次函数,该玩具的月销售总利润W=(售价−成本)×月销量,三者有如下数据:售价x(元/件)152030月销量y(件)500400200月销售总利润W(元)250040004000(1)试求y关于x的函数关系式(x的取值范围不必写出);(2)玩具的成本为______元,当玩具售价x=______元时,月销售总利润有最大值______元;(3)受市场波动原因,从本月起,该玩具成本上涨a元/件(a>0),且物价局规定该玩具售价最高不得超过25元/件.若月销量y与售价x仍满足(1)中的关系,预计本月总利润W最高为3000元,请你求出a的值.23.四边形ABCD若满足∠A+∠C=180°,则我们称该四边形为“对角互补四边形”.(1)如图1,四边形ABCD为对角互补四边形,且满足∠BAD=90°,AB=AD,求∠ACB的度数.小云同学是这么做的:延长CB至M,使得BM=CD,连AM,可证明△CAD≌△MAB,通过判断△MAC的形状,可以得出结论.①在图1中按要求完成作图;②△MAC的形状为______;③∠ACB=______;(2)如图2,四边形ABCD为对角互补四边形,且满足∠BAD=60°,AB=AD,试证明:CA=CB+CD;(3)如图3,等腰△ABD、等腰△CDE的顶点分别为A、C,点B在线段CE上,且∠BAD与∠C互补.请你判断∠DAE与∠DBC的数量关系并证明.24.如图1,抛物线y=x2+(m+1)x−(m+2)(其中m为大于−1的常数)交坐标轴于A、B、C三点.(1)当m=1时,①直接写出A、B、C的坐标A______、B______、C______;②点D在抛物线上,且满足∠DAO=∠BCO,试求D点坐标;(2)如图2,点M在抛物线上且位于x轴下方,直线AM、BM分别交y轴于P、Q两点,MN⊥y轴于N.若OPOC =54,试求ONOQ的值.答案和解析1.【答案】C【解析】解:2x2+1=6x,2x2−6x+1=0,所以一次项和常数项分别是−6x,1,故选:C.先化成一元二次方程的一般形式,再得出答案即可.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键.2.【答案】A【解析】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.根据中心对称图形的概念判断.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:方程x2−6x+3=0,移项得:x2−6x=−3,平方得:x2−6x+9=6,即(x−3)2=6.故选:D.方程移项,两边加上一次项系数一半的平方配方得到结果,即可作出判断.此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.4.【答案】B【解析】解:点(−2,9)关于原点对称的点坐标是(2,−9),故选:B.关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,据此可得答案.本题考查了关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).5.【答案】C【解析】解:∵2x2+5x−1=0,∴△=52−4×2×(−1)=25+8=33>0,∴该方程有两个不相等实数根.故选:C.计算方程根的判别式,求其符号进行判断即可.本题主要考查根的判别式,掌握方程根的判别式与方程根的情况是解题的关键.6.【答案】D【解析】解:根据“左加右减,上加下减”的法则可知,将抛物线y=2(x−1)2+3向右移1个单位,再向上移2个单位,那么所得到抛物线的函数关系式是y=2(x−2)2+5.故选:D.根据函数图象平移的法则进行解答即可.本题考查了二次函数图形与几何变换,是基础题,掌握平移规律“左加右减,上加下减”是解题的关键.7.【答案】D【解析】解:把二次函数y=−x2−2x+c转化成顶点坐标式为y=−(x+1)2+c+1,又知二次函数的开口向下,对称轴为x=−1,故当x=−1时,二次函数有最大值为−5,故−1+2+c=−5,故c=−6.首先把二次函数y=−x2−2x+c转化成顶点坐标式,找到其对称轴,然后根据在−3≤x≤2内有最大值,得到−1+2+c=−5,解得即可.本题主要考查二次函数的性质的知识点,解答本题的关键是求出二次函数的对称轴,本题比较简单.8.【答案】B【解析】解:选项A中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a<0,b>0,c>0,故选项A不符合题意;选项B中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a>0,b<0,c>0,故选项B符合题意;选项C中,由一次函数的图象可知b>0,c>0,由二次函数的图象可知a>0,b<0,c>0,故选项C不符合题意;选项D中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a>0,b<0,c<0,故选项D不符合题意;故选:B.根据题意和各个选项中的函数图象,可以得到一次函数中b和c的正负情况和二次函数图象中a、b、c的正负情况,注意a>0,然后即可判断哪个选项中的图象符合题意.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】A【解析】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB⏜于D,连接OA,如图所示:则OA=OD=250,AC=BC=1AB=150,2∴OC=√OA2−AC2=√2502−1502=200,∴CD=OD−OC=250−200=50(m),故选:A.设圆弧的圆心为O,过O作OC⊥AB于C,交AB⏜于D,连接OA,先由垂径定理得AC= BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.