导数与不等式的证明(高考真题)【含答案】
高考数学利用导数研究不等式问题(解析版)题型一:构造法证明不等式

题型一:构造法证明不等式1.(2021·山东德州·高三期中)已知函数()2(1)x f x xe a x =++(其中常数e 2.718=是自然对数的底数).(1)当0a <时,讨论函数()f x 的单调性;(2)证明:对任意1a ≤,当0x >时,()()23231f x ex a x x x -≥-++.【答案】(1)答案见解析(2)证明见解析(1)由()()()()12(1)12x x f x x e a x x e a =+++=++,令()0f x '=,解得1x =-,()ln 2x a =-, ①当102a e-<<, 由()0f x '>,解得()ln 2x a <-或1x >-,由()0f x '<,解得()ln 21a x -<<-,故()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, ②当12a e=-,()0f x '≥,()f x 在R 上单调递增; ③当12a e<-,由()0f x '>,解得1x <-或()ln 2x a >-, 由()0f x '<,解得()1ln 2x a -<<-故()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增;在()()1,ln 2a --上单调递减, 综上所述,当102a e-<<时, ()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, 当12a e=-,()f x 在R 上单调递增; 当12a e<-,()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增; 在()()1,ln 2a --上单调递减.(2)证明:对任意1a ≤,当0x >时,要证()()23231f x ex a x x x --++≥,需证,20x e a a ax e x x+---≥, 令()2x e a g x a ax e x x=+---, 则()()()21x x e ax a g x x ---'=, 令()x h x e ax a =--,则()x h x e a '=-,因为0x >,1a ≤,所以()0x h x e a '=->,所以()()010h x h a >=-≥,所以()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()()10g x g ≥=,即20x e a a ax e x x+---≥,原不等式成立. 2.(2021·河南驻马店·高三月考(文))已知函数()()248ln x a x x f a x +--=.(1)求()f x 的单调区间;(2)当2a =时,证明:()242e 64x f x x x >-++.【答案】(1)答案不唯一,见解析(2)证明见解析(1)由题意知()f x 的定义域为(0,)+∞.由已知得()()2()()8188x a x x a x a f x x x-++--'== 当0a ≤时,()()0,f x f x '>在(0,)+∞上单调递增,无单调递减区间.当0a >时,令()0f x '>,得8a x >;令()'0f x <,得08a x <<, 所以()f x 在0,8a ⎛⎫ ⎪⎝⎭上单调递减,在,8a ⎛+∞⎫ ⎪⎝⎭上单调递增. 综上,当0a ≤时,()f x 的单调递增区间为(0,)+∞,无单调递减区间;当0a >时,()f x 的单调递减区间为0,8a ⎛⎫ ⎪⎝⎭,单调递增区间为,8a ⎛+∞⎫ ⎪⎝⎭. (2)证明:原不等式等价于()e ln 20x x x ϕ=-->,则()1e x x xϕ'=-,易知()x ϕ'在(0,)+∞上单调递增,且()120,1e 102ϕϕ⎛⎫''<=-> ⎪⎝⎭, 所以()x ϕ'在1,12⎛⎫ ⎪⎝⎭上存在唯一零点0x ,此时()x ϕ在()00,x 上单调递减,在()0,x +∞上单调递增, 要证()0x ϕ>即要证()00x ϕ>,由001e 0x x -=,得001e x x =,001ex x =,代入()000e ln 2x x x ϕ=--,得()00012x x x ϕ=+-, 因为()0001220x x x ϕ=+->=, 所以()242e 64x f x x x >-++.3.(2021·湖北武汉·高三月考)已知函数()e 21x f x a x =+-(1)讨论函数()f x 的单调性;(2)证明:对任意的1a ≥,当0x >时,()()f x x ae x ≥+.【答案】(1)答案见解析(2)证明见解析(1)解:()e 2x f x a '=+.①当0a ≥时,()0f x '>,函数()f x 在R 上单调递增;②当0a <时,由()0f x '>解得2ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<解得2ln x a ⎛⎫>- ⎪⎝⎭. 故()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 综上所述,当0a ≥时,()f x 在R 上单调递增;当0a <时,()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. (2)证明:原不等式等价于()2(1)x a e ex x -≥-.令()x g x e ex =-,则()e e x g x '=-.当1x <时,()0g x '<;当1x >时,()0g x '>.∴()()10g x g ≥=,即0x e ex -≥,当且仅当1x =时等号成立.当1x =时,()2(1)x a e ex x -≥-显然成立;当0x >且1x ≠时,0x e ex -≥.欲证对任意的1a ≥,()2(1)x a e ex x -≥-成立,只需证2(1)x e ex x -≥-()()()()2g 1'21x x x e ex x g x e e x =---=---,令()()(),2x h x g x h x e ''==-,令()0,ln 2h x x ='= ()ln 2,0,x h x '<<()g x '递减,()ln 2,0,x h x '>>()g x '递增()()()'ln 222ln 2142ln 20,030g e e g e =---==-=-'故存在()00,ln 2x ∈,使()00g x '=又由(1)0g '=,所以00x x <<时,()0g x '>,()g x 递增,01x x <<时,()0g x '<,()g x 递减,1x >时,()0g x '>,()g x 递增,又()()g 00,10g ==,故0x >时,()0g x ≥.综上所述,结论得证。
专题05 应用导数研究不等式恒成立问题(解析版)

专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。
41 导数中不等式的证明问题(学生版)

专题41导数中不等式的证明问题【高考真题】1. (2022•北京)已知函数/(x) = e*ln(l+x).(1)求曲线y = fa)在点(。
,/(0))处的切线方程;(2)设g*)=rα),讨论函数g*)在。
+8)上的单调性;(3)证明:对任意的S, £€(0, +∞),有"s+E)>f(s)+f(f).2. (2022•浙江)设函数/(X) = ± + lnx(x>0). Ix(1)求/O)的单调区间;(2)已知α"eR,曲线y =7。
)上不同的三点(国,/(8)),(巧Ja2)),(孙/(巧))处的切线都经过点3 3.证明:(i )⅛α> e ,则O<b-f(α) <g(∕-1);・・-4⅛.z% mf2 e -4 112 e —。
(11)若OVaVe, X] <A⅛<Λ⅞ ,贝∣]一 + -^-V — + 一< -- T -e oe Xy Xy ci oe(注:e = Z71828…是自然对数的底数)3. (2022・新高考∏)已知函数/(x) = XeS-e,(1)当。
=1时,讨论/*)的单调性;(2)当“>。
时,/(x)v-1,求α的取值范围;(3)设〃eN*,证明:-/= + -/^=+,,+T^=>ln(72 + 1)- √12+ 1 √22+2 y∣n2+n【方法总结】构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式力r)>g(x)(∕(x) Vga))转化为证明y(x)—g(x)>o(/u)—g(X)V0),进而构造辅助函数〃(X)= 火防一g(x);(2)适当放缩构造法:X一是根据已知条件适当放缩,二是利用常见的放缩结论,如lnx≤r-l, e v≥r+l, InκVχVeYQO),币≤ln(x + l)≤x(x>-1); (3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数Kr)和g(x),利用其最值求解.【题型突破】1 .己知函数y(x)="—αdnχ-l(a£R, tz≠O).(I)讨论函数AX)的单调性;(2)当x>l 时,求证:—^>⅛-1. x—1 e A2 .已知函数外)=1—3」,g(x)=χ-Inx.(1)证明:g(x)≥l;(2)证明:(x-inx)成x)>l-±∙3 . (2021 •全国乙)设函数/(x)=ln(α-x),已知X=O是函数y=M(x)的极值点.⑴求〃;(2)设函数g。
高考数学一轮总复习课件:专题研究-利用导数证明不等式

2a2-4或x=a+
a2-4 2.
当x∈(0,a- 2a2-4),(a+ 2a2-4,+∞)时,f′(x)<0;当
x∈(a- 2a2-4,a+ 2a2-4)时,f′(x)>0.
所以f(x)在
0,a-
a2-4
2
,
a+
2a2-4,+∞
上单调递
减,在a- 2a2-4,a+ 2a2-4上单调递增.
(2)证明:由(1)知,f(x)存在两个极值点时,当且仅当a>2时
课外阅读
一、赋值法证明正整数不等式 (1)函数中与正整数有关的不等式,其实质是利用函数性质 证明数列不等式,证明此类问题时常根据已知的函数不等式, 用关于正整数n的不等式替代函数不等式中的自变量.通过多次 求和达到证明的目的.此类问题一般至少两问,所证的不等式 常由第一问根据待证式的特征而得到. (2)已知函数式为指数不等式(或对数不等式),而待证不等式 为与对数有关的不等式(或与指数有关的不等式),还要注意指、 对数式的互化,如ex>x+1可化为ln(x+1)<x等.
所以函数h′(x)=ex+1-
1 x+1
在(-1,+∞)上有唯一零点
x0,且x0∈-12,0. 因为h′(x0)=0,所以ex0+1=x0+1 1, 即ln(x0+1)=-(x0+1). 当x∈(-1,x0)时,h′(x)<0,h(x)单调递减;当x∈(x0,+
∞)时,h′(x)>0,h(x)单调递增,
(2)若f(x)存在两个极值点x1,x2,证明:
f(x1)-f(x2) x1-x2
<a
-2.
【思路】 (1)求f(x)的定义域,对函数f(x)求导,对参数a进
行分类讨论,即可判断f(x)的单调性;(2)结合(1),求出f(x)存在
2023届高考数学导数满分通关:极值点偏移之积(x1x2)型不等式的证明

专题25 极值点偏移之积(x 1x 2)型不等式的证明【例题选讲】[例1] 已知f (x )=x ln x -12mx 2-x ,x ∈R .(1)当m =-2时,求函数f (x )的所有零点;(2)若f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:x 1x 2>e 2(e 为自然对数的底数).解析 (1)当m =-2时,f (x )=x ln x +x 2-x =x (ln x +x -1),x >0.设g (x )=ln x +x -1,x >0, 则g ′(x )=1x+1>0,于是g (x )在(0,+∞)上为增函数.又g (1)=0,所以g (x )有唯一的零点x =1,从而函数f (x )有唯一的零点x =1. (2)欲证x 1x 2>e 2,只需证ln x 1+ln x 2>2.由函数f (x )有两个极值点x 1,x 2,可得函数f ′(x ) 有两个零点,又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不同实根.于是有⎩⎪⎨⎪⎧ln x 1-mx 1=0, ①ln x 2-mx 2=0, ②①+②可得ln x 1+ln x 2=m (x 1+x 2),即m =ln x 1+ln x 2x 1+x 2,②-①可得ln x 2-ln x 1=m (x 2-x 1),即m =ln x 2-ln x 1x 2-x 1,从而可得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2,于是ln x 1+ln x 2=⎝⎛⎭⎫1+x 2x 1ln x 2x 1x 2x 1-1.由0<x 1<x 2,设t =x 2x 1,则t >1.因此ln x 1+ln x 2=(1+t )ln t t -1,t >1.要证ln x 1+ln x 2>2,即证(t +1)ln t t -1>2(t >1),即证当t >1时,有ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1(t >1),则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,所以h (t )为(1,+∞)上的增函数.因此h (t )>ln 1-2(1-1)1+1=0.于是当t >1时,有ln t >2(t -1)t +1.所以有ln x 1+ln x 2>2成立,即x 1x 2>e 2.[例2] 已知函数()ln g x x bx =+.(1)函数()g x 有两个不同的零点12, x x ,求实数b 的取值范围; (2)在(1)的条件下,求证:212e x x >.解析 (1)()g x 有两个不同的零点12, x x ,即ln 0x bx +=有两个不同的根,ln xb x∴=-.设ln ()x f x x =-,21ln ()xf x x -'∴=-,令()0f x '>可得:1ln 0e x x -<⇒>. ()f x ∴在()0, e 单调递减,在()e, +∞单调递增,且x →+∞时,()0f x →,()1e e f =-,1, 0e b ⎛⎫∴∈- ⎪⎝⎭ (2)思路一:不妨设21x x >,由已知可得:1122ln 0ln 0x bx x bx +=⎧⎨+=⎩,()1212ln x x b x x ∴=-+.即只需证明:()122b x x -+>,在方程1122ln 0ln 0x bx x bx +=⎧⎨+=⎩可得:()2121ln xb x x x -=.2112lnx x b x x ∴=-,∴只需证明:()211212ln 2xx x x x x -+>-. 即()2221112221222111111lnln221ln 211x x x x x x x xx x x x x x x x x x ⎛⎫+ ⎪⎛⎫⎛⎫⎝⎭+>⇔>⇔+>- ⎪ ⎪-⎝⎭⎝⎭-. 令21x t x =,则1t >,所以只需证明不等式:()()()1ln 211ln 220t t t t t t +>-⇒+-+>①, 设()()1ln 22h t t t t =+-+,()10h =,()11ln 2ln 1t h t t t t t+'∴=+-=+-,()10h '= ()221110t h t t t t -''∴=-=>,()h t ∴在()1, +∞单调递增.()()10h t h ''∴>=.()h t ∴在()1, +∞单调递增,()()10h t h ∴>=,即不等式①得证. ()122b x x ∴-+>即12ln 2x x >,212e x x ∴>.思路二:所证不等式221212e e x x x x >⇔>,因为()ln g x x bx =+有两不同零点12, x x .12, x x ∴满足方程ln ln 0xx bx b x+=⇔=-,由(1)可得:120e x x <<<. 考虑设ln ()xf x x=-,12()()f x f x ∴=,由(1)可得:()f x 在()0, e 单调递减,在()e,+∞单调递增. 120e x x <<<,()()212e 0, e , 0, e x x ∴∈∈.结合()f x 的单调性可知:只需证明()212e f x f x ⎛⎫< ⎪⎝⎭.12()()f x f x =,所以只需证明:222222e e ()()()()0f x f f x f x x <⇔-<.即证明:()222222222222222222lnln e e 0ln ln 02e ln 0e x x x x x x x e x x x x -<⇔-<⇔-+<.设()()222()2e ln , e, h x x x x x =-+∈+∞,则()e 0h =.()()2221e 4e 2ln 32ln h x x x x x x x x x x '∴=-+-=--,则()e 0h '=.()()2222e e 321ln 12ln h x x x x x''∴=+-+=+-,则()e 0h ''=.()h x ''单调递减,()()0h x h e ''''∴<=,()h x '∴单调递减,()()e 0h x h ''∴<=.单调递减,,即得证.得证,从而有. [例3] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a =1时,方程f (x )=m (m <-2)有两个相异实根x 1,x 2,且x 1<x 2,求证:x 1·x 22<2. 解析 (1)由题意得,f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,由x >0,得1-ax >0,即f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 当a >0时,由f ′(x )>0,得0<x <1a ,由f ′(x )<0,得x >1a ,所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.(2)由题意及(1)可知,方程f (x )=m (m <-2)的两个相异实根x 1,x 2满足ln x -x -m =0, 且0<x 1<1<x 2,即ln x 1-x 1-m =ln x 2-x 2-m =0. 由题意,可知ln x 1-x 1=m <-2<ln 2-2,又由(1)可知,f (x )=ln x -x 在(1,+∞)上单调递减,故x 2>2. 令g (x )=ln x -x -m ,则g (x )-g ⎝⎛⎭⎫2x 2=-x +2x 2+3ln x -ln 2. 令h (t )=-t +2t 2+3ln t -ln 2(t >2),则h ′(t )=-(t -2)2(t +1)t 3.当t >2时,h ′(t )<0,h (t )单调递减,所以h (t )<h (2)=2ln 2-32<0,所以g (x )<g ⎝⎛⎭⎫2x 2. 因为x 2>2且g (x 1)=g (x 2),所以h (x 2)=g (x 2)-g ⎝⎛⎭⎫2x 22=g (x 1)-g ⎝⎛⎭⎫2x 22<0,即g (x 1)<g ⎝⎛⎭⎫2x 22.因为g (x )在(0,1)上单调递增,所以x 1<2x 22,故x 1·x 22<2. 总结提升 本题第(2)问要证明的方程根之间的不等式关系比较复杂,此类问题可通过不等式的等价变()h x ∴()()e 0h x h ∴<=()222222e ln 0x x x -+<()212e f x f x ⎛⎫∴<⎪⎝⎭221122e e x x x x >⇔>形,将两个根分布在不等式两侧,然后利用函数的单调性转化为对应函数值之间的大小关系即可.显然构造函数的关键仍然是消掉参数,另外根据函数性质确定“x 2>2”是解题的一个关键点,确定其范围之后才能将x 1与2x 22化归到函数的同一个单调区间上,这也是此类问题的一个难点——精确定位.[例4] 已知函数()ln f x x ax b =-+(a ,b ∈R )有两个不同的零点1x ,2x . (1)求()f x 的最值; (2)证明:1221x x a <. 思维引导 (1)求出导函数,由函数()f x 有两个不同的零点,则()f x 在()0, +∞内必不单调,得0a >,进而得到函数的单调性,即可求出函数的最值.(2)由题意转化为证明()212211221221ln 2x x x x xx x x x x -<=-+,不妨设12x x <,令()120, 1x t x =∈,只需证明21ln 2t t t <-+,设()12ln h t t t t=-+,根据函数的单调性,即可作出证明.解析 (1)1'()f x a x=-,()f x 有两个不同的零点,∴()f x 在()0, +∞内必不单调,故0a >, 此时'()0f x >,解得1x a <,∴()f x 在10, a ⎛⎫ ⎪⎝⎭上单增,1, a ⎛⎫+∞ ⎪⎝⎭上单减, ∴max 1()()ln 1f x f a b a==--+,无最小值.