本题考查了垂径定理和勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键.10.【答案】C【解析】解:①延长CB,截取BI=DF,连接AI,如图,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABE=∠ADC=90°,∴∠ABI=90°,在△ADF和△ABI中,{AD=AB∠ADF=∠ABI DF=BI,∴△ADF≌△ABI(SAS),∴∠BAI=∠DAF,AI=AF,∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠BAI+∠BAE=45°,即∠EAI=45°,∴∠EAI=∠EAF,∵AE=AE,∴△AIE≌△AFE(SAS),∴IE=FE,即DE+BF=EF,故①正确;②过B作BD的垂线,截取BH=ND,连接AH,HM,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADN,在△ADN和△ABH中,{AD=AB∠ADN=∠ABH DN=BH,∴△ADN≌△ABH(SAS),∴∠DAN=∠BAH,AN=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAN+∠BAM=∠BAH+∠BAM=45°,∴∠MAN=∠HAM=45°,在△AHM和△ANM中,{AH=AN∠HAM=∠NAM AN=AN,∴△AHM≌△ANM(SAS),∴MH=MN,Rt△BHM中,HM2=BH2+BM2,∴MN2=BM2+DN2,故②正确;③连接AC,过E作EH⊥AC于点H,∵四边形ABCD为正方形,AB=3,∴∠ACB=∠BAC=∠ADB=∠CAD=45°,AB=BC=3,∴∠HEC=∠HCE=45°,∵BE=1,∴CE=2,∴EH=√2,∴BE≠HE,∴∠BAE≠∠CAE,∵∠EAF=∠CAD=45°,∴∠CAE=∠DAF,∵∠BAE≠∠DAF,∴∠EAF+∠BAE≠∠ADN+∠DAF,∵∠BAN=∠EAF+∠BAE,∠BNA=≠∠ADN+∠DAF,∴∠BAN≠∠BNA,∴AB≠BN,∵AB=3,∴BN≠3,故③错误;④过点D作DG⊥BD过N作NG//BC,与DG交于点G,连接CG,与AF的延长线交于点H,∵四边形ABCD是正方形,∴AD=CD,∠BDC=45°,∠BCD=90°∴∠CDG=∠ADC=45°,NG⊥CD,∴∠DNG=∠DGN=45°,∴DN=DG,∵∠ADN=∠CDG=45°,∴△ADN≌△CDG(SAS),∴∠DAN=∠DCG,∵∠DAN+∠AFD=90°,∠AFD=∠CFH,∴∠HCF+∠CFH=90°,∴∠CHF=90°,∵∠CBD=∠EAF=45°,∴A、B、E、N四点共圆,∴∠ABE+∠ANE=180°,∵∠ABC=90°,∴∠ANE=90°=∠CHF,∴EN//CG,∴四边形CENG为平行四边形,∴NG=EC=2,∴DN=CG⋅sin45°=2×√2=√2,故④正确,2故选:C.①延长CB,截取BI=DF,连接AI,如图,易证△ADF≌△ABI,△AIE≌△AFE,得IE=FE,即DF+BE=EF,成立;②过B作BD的垂线,截取BH=ND,连接AH,HM,如图,易证△ADN≌△ABH,△AHM≌△ANM,得MN=MH,最后根据勾股定理可作判断;③连接AC,过E作EH⊥AC于点H,证明EH≠EB得∠BAE≠∠CAE,进而证明∠BAN≠∠BNA,得BN≠3;④过点D作DG⊥BD过N作NG//BC,与DG交于点G,连接CG,与AF的延长线交于点H,证明△DNG为等腰直角三角形,证明四边形CENG为平行四边形,便可解决问题.本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.11.【答案】3【解析】解:∵x=2是方程x2−mx+2=0的一个根,∴22−2m+2=0,解得m=3,故答案为:3.将x=2代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.【答案】3√2【解析】解:如图,连接OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴OA=OB=√2AB=3√2,2即⊙O的半径是3√2,故答案为:3√2.连接OA,OB,可得∠AOB=90°,进而利用等腰直角三角形的性质解答即可.此题考查三角形外接圆与外心,关键是根据圆周角与圆心角的关系得出∠AOB=90°.13.【答案】4√5【解析】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=√OB2+OA2=√32+42=5,∴BC=AB=5,∴OC=BC+OB=5+3=8,在Rt△COA中,由勾股定理得:AC=√OA2+OC2=√42+82=4√5.故答案为:4√5.先根据勾股定理求出AB,再求出OC,然后利用勾股定理即可得到线段BC的长.本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.14.【答案】(5,1)【解析】解:如图,观察图象可知E(1,3)绕点A(2,0),顺时针旋转90°所得到的点F的坐标为(5,1).故答案为:(5,1).利用图象法,画出图形解决问题即可.本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.15.【答案】x1=−8,x2=−3【解析】解:将抛物线y=a(x−ℎ)2+k向左平移6个单位长度后的函数解析式为y= a(x−ℎ+6)2+k,∵抛物线y=a(x−ℎ)2+k经过(−2,0),(3,0)两点,∴当a(x−ℎ+6)2+k=0向左平移6个单位时,对应的解是x1=−8,x2=−3,故答案为:x1=−8,x2=−3.