(2)由题知1122ln 0ln 0x ax b x ax b -+=⎧⎨-+=⎩两式相减得()1122ln 0x a x x x --=,即1212lnx x a x x =-,故要证1221x x a <,即证21212212(ln )x x x x x x -<,即证221121221221(l )n 2x x x x x x x x x x -<=-+,不妨设12x x <,令()120, 1x t x =∈,则只需证21ln 2t t t <-+,设21()ln 2g t t t t=--+, 则212ln 11'()2ln 1t t t g t t t tt-+=-+=,设1()2ln h t t t t=-+,则22(1)'()0t h t t -=-<,∴()h t 在()0, 1上单减,∴()(1)0h t h >=,∴()g t 在()0, 1上单增,∴()(1)0g t g <=, 即21ln 2t t t<-+在(0, 1)t ∈时恒成立,原不等式得证.总结提升 体会在用12, x x 表示a 时为什么要用两个方程,而不是只用21112ln 0x x ax --=来表示a ?如果只用1x 或2x 进行表示,则1ln x 很难处理,用12, x x 两个变量表示a ,在代入的时候有21lnx x 项,即可以考虑利用换元法代替21x x ,这也体现出双变量换元时在结构上要求“平衡”的特点.【对点训练】1.已知函数f (x )=x ln x 的图象与直线y =m 交于不同的两点A (x 1,y 1),B (x 2,y 2).求证:x 1x 2<1e 2.1.解析 f ′(x )=ln x +1,由f ′(x )>0得x >1e ,由f ′(x )<0得0<x <1e,∴函数f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增.可设0<x 1<1e <x 2. 方法一 构造函数F (x )=f (x )-f ⎝⎛⎭⎫1e 2x ,则 F ′(x )=f ′(x )+1e 2x 2f ′⎝⎛⎭⎫1e 2x =1+ln x +1e 2x 2·⎝⎛⎭⎫1+ln 1e 2x =(1+ln x )·⎝⎛⎭⎫1-1e 2x 2, 当0<x <1e 时,1+ln x <0,1-1e 2x 2<0,则F ′(x )>0,得F (x )在⎝⎛⎭⎫0,1e 上是增函数,∴F (x )<F ⎝⎛⎭⎫1e =0, ∴f (x )<f ⎝⎛⎭⎫1e 2x ⎝⎛⎭⎫0<x <1e ,将x 1代入上式得f (x 1)<f ⎝⎛⎭⎫1e 2x 1,又f (x 1)=f (x 2),∴f (x 2)<f ⎝⎛⎭⎫1e 2x 1, 又x 2>1e ,1e 2x 1>1e ,且f (x )在⎝⎛⎭⎫1e ,+∞上单调递增,∴x 2<1e 2x 1,∴x 1x 2<1e 2. 方法二f (x 1)=f (x 2)即x 1ln x 1=x 2ln x 2,令t =x 2x 1>1,则x 2=tx 1,代入上式得x 1ln x 1=tx 1(ln t +ln x 1),得ln x 1=t ln t1-t. ∴x 1x 2<1e 2⇔ln x 1+ln x 2<-2⇔2ln x 1+ln t <-2⇔2t ln t1-t +ln t <-2⇔ln t -2(t -1)t +1>0.设g (t )=ln t -2(t -1)t +1 (t >1),则g ′(t )=(t -1)2t (t +1)2>0.∴当t >1时,g (t )为增函数,g (t )>g (1)=0,∴ln t -2(t -1)t +1>0.故x 1x 2<1e 2.2.已知函数()ln f x x ax =-. (1)讨论()f x 的单调性;(2)若函数()f x 有两个零点1x ,212()x x x <. ①求a 的取值范围;②证明:212e x x ⋅>. 2.解析 (1)()f x 的定义域为(0, )+∞,1()f x a x'=-, (ⅰ)当0a 时()0f x '>,()f x ∴在(0, )+∞上单调递增;(ⅰ)当0a >时,若1(0, )x a ∈,则()0f x '>,()f x 在1(0, )a 上单调递增;若1(, )x a ∈+∞,则()0f x '<,()f x 在区间1[, )a+∞上单调递减;综上:0a 时,()f x 在(0, )+∞上单调递增;0a >时,()f x 在1(0, )a 上单调递增,在1[, )a+∞上单调递减;(2)①由(1)知,0a 时,()f x 单调递增,()f x 至多一个零点,不合题意,当0a >时,()x 在1(0, )a 上单调递增,在区间1[, )a+∞上单调递减;11()()1max f x f ln a a==-,若函数()f x 有两个零点1x ,212()x x x <,由于0x →时,y →-∞,x →+∞时,y →-∞,所以11()ln 10f a a =->,解得1a e<,故所求a 的取值范围为10a e<<; ②证明:由题意:11ln x ax =,22ln x ax =,∴2121ln ln x x a x x -=-,要证212x x e ⋅>,只要证12ln ln 2x x +>,即12()2a x x +>. 只要证212112ln ln 2x x x x x x ->-+即证()2121ln 11t x t t t x -⎛⎫>=> ⎪+⎝⎭其中,令2(1)()ln (1)1t g t t t t -=->+,()()()()()2210 1, 1t g t g t t t -'=>∴+∞+,在单调递增, ()(1)g t g >0=,即()2121ln 11t x t t t x -⎛⎫>=> ⎪+⎝⎭其中成立, 故原不等式212e x x ⋅>成立.3.已知函数2()ln ()f x x x ax x a a =+-+∈R 在其定义域内有两个不同的极值点. (1)求a 的取值范围.(2)设()f x 的两个极值点为1x ,2x ,证明212e x x >.3.解析 (1)函数2()ln ()f x x x ax x a a =+-+∈R 的定义域为(0, )+∞,()ln 2f x x ax '=+.函数2()ln ()f x x x ax x a a =+-+∈R 在其定义域内有两个不同的极值点.∴方程()0f x '=在(0, )+∞有两个不同根;转化为函数ln ()xg x x=与函数2y a =-的图象在(0, )+∞上有两个不同交点. 又21ln ()xg x x-'=,即0e x <<时,()0g x '>,e x >时,()0g x '<, 故()g x 在(0, e)上单调增,在(e, )+∞上单调减.故()(e)g x g =极大1e=.又()g x 有且只有一个零点是1,且在0x →时,()g x →-∞,在在x →+∞时,()0g x →,故()g x 的草图如图,102e a ∴<-<,即102e a -<<.故a 的取值范围为1(, 0)2e-.(2)由(1)可知1x ,2x 分别是方程20lnx a +=的两个根,即11ln 2x ax =-,22ln 2x ax =-, 设12x x >,作差得1122ln 2()x a x x x =--.得1212ln2x x a x x -=-.要证明212x x e >.只需证明12ln ln 2x x +>.122()2a x x ⇐-+>,⇐121212ln()2x x x x x x +>-,即只需证明1122122()ln x x x x x x ->+, 令12x t x =,则1t >,只需证明2(1)ln 1t t t ->+, 设2(1)()ln 1t g t t t -=-+(1)t >,2(1)()0(1)t g t t t -'=>+.∴函数()g t 在(1, )+∞上单调递增, ()(1)g t g ∴>0=,故2(1)ln 1t t t ->+成立.212x x e ∴>成立. 4.已知函数f (x )=ln xx +a (a ∈R ),曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直.(1)试比较2 0182 019与2 0192 018的大小,并说明理由;(2)若函数g (x )=f (x )-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2. 4.解析 (1)依题意得f ′(x )=x +ax -ln x (x +a )2,所以f ′(1)=1+a (1+a )2=11+a ,又曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直, 所以f ′(1)=1,即11+a=1,解得a =0.故f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )>0,则1-ln x >0,解得0<x <e ;令f ′(x )<0,则1-ln x <0,解得x >e , 所以f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).所以f (2 018)>f (2 019),即ln 2 0182 018>ln 2 0192 019,整理得ln 2 0182 019>ln 2 0192 018,所以2 0182 019>2 0192 018.(2)不妨设x 1>x 2>0,因为g (x 1)=g (x 2)=0,所以ln x 1-kx 1=0,ln x 2-kx 2=0, 可得ln x 1+ln x 2=k (x 1+x 2),ln x 1-ln x 2=k (x 1-x 2).要证x 1x 2>e 2,即证ln x 1x 2>2,只需证ln x 1+ln x 2>2,也就是证k (x 1+x 2)>2,即证k >2x 1+x 2. 因为k =ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即证ln x 1x 2>2(x 1-x 2)x 1+x 2.令x 1x 2=t (t >1),则只需证ln t >2(t -1)t +1(t >1). 令h (t )=ln t -2(t -1)t +1(t >1),则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,故函数h (t )在(1,+∞)上是单调递增的,所以h (t )>h (1)=0,即ln t >2(t -1)t +1,所以x 1x 2>e 2. 5.已知函数f (x )=ln x +bx -a (a ∈R ,b ∈R )有最小值M ,且M ≥0.(1)求e a -1-b +1的最大值;(2)当e a -1-b +1取得最大值时,设F (b )=a -1b -m (m ∈R ),F (x )有两个零点为x 1,x 2(x 1<x 2),证明:2312e x x >.5.解析 (1)有题意, 当时,,在上单增,此时显然不成立,当时,令,得,此时在上单减,在上单增, (b ),即,所以,.所以的最大值为1.(2)当取得最大值时,,, 的两个零点为,,则,即,, 不等式恒成立等价于,两式相减得, 带入上式得,令,则,, 所以函数在上单调递增,(1),得证. 6.已知函数f (x )=(ln x -k -1)x (k ∈R ). (1)当x >1时,求f (x )的单调区间和极值;221()(0)b x bf x x x x x-'=-=>0b ()0f x '()f x (0,)+∞0b >()0f x '=x b =()f x (0,)b (,)b +∞M f ∴=10lnb a =+-1lnb a -1a b e -10a e b --11a e b --+11a e b --+1a lnb -=1()a lnbF b m m b b-=-=-()F x 1x 2x 12120;0lnx lnxm m x x -=-=11lnx mx =22lnx mx =2312x x e ⋅>12121222(2)3lnx lnx mx mx m x x +=+=+>11212212()x lnx x ln m x x m x x x =-⇒=-11211221211221223(1)3()(2)322x xlnx x x x x x x ln x x x x x x x --+⋅>⇔<=-++12(01)x t t x =<<3(1)(),(01)2t g t lnt t t -=-<<+2(1)(4)()0(2)t t g t t t --'=>+()g t (0,1)()g t g ∴<0=(2)若对任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围; (3)若x 1≠x 2,且f (x 1)=f (x 2),证明x 1x 2<e 2k . 6.解析 (1)f ′(x )=1x ·x +ln x -k -1=ln x -k .①当k ≤0时,因为x >1,所以f ′(x )=ln x -k >0,所以函数f (x )的单调递增区间是(1,+∞),无单调递减区间,无极值. ②当k >0时,令ln x -k =0,解得x =e k , 当1<x <e k 时,f ′(x )<0;当x >e k 时,f ′(x )>0.所以函数f (x )的单调递减区间是(1,e k ),单调递增区间是(e k ,+∞), 在(1,+∞)上的极小值为f (e k )=(k -k -1)e k =-e k ,无极大值.(2)由题意,f (x )-4ln x <0,即问题转化为(x -4)ln x -(k +1)x <0对任意x ∈[e ,e 2]恒成立, 即k +1>(x -4)ln xx对任意x ∈[e ,e 2]恒成立,令g (x )=(x -4)ln x x ,x ∈[e ,e 2],则g ′(x )=4ln x +x -4x 2.令t (x )=4ln x +x -4,x ∈[e ,e 2],则t ′(x )=4x+1>0,所以t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e)=4+e -4=e>0,故g ′(x )>0, 所以g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2-8e2.要使k +1>(x -4)ln x x 对任意x ∈[e ,e 2]恒成立,只要k +1>g (x )max ,所以k +1>2-8e 2,解得k >1-8e 2,所以实数k 的取值范围为⎝⎛⎭⎫1-8e 2,+∞. (3)法一 因为f (x 1)=f (x 2),由(1)知,当k >0时,函数f (x )在区间(0,e k )上单调递减,在区间(e k ,+∞)上单调递增,且f (e k +1)=0. 不妨设x 1<x 2,当x →0时,f (x )→0,当x →+∞时,f (x )→+∞,则0<x 1<e k <x 2<e k +1, 要证x 1x 2<e 2k ,只需证x 2<e 2k x 1,即证e k<x 2<e 2k x 1. 因为f (x )在区间(e k,+∞)上单调递增,所以只需证f (x 2)<f ⎝⎛⎭⎫e 2kx 1, 又f (x 1)=f (x 2),即证f (x 1)<f ⎝⎛⎭⎫e 2kx 1,构造函数h (x )=f (x )-f ⎝⎛⎭⎫e 2kx =(ln x -k -1)x -⎝⎛⎭⎫ln e 2kx -k -1e 2kx , 即h (x )=x ln x -(k +1)x +e 2k ⎝⎛⎭⎫ln x x -k -1x ,h ′(x )=ln x +1-(k +1)+e 2k⎝⎛⎭⎫ 1-ln x x 2 +k -1x 2=(ln x -k )x 2-e 2kx 2,当x ∈(0,e k )时,ln x -k <0,x 2<e 2k ,即h ′(x )>0,所以函数h (x )在区间(0,e k )上单调递增,h (x )<h (e k ), 而h (e k)=f (e k)-f ⎝⎛⎭⎫e 2ke k =0,故h (x )<0,所以f (x 1)<f ⎝⎛⎭⎫e 2kx 1,即f (x 2)=f (x 1)<f ⎝⎛⎭⎫e 2kx 1,所以x 1x 2<e 2k 成立. 法二 要证x 1x 2<e 2k 成立,只要证ln x 1+ln x 2<2k .因为x 1≠x 2,且f (x 1)=f (x 2),所以(ln x 1-k -1)x 1=(ln x 2-k -1)x 2,即x 1ln x 1-x 2ln x 2=(k +1)(x 1-x 2), x 1ln x 1-x 2ln x 1+x 2ln x 1-x 2ln x 2=(k +1)(x 1-x 2),即(x 1-x 2)ln x 1+x 2ln x 1x 2=(k +1)(x 1-x 2),k +1=ln x 1+x 2lnx 1x 2x 1-x 2,同理k +1=ln x 2+x 1ln x 1x 2x 1-x 2,从而2k =ln x 1+ln x 2+x 2ln x 1x 2x 1-x 2+x 1lnx 1x 2x 1-x 2-2,要证ln x 1+ln x 2<2k ,只要证x 2ln x 1x 2x 1-x 2+x 1lnx 1x 2x 1-x 2-2>0,不妨设0<x 1<x 2,则0<x 1x 2=t <1,即证ln t t -1+ln t1-1t -2>0,即证(t +1)ln t t -1>2,即证ln t <2·t -1t +1对t ∈(0,1)恒成立,设h (t )=ln t -2·t -1t +1,当0<t <1时,h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在t ∈(0,1)上单调递增,h (t )<h (1)=0,得证,所以x 1x 2<e 2k .专题3 f '(x 1+x 22)型不等式的证明【例题选讲】[例1] 已知函数g (x )=ln x -ax 2+(2-a )x (a ∈R ). (1)求g (x )的单调区间;(2)若函数f (x )=g (x )+(a +1)x 2-2x ,x 1,x 2(0<x 1<x 2)是函数f (x )的两个零点,证明:f ′⎝⎛⎭⎫x 1+x 22<0.思维引导 (2)利用分析法先等价转化所证不等式:要证明f ′⎝⎛⎭⎫x 1+x 22<0,只需证明2x 1+x 2-ln x 1-ln x 2x 1-x 2<012(0)x x <<,即证明()1212122ln ln x x x x x x ->-+,即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,再令()120, 1x t x =∈,构造函数()()1ln 22h t t t t =+-+,利用导数研究函数()h t 单调性,确定其最值:()h t 在()0, 1上递增,所以()()10h t h <=,即可证得结论.解析 (1)函数g (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), g ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,g ′(x )>0,则g (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则g ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则g ′(x )<0, 则g (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)因为x 1,x 2是f (x )=ln x +ax 2-ax 的两个零点,所以ln x 1+ax 21-ax 1=0,ln x 2+ax 22-ax 2=0,所以a =ln x 1-ln x 2x 1-x 2+(x 2+x 1),又f ′(x )=1x +2x -a , 所以f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2+(x 1+x 2)-a =2x 1+x 2-ln x 1-ln x 2x 1-x 2,所以要证f ′⎝⎛⎭⎫x 1+x 22<0,只须证明2x 1+x 2-ln x 1-ln x 2x 1-x 2<0,即证明2(x 1-x 2)x 1+x 2>ln x 1-ln x 2,即证明()12112221ln *1x x x x x x ⎛⎫- ⎪⎝⎭>+ 令()120, 1x t x =∈,则()()1ln 22h t t t t =+-+,则()1ln 1h t t t =+-', ()2110h t t t=-'<'. ∴()h t '在()0, 1上递减, ()()10h t h '>=',∴()h t 在()0, 1上递增, ()()10h t h <=.所以()*成立,即1202x x f +⎛⎫< ⎪⎝⎭'.[例2] 已知函数f (x )=x 2+ax +b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =2x . (1)求实数a ,b 的值;(2)设F (x )=f (x )-x 2+mx (m ∈R ),x 1,x 2 (0<x 1<x 2)分别是函数F (x )的两个零点,求证:F '(x 1x 2)<0(F '(x )为函数F (x )的导函数).