将抛物线y=a(x−ℎ)2+k向左平移6个单位得到y=a(x−ℎ+6)2+k,然后根据抛物线y=a(x−ℎ)2+k经过(−2,0),(3,0)两点,可以得到a(x−ℎ+6)2+k=0的解.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】73【解析】解:∵二次函数y=ax2−4ax+3a2−6=a(x−2)2+3a2−4a−6,∴顶点为(2,3a2−4a−6),对称轴为直线x=2,∵当x<0时,y随x的增大而减小,∴开口向上,a>0,∵当−1≤x≤3时,y有最小值1,∴顶点为(2,1),∴3a2−4a−6=1,解得,a=73或a=−1,∵a>0,a的值为73,故答案为73.解析式化成顶点式,得到顶点为(2,3a2−4a−6),对称轴为直线x=2,根据当x<0时,y随x的增大而减小,即可得到开口向上,a>0,由当−1≤x≤3时,y有最小值1可知顶点为(2,1),即可得到3a2−4a−6=1,解方程组即可求得a的值.本题考查了二次函数的性质,解题的关键是明确题意,得到关于a的方程是解题的关键.17.【答案】解:方程分解因式得:(2x−1)(x−1)=0,可得2x−1=0或x−1=0,解得:x1=12,x2=1.【解析】此题考查了解一元二次方程−因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.方程左边利用十字相乘法分解因式后,利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解.18.【答案】x1=−2,x2=1−2<x<1−4<y≤94【解析】解:(1)令y=−x2−x+2=0,解得x=−2或1,故答案为x1=−2,x2=1;(2)从图象看,当y>0时,x的取值范围是−2<x<1,故答案为−2<x<1;(3)由抛物线的表达式知,顶点坐标为(−12,94 ),当x=−3时,y=−9+3+2=−4,故当−3<x<0时,y的取值范围是为−4<y≤94.(1)令y=−x2−x+2=0,解得x1=−2,x2=1,即可求解;(2)观察函数图象即可求解;(3)由抛物线的表达式知,顶点坐标为(−12,94),当x=−3时,y=−9+3+2=−4,进而求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.19.【答案】解:设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,依题意,得:30(1+x)2=43.2,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:在2018~2020年期间,湖北省脱贫专项资金年平均增长率为20%.【解析】设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,根据2018年及2020年湖北省政府投入精准脱贫专项资金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【答案】解:(1)如图,平行四边形ABDC即为所求.(2)如图,正方形ACMN即为所求.(3)如图,直线l即为所求.【解析】(1)根据平行四边形的判定画出图形即可.(2)根据正方形的判定画出图形即可.(3)连接AD,BC交于点G,连接AM,CN交于点H,直线GH即为所求.本题考查作图−应用与设计,三角形的面积,平行四边形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】解:(1)∵CD平分∠ADB,∴∠BDC=∠ADC,∴BC⏜=AC⏜,∴BC=AC,∵∠ACB=60°,∴△ABC为等边三角形;(2)如图,作CM⊥ED于点M,由(1)知:∠CDA=∠BDC=60°,∵CE//BD,∴∠DCE=∠BDC=60°,∴△CDE是等边三角形,∴CD=CE,∵∠BCD=60°−∠ACD=∠ACE,在△BCD和△ACE中,{BC=AC∠BCD=∠ACE DC=EC,∴△BCD≌△ACE(SAS),∴BD=AE=3,∴DC=DE=DA+AE=8,∵CM⊥ED,∴DM=12DE=4,∴CM=√DC2−DM2=4√3,∴△CAE 面积为:12AE ⋅CM =6√3.【解析】(1)根据圆周角定理和等边三角形的判定即可证明;(2)作CM ⊥ED 于点M ,结合(1)可得△CDE 是等边三角形,然后证明△BCD≌△ACE ,可得BD =AE =3,根据等边三角形三线合一可得DM 的长,根据勾股定理得CM 的长进而可得△CAE 面积.本题考查了三角形的外接圆与外心,垂径定理,圆周角定理,等边三角形的判定与性质,熟练掌握圆周角定理是解题的关键.22.【答案】10 25 4500【解析】解:(1)设函数表达式为y =kx +b ,则{15k +b =50020k +b =400,解得{k =−20b =800, 故y 关于x 的函数关系式为y =−20x +800;(2)设成本为m 元,由题意得:(15−m)×500=2500,解得m =10(元),则W =y(x −10)=(−20x +800)(x −10)=−20(x −40)(x −10),∵−20<0,故W 有最大值,当x =12(40+10)=25(元)时,W 的最大值为4500(元);故答案为10,25,4500;(3)由题意得:W =(800−20x)(x −10−a)=−20(x −25−12a)2+5a 2−300a +4500,则当x =25+12a 时,W 有最大值,由题意得x ≤25且25+12a >25,∴当x =25时,有最大利润W =300(15−a)=3000,解得a =5.(1)设y 关于x 的函数解析式为y =kx +b ,用待定系数法求解即可;(2)该商品进价等于周销售利润除以周销售量,再减去进价;根据周销售利润=周销售量×(售价−进价),列出w 关于x 的二次函数,根据二次函数的性质可得答案;(3)根据周销售利润=周销售量×(售价−进价),列出w关于x的二次函数,根据题意及二次函数的性质得出取得最大利润时的售价,再列出关于a的方程,求解即可.