解析 (1) a =1,b =-1;(2),,,因为分别是函数的两个零点,所以,两式相减,得,,要证明,只需证. 思维引导1 因为,只需证.令,即证,令,则,所以函数在上单调递减,,即证,由上述分析可知.总结提升 这是极值点偏移问题,此类问题往往利用换元把转化为的函数,常把的关系变形为齐次式,设等,构造函数来解决,可称之对称化构造函数法. 思维引导2 因为,只需证,设2()ln ln Q x x x =-2(0)x x <<,则211()0Q x xx '=-=-==<,所以函数在上单调递减,,即证.由上述分析可知.总结提升 极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于(或)的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.思维引导3 要证明,只需证,即证易得.()2ln f x x x x =+-()()1ln F x m x x =+-()11F x m x'=+-12, x x ()F x ()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩1212ln ln 1x x m x x -+=-1212ln ln 1x x F m x x -'=+=-0F '<1212ln ln x x x x -<-120x x <<1122ln ln ln 0x x x x -⇔>()0,1t =12ln 0t t t -+>()()12ln 01h t t t t t =-+<<()()22212110t h t t t t-'=--=-<()h t ()0, 1()()10h t h >=12ln 0t t t-+>0F '<12, x x t 12, x x 12111222, ln , , x x x xt t t x x t e x x -===-=120x x <<12ln ln 0x x -()Q x ()20, x ()()20Q x Q x >=2ln ln x x ->0F '<1x 2x 0F '<1212ln ln x x x x -<-1212ln ln x x x x ->-总结提升 极值点偏移问题中,如果等式含有参数,则消参,有指数的则两边取对数,转化为对数式,通过恒等变换转化为对数平均问题,利用对数平均不等式求解,此乃对数平均法.[例3] 已知函数2()(2)ln (0)f x x a x a x a =+-->.(1)若0x ∀>,使得2()33f x a a >-恒成立,求a 的取值范围.(2)设11),( P x y ,22),( Q x y 为函数()f x 图象上不同的两点,PQ 的中点为00),( M x y ,求证:f (x 1)-f (x 2)x 1-x 2<f '(x 0).解析 (1)()233f x a a >-恒成立,即()2330f x a a -+>恒成立, 令()()233g x f x a a =-+,()()()1222x x a a g x x a x x-+'=+--=, 由于012a-<<,则()g x 在()0,1单调递减,在()1,+∞单调递增,故()()213410g x g a a ≥=-+->,解得1,13a ⎛⎫∈ ⎪⎝⎭.(2)因为()00,M x y 为PQ 的中点,则1202x x x +=, 故()00120122222a af x x a x x a x x x '=+--=++--+, ()()()()221211122212122ln 2ln f x f x x a x a x x a x a x x x x x -+-----+=--()()22112122122lnx x x a x x a x x x -+---=-121212ln2x a x x x a x x =++---, 故要证()()()12012f x f x f x x x -'<-,即证121212ln2x a x ax x x x -<--+, 由于0a >,即证121212ln2x x x x x x >-+.不妨假设120x x >>, 只需证明()1212122ln x x x x x x ->+,即12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+.设121x t x =>,构造函数()()21ln 1t h t t t -=-+,()()()221'01t h t t t -=>+,则()()10h t h >=,则有12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,从而()()()12012f x f x f x x x -'<-. [例4] 已知函数f (x )=e x -12x 2-ax 有两个极值点x 1,x 2(e 为自然对数的底数).(1)求实数a 的取值范围; (2)求证:f (x 1)+f (x 2)>2.解析 (1)由于f (x )=e x -12x 2-ax ,则f ′(x )=e x -x -a ,设g (x )=f ′(x )=e x -x -a ,则g ′(x )=e x -1,令g ′(x )=e x -1=0,解得x =0.所以当x ∈(-∞,0)时,g ′(x )<0;当x ∈(0,+∞)时,g ′(x )>0.所以g (x )min =g (0)=1-a . ①当a ≤1时,g (x )=f ′(x ) ≥0,所以函数f (x )单调递增,没有极值点;②当a >1时,g (x )min =1-a <0,且当当x →-∞时,g (x )→+∞;当x →+∞时,g (x )→+∞. 此时,g (x )=f ′(x )=e x -x -a 有两个零点x 1,x 2,不妨设x 1<x 2,则x 1<0<x 2, 所以函数f (x )=e x -12x 2-ax 有两个极值点时,实数a 的取值范围是(1,+∞);答案速得 函数f (x )有两个极值点实质上就是其导数f ′(x )有两个零点,亦即函数y =e x 与直线y =x +a 有两个交点,如图所示,显然实数a 的取值范围是(1,+∞).(2)由(1)知,x 1,x 2为g (x )=0的两个实数根,x 1<0<x 2,g (x )在(-∞,0)上单调递减. 下面先证x 1<-x 2<0,只需证g (-x 2)<g (x 1)=0,由于g (x 2)=2e x -x 2-a =0,得a =2e x -x 2, 所以g (-x 2)=2e x -+x 2-a =2e x --2e x +2x 2. 设h (x )=e x --e x +2x (x >0),则h ′(x )=1ex --e x +2<0,所以h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=0,h (x 2)=g (-x 2)<0,所以x 1<-x 2<0. 由于函数f (x )在(x 1,0)上也单调递减,所以f (x 1)>f (-x 2).要证f (x 1)+f (x 2)>2,只需证f (-x 2)+f (x 2)>2,即证2e x +2e x --22x -2>0. 设函数k (x )=e x +e x --2x -2,x ∈(0,+∞),则k ′(x )=e x -e x --2x . 设r (x )=k ′(x )=e x -e x --2x ,则r ′(x )=e x +e x --2>0,所以r (x )在(0,+∞)上单调递增,r (x )>r (0)=0,即k ′(x )>0. 所以k (x )在(0,+∞)上单调递增,k (x )>k (0)=0.故当x ∈(0,+∞)时,e x +e x --2x -2>0,则2e x +2e x --22x -2>0, 所以f (-x 2)+f (x 2)>2,亦即f (x 1)+f (x 2)>2.总结提升 本题是极值点偏移问题的泛化,是拐点的偏移,依然可以使用极值点偏移问题的有关方法来解决.只不过需要挖掘出拐点偏移中隐含的拐点的不等关系,如本题中的x 1<-x 2<0,如果“脑中有‘形’”,如图所示,并不难得出.【对点训练】1.设函数f (x )=x 2-(a -2)x -a ln x . (1)求函数f (x )的单调区间;(2)若方程f (x )=c 有两个不相等的实数根x 1,x 2,求证:12()02x x f +'>. 1.解析 (1)(0, )x ∈+∞.22(2)(2)(1)()2(2)a x a x a x a x f x x a x x x----+'=---==.当0a ≤时,()0f x '>,函数()f x 在(0, )+∞上单调递增,即()f x 的单调递增区间为(0, )+∞. 当0a >时,由()0f x '>得2a x >;由()0f x '<,解得02ax <<.所以函数()f x 的单调递增区间为(, )2a +∞,单调递减区间为(0, )2a.(2)1x ,2x 是方程()f x c =得两个不等实数根,由(1)可知:0a >.不妨设120x x <<.则()21112ln x a x a x c ---=,()22222ln x a x a x c ---=.两式相减得()()221112222ln 2ln 0x a x a x x a x a x ----+-+=,化为221122112222ln ln x x x x a x x x x +--=+--.()02a f '=,当(0, )2a x ∈时,()0f x '<,当(, )2ax ∈+∞时,()0f x '>. 故只要证明1222x x a+>即可,即证明22112212112222ln ln x x x x x x x x x x +--+>+--,即证明11221222ln x x x x x x -<+,设12(01)x t t x =<<,令()22ln 1t g t t t -=-+,则22214(1)()(1)(1)t g t t t t t -'=-=++.10t >>,()0g t ∴'>.()g t ∴在(0, 1)上是增函数,又在1t =处连续且(1)g 0=,∴当(0, 1)t ∈时,()0g t <总成立.故命题得证.2.(2011辽宁)已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <1a 时,f (1a +x )>f (1a-x );(3)若函数y =f (x )的图象与轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f '(x 0)<0. 2.解析 (1)若a ≤0,f (x )在(0,+∞)上单调增加;若a >0,f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减;(2)法一:构造函数111()()(), (0)g x f x f x x a a a =+>-<<,利用函数单调性证明,方法上同,略;法二:构造以a 为主元的函数,设函数11()()()h a f x f x a a=+>-,则()ln(1)ln(1)2h a ax ax ax =+---,32222()2111x x x a h a x ax ax a x '=+-=+--, 由10x a <<,解得10a x <<,当10a x<<时,()0h a '>,而(0)0h =, 所以()0h a >,故当10x a <<时,11()()f x f x a a+>- (2)由(1)可得a >0,f '(x )=1x -2ax +2-a 在(0,+∞)上单调递减,f '(1a )=0,不妨设A (x 1,0),B (x 2,0),0<x 1<x 2,则0<x 1<1a<x 2,欲证明f '(x )<0,即f '(x 0)<f '(1a ),只需证明x 0=x 1+x 2 2>1a ,即x 1>2a -x 2,只需证明f (x 2)=f (x 1)>f (2a-x 2).由(2)得f (2a -x 2)=f [1a +(1a -x 2)]>f [1a -(1a-x 2)]=f (x 2),得证.3.设函数f (x )=e x -ax +a ,其图象与轴交于A (x 1,0),B (x 2,0)两点,且x 1<x 2. (1)求a 的取值范围;(2)证明:f '(x 1x 2)<0(f '(x )为函数f (x )的导函数).3.解析 (1)a ∈(e 2,+∞),且0<x 1<ln a <x 2,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增; (2)要证明f '(x 1x 2)<0,只需证f '(x 1+x 22)<0,即f '(x 1+x 22)<f '(ln a ),因为f '(x )=e x -a 单调递增,所以只需证x 1+x 22<ln a ,亦即x 2>2ln a -x 1,只要证明f (x 2)=f (x 1)>f (2ln a -x 1)即可;令g(x )=f (x )-f (2ln a -x )(x <ln a ),则g '(x )=f '(x )-f '(2ln a -x 1)=e x-a 2ex -2a <0,所以g (x )在(0,ln a )上单调递减,g(x )>g(ln a )=0,得证.4.已知函数f (x )=ln x -ax +1有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f ′(x 1·x 2)<1-a . 4.解析 (1)由f (x )=0,可得a =1+ln xx,转化为函数g (x )=1+ln xx 与直线y =a 的图象在(0,+∞)上有两个不同交点.g ′(x )=-ln xx 2(x >0),故当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0. 故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1. 又g ⎝⎛⎭⎫1e =0,当x →+∞时,g (x )→0,故当x ∈⎝⎛⎭⎫0,1e 时,g (x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g (x )>0.可得a ∈(0,1). (2)f ′(x )=1x -a ,由(1)知x 1,x 2是ln x -ax +1=0的两个根,故ln x 1-ax 1+1=0,ln x 2-ax 2+1=0⇒a =ln x 1-ln x 2x 1-x 2.要证f ′(x 1·x 2)<1-a ,只需证x 1·x 2>1,即证ln x 1+ln x 2>0,即证(ax 1-1)+(ax 2-1)>0, 即证a >2x 1+x 2,即证ln x 1-ln x 2x 1-x 2>2x 1+x 2.不妨设0<x 1<x 2,故ln x 1x 2<2(x 1-x 2)x 1+x 2=2⎝⎛⎭⎫x 1x 2-1x 1x 2+1, (*)令t =x 1x 2∈(0,1),h (t )=ln t -2(t -1)t +1,h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,则h (t )在(0,1)上单调递增,则h (t )<h (1)=0,故(*)式成立,即要证不等式得证. 5.已知函数f (x )=ax+ln x (a ∈R ).(1)讨论f (x )的单调性;(2)设f (x )的导函数为f ′(x ),若f (x )有两个不相同的零点x 1,x 2. ①求实数a 的取值范围;②证明:x 1f ′(x 1)+x 2f ′(x 2)>2ln a +2.5.思维引导 (1)求导函数f ′(x ),对a 分类讨论,确定导函数的正负,即可得到f (x )的单调性;(2)①根据第(1)问的函数f (x )的单调性,确定a >0,且f (x )min =f (a )<0,求得a 的取值范围,再用零点判定定理证明根的存在性.②对所要证明的结论分析,问题转化为证明x 1x 2>a 2,不妨设0<x 1<a <x 2,问题转化为证明x 1>a 2x 2,通过对f (x )的单调性的分析,问题进一步转化为证明f (a 2x 2)>f (x 2),构造函数,通过导数法不难证得结论.解析 (1)f (x )的定义域为(0,+∞),且f ′(x )=x -ax 2. 当a ≤0时,f′(x )>0成立,所以f (x )在(0,+∞)为增函数;当a >0时,(i )当x >a 时,f ′(x )>0,所以f (x )在(a ,+∞)上为增函数; (ii )当0<x <a 时,f ′(x )<0,所以f (x )在(0,a )上为减函数. (2)①由(1)知,当a ≤0时,f (x )至多一个零点,不合题意;当a >0时,f (x )的最小值为f (a ),依题意知f (a )=1+ln a <0,解得0<a <1e.一方面,由于1>a ,f (1)=a >0,f (x )在(a ,+∞)为增函数,且函数f (x )的图像在(a ,1)上不间断. 所以f (x )在(a ,+∞)上有唯一的一个零点.另一方面,因为0<a <1e ,所以0<a 2<a <1e .f (a 2)=1a +ln a 2=1a +2ln a ,令g (a )=1a +2ln a ,当0<a <1e 时,g ′(a )=-1a 2+2a =2a -1a 2<0,所以f (a 2)=g (a )=1a +2ln a >g ⎝⎛⎭⎫1e =e -2>0 又f (a )<0,f (x )在(0,a )为减函数,且函数f (x )的图像在(a 2,a )上不间断. 所以f (x )在(0,a )有唯一的一个零点. 综上,实数a 的取值范围是⎝⎛⎭⎫0,1e . ②设p =x 1f ′(x 1)+x 2f ′(x 2)=1-a x 1+1-a x 2=2-⎝⎛⎭⎫a x 1+a x 2.又ln x 1+a x 1=0,ln x 2+ax 2=0,则p =2+ln(x 1x 2). 下面证明x 1x 2>a 2.不妨设x 1<x 2,由①知0<x 1<a <x 2. 要证x 1x 2>a 2,即证x 1>a 2x 2.因为x 1,a 2x 2∈(0,a ),f (x )在(0,a )上为减函数,所以只要证f (a 2x 2)>f (x 1). 又f (x 1)=f (x 2)=0,即证f (a 2x 2)>f (x 2).设函数F (x )=f (a 2x )-f (x )=x a -ax -2ln x +2ln a (x >a ).所以F ′(x )=(x -a )2ax 2>0,所以F (x )在(a ,+∞)为增函数.所以F (x 2)>F (a )=0,所以f (a 2x 2)>f (x 2)成立.从而x 1x 2>a 2成立.所以p =2+ln(x 1x 2)>2ln a +2,即x 1f ′(x 1)+x 2f ′(x 2)>2ln a +2成立.总结提升 1.第(2)①中,用零点判定定理证明f (x )在(0,a )上有一个零点是解题的一个难点,也是一个热点问题,就是当0<a <1e 时,要找一个数x 0<a ,且f (x 0)>0,这里需要取关于a 的代数式,取x 0=a 2,再证明f (a 2)>0,事实上由(1)可以得到x ln x ≥-1e ,而f (a 2)=1a +ln a 2=1+2a ln a a>0即可.2.在(2)②中证明x 1x 2>a 2的过程,属于构造消元构造函数方法,将两个变量x 1,x 2转化为证明单变量的问题,这一处理方法,在各类压轴题中,经常出现,要能领悟并加以灵活应用. 6.已知函数f (x )=e x +ax -1(a ∈R ).(1)若对任意的实数x ,函数y =f ′(x )的图象与直线y =x 有且只有两个交点,求a 的取值范围; (2)设g (x )=f (x )-12x 2+1,若函数g (x )有两个极值点x 1,x 2,且x 1<x 2,证明:g (x 1)+g (x 2)>2.6.解析 (1) f (x )=e x +ax -1,则f ′(x )=e x +a ,由已知得,函数y =e x +a 的图象与直线y =x 有两个交点, 即方程e x -x +a =0有两个不相等的实数解,设h (x )=e x -x +a ,则h ′(x )=e x -1,令h ′(x )=0,解得x =0, 当x ∈(-∞,0)时,h ′(x ) <0,h (x )单调递减, 当x ∈(0,+∞)时,h ′(x ) >0,h (x )单调递增,所以h (x )min =h (0)=a +1,所以a +1<0,所以a <-1, 当x →-∞时,h (x ) →+∞;当x →+∞时,h (x ) →+∞所以a <-1时,函数y =f ′(x )的图象与直线y =x 有且只有两个交点. (2)g (x )=f (x )-12x 2+1=e x -12x 2-ax ,g ′(x )=e x -x -a ,因为函数g (x )有两个极值点x 1,x 2,∴方程g ′(x )=0有两个不同的实数解x 1,x 2, 由(1)知,h (x )=e x -x +a ,h (x 1)=h (x 2)=0,且x 1<0<x 2,所以g (x )在区间(-∞,x 1),(x 2,+∞)上单调递增,在区间(x 1,x 2)上单调递减, 且得a =2e x -x 2,所以h (-x 2)=2e x -+x 2-a =2e x --2e x +2x 2.设k (x )=e x --e x +2x (x >0),则k ′(x )=-e x --e x +2<0,所以k (x )在(0,+∞)上单调递减, 所以k (x )<k (0)=0,h (x 2)=h (-x 2)<0,所以x 1<-x 2<0. 又因为g (x )在(x 1,0)单调递减,所以g (x 1)> g (-x 2), 要证g (x 1)+g (x 2)>2,只须证g (-x 2)+g (x 2)>2, 即证2e x +2e x --22x -2>0,设r (x )=e x +e x --2x -2,则r ′(x )=e x -e x --2x , 令p (x )=r ′(x )=e x -e x --2x ,则p ′(x )=e x +e x --2>0, 所以p (x )在(0,+∞)单调递增,p (x )>p (0)=0,即r ′(x )>0, 所以r (x )在(0,+∞)单调递增,r (x )>r (0)=0,故当x >0时,e x +e x --2x -2>0,即2e x +2e x --22x -2>0, 所以g (-x 2)+g (x 2)>2,亦即g (x 1)+g (x 2)>2.。