本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.23.【答案】等腰直角三角形45°【解析】(1)解:①如图1,②如图1,延长CB至M,使得BM=CD,连AM,∵∠ADC+∠ABC=180°,∠ABM+∠ABC=180°,∴∠ADC=∠ABM,∵AD=AB,∴△CAD≌△MAB(SAS),∴∠CAD=∠MAB,AC=AM,∵∠CAD+∠CAB=90°,∴∠MAB+∠CAB=90°.即∠CAM=90°,∴△MAC为等腰直角三角形;故答案为:等腰直角三角形;③∵△MAC为等腰直角三角形,∴∠ACB=45°.故答案为:45°;(2)证明:如图2,延长CB至M,使得BM=CD,连AM,∵∠ADC+∠ABC=180°,∠ABM+∠ABC=180°,∴∠ADC=∠ABM,∵AD=AB,∴△CAD≌△MAB(SAS),∴∠CAD=∠MAB,AC=AM,∴∠CAM=∠MAB+∠CBA=∠CAD+∠CBA=∠BAD=60°,∴△ACM为等边三角形,∴CA=CM=CB+BM=CB+CD.∠DAE+∠DBC=180°.理由如下:(3)12证明:如图3,延长CD至M,使得DM=CB,连AM,AC,则∠ADM=∠ABC,又AB=AD,∴△ABC≌△ADM(SAS),∴AC=AM,∴∠M=∠ACB=∠ACD,又CD=CE,CA=CA,∴△ACD≌△ACE(SAS),∴AD=AB=AE,∴∠DAE=2∠DBE,∵∠DBE+∠DBC=180°,∴1∠DAE+∠DBC=180°.2(1)①按题意画出图形即可;②延长CB至M,使得BM=CD,连AM,证明△CAD≌△MAB(SAS),由全等三角形的性质得出∠CAD=∠MAB,AC=AM,可得出∠CAM=90°,则可得出答案;③由等腰三角形的性质可得出答案;(2)延长CB至M,使得BM=CD,连AM,证明△CAD≌△MAB(SAS),得出∠CAD=∠MAB,AC=AM,证明△ACM为等边三角形,则可得出答案;(3)延长CD至M,使得DM=CB,连AM,AC,证明△ABC≌△ADM(SAS),得出AC=AM,则∠M=∠ACB=∠ACD,证明△ACD≌△ACE(SAS),由全等三角形的性质得出AD=AB=AE,得出∠DAE=2∠DBE,则可得出答案.本题是四边形综合题,考查了等边三角形的判定与性质,等腰三角形的性质,全等三角形的判定和性质,等腰直角三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是本题的关键.24.【答案】(−3,0)(1,0)(0,−3)【解析】解:(1)①当m=1时,y=x2+(m+1)x−(m+2)=x2+2x−3,令y=x2+2x−3=0,解得x=−3或1,令x=0,则y=−3,故点A、B、C的坐标分别为(−3,0)、(1,0)、(0,−3),故答案为:(−3,0)、(1,0)、(0,−3);②当点D在x轴上方时,设直线AB交y轴于点H,∵OA=OC=3,∠DAO=∠BCO,∠COB=∠AOH=90°,∴△COB≌△AOH(AAS),∴OH=OB=1,x+1,由点A、H的坐标得,直线AH的表达式为y=13则{y =x 2+2x +3y =13x +1,解得{x =43y =139(不合题意的值已舍去), 故点D 的坐标为(43,139);当点D 在x 轴下方时,同理可得点D′(23,−119);故点D 的坐标为(43,139)或(23,−119);(2)对于y =x 2+(m +1)x −(m +2)①,令y =x 2+(m +1)x −(m +2)=0,解得x =1或−m −2,令x =0,则y =−m −2,故点A 、B 、C 的坐标分别为(−m −2,0)、(1,0)、(0,−m −2),设直线BM 的表达式为y =kx +b ,将点B 的坐标代入上式并解得b =−k ,故直线BM 的表达式为y =kx −k②,则OQ =k ,联立①②并整理得:x 2+(m +1−k)x +(k −m −2)=0,则x B x M =k −m −2而x B =1,故x M =k −m −2,设直线AM 的表达式为y =k′x +b′,将点A 的坐标代入上式并解得:b′=mk′+2k′,则直线AM 的表达式为y =k′x +mk′+2k′③,则OP =−k′(m +2),同理可得:x M =k′+1,故k −m −2=k′+1,解得:m =k −k′−3,而OC =m +2=k −k′−1,将x M =k′+1代入y =kx −k =k(k′+1)−k =kk′,故ON =−kk′,则OP CO =−k′(m+2)m+2=−k′=54, 则ON OQ =−kk′k =−k′=54.(1)①令y =x 2+2x −3=0,解得x =−3或1,令x =0,则y =−3,即可求解;②当点D在x轴上方时,证明△COB≌△AOH(AAS),则OH=OB=1,进而求解;当点D在x轴下方时,同理可得点D′(23,−119);(2)确定直线BM的表达式为y=kx−k②,则OQ=k,进而求出x M=k−m−2,同理可得ON=−kk′,进而求解.本题是二次函数综合题,主要考查了一次函数的性质、根与系数关系的运用、三角形全等等,其中(2),要注意分类求解,避免遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(本大题共10小题,共30.0分)1.将一元二次方程2x2−1=3x化成一般形式后,二次项系数和一次项系数分别是()A. 2,−1B. 2,0C. 2,3D. 2,−32.下列垃圾分类标识中,是中心对称图形的是()A. B. C. D.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A. B. C. D.