导数解答题之证明不等式

,
①当 m≤0 时 f′(x)>0 恒成立,∴f(x)在(0,+∞)上是增函数,无极值, ②当 m>0 时令 f′(x)>0,∴0<x< , 令 f′(x)<0,∴x> , 所以函数 f(x)在(0, )上为增函数,在( ,+∞)为减函数, 所以当 x= 时,有极大值,极大值为﹣ (ln2m+1),无极小值,
∴
由题意可知 a>x0+1,又 x0∈(3,4),a∈Z, ∴a 的最小值为 5.
多元不等式的证明
证明多元不等式通常的方法有两个 (1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元 (2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与 自变量大小来证明不等式 (3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法.
证明一元不等式主要的方法
方法一:将含 x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分
析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于 移项后较复杂的解析式则很难分析出单调性
x 1
2e x
f (x) e ln x . f x 1 已知函数
证明:
上单 调递增 ,从
1
而
g(x)在(0,+∞)上的最小值为
g
e
=-1 e
设函数 h(x)=xe-x-2,则 h′(x)=e-x(1-x).所以当 x∈(0,1)时,h′(x)>0;当 x∈(1, e
+∞)时,h′(x)<0.故 h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而 h(x)在(0,+∞)
所以 h(x)max=h(x0)=
专题3 导数解决不等式的恒成立和证明

第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。
2023年高考备考利用导数证明不等式(含答案)

高考材料高考材料专题10 利用导数证明不等式1.〔2023·北京市第九中学模拟预测〕已知. ()sin 2f x k x x =+(1)当时,推断函数零点的个数; 2k =()f x (2)求证:.()sin 2ln 1,(0,2x x x x π-+>+∈(答案)(1)1; (2)证明见解析. (解析) (分析)〔1〕把代入,求导得函数的单调性,再由作答. 2k =()f x (0)0f =〔2〕构造函数,利用导数借助单调性证明作答.()2sin ln(1)g x x x x =--+(1)当时,,,当且仅当时取“=〞,所以在R 上单调2k =()2sin 2f x x x =+()2cos 20f x x '=+≥(21)π,Z x k k =-∈()f x 递增,而,即0是的唯—零点, (0)0f =()f x 所以函数零点的个数是1.()f x (2),令,则,因,则,因此,函数(0,)2x π∈()2sin ln(1)g x x x x =--+()12cos 1g x x x =-'-+1cos 1,11x x <<+()0g x '>在上单调递增,,,()g x (0,)2π(0,2x π∀∈()(0)0g x g >=所以当时,成立.(0,)2x π∈()sin 2ln 1x x x -+>+2.〔2023·河南·开封市东信学校模拟预测〔文〕〕已知函数. ()ln (0)f x x ax a a =-+>(1)当时,求的单调区间; 2a =()f x (2)设函数的最大值为m ,证明:.()f x 0m ≥(答案)(1)增区间为,减区间为;10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析. (解析)(分析)〔1〕利用导数研究的单调区间.()f x 〔2〕应用导数求得的最大值,再构造并利用导数证明不等式.()f x 1ln 1m f a a a ⎛⎫==-- ⎪⎝⎭()ln 1h a a a =--(1)当时,. 2a =()ln 22f x x x =-+∴,令,得. 112()2x f x x x -'=-=()0f x '=12x =∴当时,,函数单调递增; 102x <<()0f x '>()f x 当时,,函数单调递减. 12x >()0f x '<()f x 故函数的减区间为,增区间为;()f x 1,2⎛⎫+∞ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭(2)由,令,得. 1()axf x x -'=()0f x '=1x a=∴当时,,函数单调递增; 10x a<<()0f x '>()f x 当时,,函数单调递减. 1x a>()0f x '<()f x ∴.max 1()ln 1m f x f a a a ⎛⎫===-- ⎪⎝⎭令,则. ()ln 1h a a a =--11()1a h a a a-'=-=∴当时,,函数单调递减; 01a <<()0h x '<()h x 当时,,函数单调递增. 1a >()0h x '>()h x ∴,即.()(1)0h a h ≥=0m ≥3.〔2023·江苏无锡·模拟预测〕已知函数,其中m >0,f '(x )为f (x )的导函数,设,且()e (1ln )xf x m x =+()()ex f x h x '=恒成立.5()2h x ≥(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1. (答案)(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析 (解析)(分析)〔1〕求导可得解析式,即可得解析式,利用导数求得的单调区间和最小值,结合题意,即可()'f x ()h x ()h x 得m 的范围.〔2〕求得解析式,令,利用导数可得的单调性,依据零点存在性定理,可()f x ''22()1ln (0)m mt x m x x x x =++->()t x 得存在,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以21,12x ⎛⎫∈ ⎪⎝⎭,令,分析可得s (x 1)<0,即可得证 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭()1ln s x m x =+(1)由题设知, ()e (1ln xmf x m x x'=++则, 1ln (())0h mm x x xx ++>=所以 22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数, 当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数, 所以h (x )min =h 〔1〕=,解得,512m +≥32m ≥所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭高考材料高考材料(2) 222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令 22()1ln (0)m mt x m x x x x=++->则=恒成立, 2322()m m m t x x x x '=-+2233(1)1(22)0m x m x x x x⎡⎤-+-+⎣⎦=>所以t (x )在(0,+∞)单调递增.又,1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<所以存在,使得t (x 2)=0,21,12x ⎛⎫∈ ⎪⎝⎭当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减; 当x ∈(x 2,+∞) 时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增; 所以f '(x )在x =x 2处取得极小值.即x 1=x 2, 所以t (x 1)=0,即, 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭所以, 1122111(12)21ln 0m x m m m x x x x -+=-=<令,则 s (x )在(0,+∞)单调递增; ()1ln s x m x =+所以s (x 1)<0因为f (x )的零点为x 0,则,即s (x 0)=0 01ln 0m x +=所以s (x 1)<s (x 0),所以x 0>x 14.〔2023·全国·郑州一中模拟预测〔理〕〕已知函数. ()()ln 0f x ax x a =≠(1)商量函数的单调性;()f x (2)当时,证明:.1a =()e sin 1xf x x <+-(解析) (1)依题意知,,()0,x ∈+∞()()ln ln 1f x a x a a x '=+=+令得,()0f x '=1ex =当时,在上,单调递减,在单调递增;0a >10,e ⎛⎫⎪⎝⎭()0f x '<()f x 1,e ⎛⎫+∞ ⎪⎝⎭当时,在上,单调递增,在单调递减.0a <10,e ⎛⎫⎪⎝⎭()0f x '>()f x 1,e ⎛⎫+∞ ⎪⎝⎭(2)依题意,要证,ln e sin 1x x x x <+-①当时,,,故原不等式成立, 01x <≤ln 0x x ≤1sin 0e x x -+>②当时,要证:,即证:,1x >ln e sin 1x x x x <+-ln sin 1e 0x x x x --+<令,则,, ()()e ln sin 11x h x x x x x =--+>()e ln cos 1xh x x x '=--+()e 1sin 0xh x x x''=-+<∴在单调递减,∴,∴在单调递减,∴()h x '()1,+∞()()11e cos10h x h ''<=--<()h x ()1,+∞,即,故原不等式成立.()()11e sin10h x h <=--<ln sin 1e 0xx x x --+<5.〔2023·浙江·三模〕已知实数,设函数. 0a ≥2()2ln(1)(1)ln ,0f x x ax a ax x x =-++-->(1)当时,求函数的单调区间; 0a =()f x (2)假设函数单调递增,求a 的最大值;()f x (3)设是的两个不同极值点,是的最大零点.证明:. 12,x x ()f x 3x ()f x 31211x x x +<注:是自然对数的底数.e 2.71828=⋅⋅⋅(答案)(1)在上单调递增;(2)1;(3)证明见解析. ()f x (0,)+∞(解析)(分析)〔1〕求导,结合导数正负可直接求解函数的单调区间. ()f x 〔2〕由题意得对任意的的恒成立,即可求出a 的最大值. 1()23ln 0f x x a a x x--'=+≥()0,x ∞∈+〔3〕由〔2〕知,当有两个不同极值点时,,则存在两个零点,故,()f x 1a >()0f x '=12,x x ()()111222123ln 0,123ln 0.x a x x x a x x ⎧+-+=⎪⎪⎨⎪+-+=⎪⎩由此可得出,再证明:. 12112a x x +<32x a >即可证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与不等式的证明1.【2013湖南文科】已知函数f (x )=xe x21x 1+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.【解析】 (Ⅰ) .)123)12)1()1)11()('222222x x x xe x x e x x e x x f x x x ++--⋅=+⋅--+⋅-+-=(((;)(,0)(']0-02422单调递增时,,(当x f y x f x =>∞∈∴<⋅-=∆单调递减)时,,当)(,0)('0[x f y x f x =≤∞+∈.所以,)上单调递减,上单调递增;在,在(∞+∈∞=0[]0-)(x x f y 。
(Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。
]1)1[(11111)()(2222x e x xe e x x e x x xf x f x xx x ---+=++-+-=----。
1)21()('0,1)1()(22--=⇒>---=x x e x x g x x e x x g 令。
,04)21()('1)21()(222<-=-=⇒--=x x x xe e x x h e x x h 令0)0()(0)(=<⇒∞+=⇒h x h x h y )上单调递减,在( 0)0()(0)(=<⇒∞+=⇒g x g x g y )上单调递减,在(.000]1)1[(122==∞+---+=⇒-y x x e x xe y x x时)上单调递减,但,在( )()(0)()(x f x f x f x f -<⇒<--⇒.0)()(212121<+≠=x x x x x f x f 时,且所以,当(证毕)2.【2013天津理科】已知函数.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为, 证明: 当时, 有. (1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x = 当x 变化时,f ′(x ),f (x )的变化情况如下表:2l ()n f x x x =()t f s =()s g t =2>e t 2ln ()15ln 2g t t <<-+所以函数f(x)的单调递减区间是⎛⎝,单调递增区间是⎫+∞⎪⎭.(2)证明:当0<x≤1时,f(x)≤0.设t>0,令h(x)=f(x)-t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=-t<0,h(e t)=e2t ln e t-t=t(e2t-1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而2ln()ln ln lnln ln()ln(ln)2ln ln(ln)2lng t s s s ut f s s s s s u u====++,其中u=ln s.要使2ln()15ln2g tt<<成立,只需0ln2uu<<.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln2uu-,u>1.F′(u)=112u-,令F′(u)=0,得u=2.当1<u<2时,F′(u)>0;当u>2时,F′(u)<0.故对u>1,F(u)≤F(2)<0.因此ln2uu<成立.综上,当t>e2时,有2ln()15ln2g tt<<.3【2013天津文科】设[2,0]a∈-, 已知函数332(5),03,0(,).2xfa x xax x x xxa-+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x=在点(,())(1,2,3)i i ix f x iP=处的切线相互平行, 且1230,x xx≠证明12313xx x++>.(1)设函数f1(x)=x3-(a+5)x(x≤0),f2(x)=3232ax x ax+-+(x≥0),①f1′(x)=3x2-(a+5),由a∈[-2,0],从而当-1<x<0时,f1′(x)=3x2-(a+5)<3-a-5≤0,所以函数f1(x)在区间(-1,0]内单调递减.②f2′(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以当0<x<1时,f2′(x)<0;当x>1时,f2′(x)>0.即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①,②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.(2)由(1)知f ′(x )在区间(-∞,0)内单调递减,在区间306a +⎛⎫⎪⎝⎭,内单调递减,在区间36a +⎛⎫+∞ ⎪⎝⎭,内单调递增. 因为曲线y =f (x )在点P i (x i ,f (x i ))(i =1,2,3)处的切线相互平行,从而x 1,x 2,x 3互不相等,且f ′(x 1)=f ′(x 2)=f ′(x 3).不妨设x 1<0<x 2<x 3,由213x -(a +5)=223x -(a +3)x 2+a =233x -(a +3)x 3+a ,可得222333x x --(a +3)(x 2-x 3)=0,解得x 2+x 3=33a +,从而0<x 2<36a +<x 3. 设g (x )=3x 2-(a +3)x +a ,则36a g +⎛⎫⎪⎝⎭<g (x 2)<g (0)=a . 由213x -(a +5)=g (x 2)<a,解得<x 1<0,所以x 1+x 2+x 3>33a +, 设ta =2352t -,因为a ∈[-2,0],所以t∈⎣⎦, 故x 1+x 2+x 3>2231111(1)6233t t t +-+=--≥-,即x 1+x 2+x 3>13-.4【2014天津理科】已知函数x f x xae a R ,x R .已知函数y f x 有两个零点12,x x ,且12x x .(Ⅰ)求a 的取值范围; (Ⅰ)证明21x x 随着a 的减小而增大; (Ⅰ)证明12x x 随着a 的减小而增大.(Ⅰ)解:由x f x xae ,可得1x f x ae .下面分两种情况讨论: (1)0a时0f x在R 上恒成立,可得f x 在R 上单调递增,不合题意.(2)0a 时, 由0fx,得ln xa .当x 变化时,fx ,f x 的变化情况如下表:xln 1a这时,f x 的单调递增区间是,ln a ;单调递减区间是ln ,a .于是,“函数y f x 有两个零点”等价于如下条件同时成立: 1°ln 0fa ;2°存在1,ln a s ,满足10f s ;3°存在2ln ,a s ,满足20f s .由ln 0fa ,即ln 10a ,解得10ae ,而此时,取10s ,满足1,ln a s ,且10f s a;取222ln s a a,满足2ln ,a s ,且22222ln 0aaf s eeaa.所以,a 的取值范围是10,e.(Ⅰ)证明:由0xf x xae ,有x x ae. 设xxg xe ,由1xxg x e ,知g x 在,1上单调递增,在1,上单调递减. 并且,当,0x 时,0g x ;当0,x 时,0g x .由已知,12,x x 满足1ag x ,2ag x . 由10,ae,及g x 的单调性,可得10,1x ,21,x .对于任意的1120,,a a e,设12a a ,121g ga ,其中1201;122gga ,其中121.因为g x 在0,1上单调递增,故由12a a ,即11gg,可得11;类似可得22.又由11,0,得222111.所以,21x x 随着a 的减小而增大. (Ⅲ)证明:由11x x ae ,22x x ae ,可得11ln ln x ax ,22ln ln x ax .故221211ln ln ln x x x x x x . 设21x t x ,则1t,且2121,ln ,x tx x x t 解得1ln 1tx t ,2ln 1t tx t .所以, 121ln 1t t x x t . ①令1ln 1xx h xx ,1,x,则212ln 1xxx h xx .令12ln u x x xx ,得21x u x x. 当1,x时,0u x .因此,u x 在1,上单调递增,故对于任意的1,x ,10u xu ,由此可得0h x,故h x 在1,上单调递增.因此,由①可得12x x 随着t 的增大而增大.而由(Ⅰ),t 随着a 的减小而增大,所以12x x 随着a 的减小而增大。