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O外C. 点P在⊙O上D. 无法确定5.一元二次方程x2−4x−1=0配方后可化为()A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=56.在平面直角坐标系中,抛物线y=(x+2)(x−4)经变换后得到抛物线y=(x−2)(x+4),则下列变换正确的是()A. 向左平移6个单位B. 向右平移6个单位C. 向左平移2个单位D. 向右平移2个单位7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A. 63°B. 58°C. 54°D. 52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A. 49B. 59C. 1727D. 799.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=√3+1,则⊙O的半径是()A. √2B. √3C. 32D. 34√310.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A. 2020B. 2021C. 2022D. 2023二、填空题(本大题共6小题,共18.0分)11.在直角坐标系中,点(−1,2)关于原点对称点的坐标是______.12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是______ .13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是______ .14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是______ .15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是______ .16.下列关于二次函数y=x2−2mx+1(m为常数)的结论:①该函数的图象与函数y=−x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=−x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是______ (填写序号).三、解答题(本大题共8小题,共72.0分)17.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=FA.21.如图,正方形ABCD内接于⊙O,E是BC⏜的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等的值.边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求DFDE 拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.24.如图,经过定点A的直线y=k(x−2)+1(k<0)交抛物线y=−x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.答案和解析1.【答案】D【解析】解:将一元二次方程2x2−1=3x化成一般形式是2x2−3x−1=0,二次项的系数和一次项系数分别是2和−3,故选:D.先化成一般形式,即可得出答案.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.【答案】B【解析】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.利用中心对称图形的定义进行解答即可.此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:第一个袋子摸到红球的可能性=110;第二个袋子摸到红球的可能性=210=15;第三个袋子摸到红球的可能性=510=12;第四个袋子摸到红球的可能性=610=35.故选:A.要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.【答案】B【解析】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.【答案】C【解析】解:y=(x+2)(x−4)=(x−1)2−9,顶点坐标是(1,9).y=(x−2)(x+4)=(x+1)2−9,顶点坐标是(−1,9).所以将抛物线y=(x+2)(x−4)向左平移2个单位长度得到抛物线y=(x−2)(x+4),故选:C.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】C【解析】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°−∠ACD−∠BCE=180°−63°−63°=54°.故选:C.先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.【答案】B【解析】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是1527=59.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=12OA=12r,OH=√3AH=√32r,在Rt△ACH中,(12r)2+(r+√32r)2=(√3+1)2,解得r=√2,即⊙O的半径为√2.故选:A.连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH=12r,OH=√32r,利用勾股定理得到(12r)2+(r+√32r)2=(√3+1)2,然后解方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.【答案】C【解析】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=−20212020,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(−20212020)2+2021⋅(−20212020)+2022=2022.故选:C.根据题意得出x=x1+x2=−20212020,代入函数的解析式即可求得二次函数的值.本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.11.【答案】(1,−2)【解析】解:在直角坐标系中,点(−1,2)关于原点对称点的坐标是(1,−2),故答案为:(1,−2).根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),可得答案.本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【答案】14【解析】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形ABCD,∴点A落在阴影区域内的概率为14,故答案为:14.用阴影部分的面积除以平行四边形的总面积即可求得答案.此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.【答案】50%【解析】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1−x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】125°或145°【解析】解:∵O是△ABC的外心,∴∠BAC=12∠BOC=12×140°=70°(如图1)或∠BAC=180°−70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+12∠BAC,当∠BAC=70°时,∠BIC=90°+12×70°=125°;当∠BAC=110°时,∠BIC=90°+12×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+12∠BAC,然后把∠BAC的度数代入计算即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.【答案】32π【解析】解:点O所经过的路径长=3×90π⋅1180=32π.故答案为:32π.点O所经过的路径是三个14圆周长.本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】①③【解析】解:①∵二次函数y=x2−2mx+1的对称轴为直线x=−−2m2×1=m,二次函数y=−x2+2mx的对称轴为直线x=−2m2×(−1)=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(−2m)2−4×1×1=4m2−4≥0,∴m≥1,故结论②错误;③∵y=x2−2mx+1=(x−m)2+1−m2,∴顶点为(m,−m2+1),∴该函数的图象的顶点在函数y=−x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴x1+x22<m,∵二次函数y=x2−2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.利用二次函数的性质一一判断即可.本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:∵关于x的一元二次方程x2−bx+2=0有一个根是x=1,∴1−b+2=0,解得:b=3,把b=3代入方程得:x2−3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【解析】把x=1代入方程计算求出b的值,进而求出另一根即可.此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【答案】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【解析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为24=12;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为812=23.【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.【答案】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【解析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,D,连接FR,DR,作DR交⊙P于G,连接FG,可证FA=FR=FG,线段FG即为所求作.本题考查作图−应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴AB⏜=CD⏜,∵E是BC⏜的中点,∴BE⏜=EC⏜,∴AE⏜=DE⏜,∴AE=DE.(2)解:连接BD,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=90°−45°=45°,∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,{∠ADE=∠CDF ∠AED=∠FDA=DC,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=√2DE=EC+DE,EC=1,∴1+DE=√2DE,∴DE=√2+1,∴S△DEF=12DE2=√2+32.【解析】(1)欲证明AE=DE,只要证明AE⏜=DE⏜.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE= CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.【答案】解:(1)∵顶点坐标为(30,900),∴设y=a(x−30)2+900,将(0,0)代入,得:900a+900=0,解得a=−1,∴y=−(x−30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y−40x=−(x−30)2+900−40x=−x2+60x−900+900−40x=−x2+20x=−(x−10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:−(4+m)2+60(4+m)−40×4−(40+12)m=0,整理得:−m2+64=0,解得:m1=8,m2=−8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【解析】(1)由顶点坐标为(30,900),可设y=a(x−30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y−40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.【答案】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=12DF,设BF=x,则CF=DF=2x,DE=3x,∴DFDE =2x3x=23;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=12AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠PAC=90°,PA=AC,∵∠EAD=90°,∴∠PAE=∠CAD,∴△CAD≌△PAE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE=√AE2+AB2=√12+22=√5,∴BP≤BE+PE=√5+1,∴BP的最大值为√5+1.【解析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,DF,则可得出答案;得出∠BDF=30°,由直角三角形的性质得出BF=12拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE 的长,则可得出答案.本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.【答案】解:(1)∵A为直线y=k(x−2)+1上的定点,∴A的坐标与k无关,∴x−2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=−x2+4x=−(x −2)2+4,∴顶点D 的坐标为(2,4),∵点A 的坐标为(2,1),∴AD ⊥x 轴.如图(1),分别过点B ,C 作直线AD 的垂线,垂足分别为M ,N ,设B ,C 的横坐标分别为x 1,x 2,∵△ACD 的面积是△ABD 面积的两倍,∴CN =2BM ,∴x 2−2=2(2−x 1),∴2x 1+x 2=6.联立{y =−x 2+4x y =kx −2k +1,得x 2+(k −4)x −2k +1=0,① 解得x 1=4−k−√k2+122,x 2=4−k+√k 2+122, ∴2×4−k−√k 2+122+4−k+√k 2+122=6,化简得:√k 2+12=−3k ,解得k =−√62. 另解:接上解,由①得x 1+x 2=4−k ,又由2x 1+x 2=6,得x 1=2+k .∴(2+k)2+(k −4)(2+k)−2k +1=0,解得k =±√62. ∵k <0,∴k =−√62; (3)如图(2),设⊙E 与直线y =t 交于点G ,H ,点C 的坐标为(a,−a 2+4a). ∵E 是AC 的中点,∴将线段AE 沿AC 方向平移与EC 重合,∴x E −x A =x C −x E ,y E −y A =y C −y E ,∴x E =12(x A +x C ),y E =12(y A +y C ).∴E(1+a 2,−a 2+4a +12). 分别过点E ,A 作x 轴,y 轴的平行线交于点F ,在Rt △AEF 中,由勾股定理得:EA 2=(1+a 2−2)2+(−a 2+4a +12−1)2 =(a 2−1)2+(−a 2+4a+12−1)2,过点E 作PE ⊥GH ,垂足为P ,连接EH ,∴GH =2PH ,EP 2=(−a 2+4a+12−t)2,又∵AE =EH ,∴GH 2=4PH 2=4(EH 2−EP 2)=4(EA 2−EP 2)=4[(a 2−1)2+(−a 2+4a +12−1)2−(−a 2+4a +12−t)2] =4[a 24−a +1+(−a 2+4a +12)2−(−a 2+4a +1)+1−(−a 2+4a +12)2+t(−a 2+4a +1)−t 2]=4[(54−t)a 2+(4t −5)a +1+t −t 2]. ∵GH 的长为定值,∴54−t =0,且4t −5=0, ∴t =54.【解析】(1)由A为直线y=k(x−2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x−2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,−a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.。