高一必修一错题集
高一数学必修一易错题汇总

集合部分错题库1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个2.已知集合M ={(x ,y)|x +y =3},N ={(x ,y)|x -y =5},那么集合M ∩N 为 A.x =4,y =-1 B.(4,-1) C.{4,-1} D.{(4,-1)}3.已知集合A ={x|x 2-5x+6<0},B ={x|x< a2},若A B ,则实数a 的范围为A.[6,+∞)B.(6,+∞)C.(-∞,-1)D.(-1,+∞) 4.满足{x|x 2-3x +2=0}M {x ∈N|0<x<6}的集合M 的个数为 A.2 B.4 C.6 D.85.图中阴影部分所表示的集合是( )A .)]([C A C B U ⋃⋂ B.)()(C B B A ⋃⋃⋃ C.)()(B C C A U ⋂⋃ D. )]([C A C B U ⋂⋃6.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有__________人.7.已知集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭用列举法表示集合A 为8. 已知集合{}2210,A x ax x x R =++=∈,a 为实数(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值(3)若A 中至多只有一个元素,求a 的取值范围9.判断如下集合A 与B 之间有怎样的包含或相等关系: (1)A={x|x=2k-1,k ∈Z},B={x|x=2m+1,m ∈Z}; (2)A={x|x=2m,m ∈Z},B={x|x=4n,n ∈Z}.10.集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1}, (1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.函数概念部分错题库1、与函数32y x =-有相同图象的一个函数是( ) A. 32y x =- B. 2y x x =-C.y =- D. y x =2、为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移12个单位3、若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是A .[0,1]B .[0,1)C . [0,1)(1,4]D .(0,1)4、若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]35、已知函数f (x )=221x x +,那么f (1)+f (2)+f (21)+f (3)+f (31)+f (4)+f (41)=_____.6、已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。
必修一易错题汇总

山大附中高一数学寒假作业(必修一易错题一)一. 集合与不等式(跟6二7)7.不等式211x x -->的解集为____________________.(跟3三12)12.(1)已知集合},52|{≤≤-=x x P }121|{-≤≤+=k x k x Q ,Φ=⋂Q P ,求实数k 的取值范围.(2)已知集合},52|{≤≤-=x x P }121|{-≥+≤=k x k x x Q 或,R Q P =⋃,求实数k 的取值范围.(周1一5)5.若集合{}22,,3≤≤-=⎭⎬⎫⎩⎨⎧∈+≤≤+=x x B Z k k x k x A ππππ,则集合B A ⋂= .(10月考8)8.已知集合},54|{},,1|{22**∈+-==∈+==N n n n x x Q N m m x x P ,则( )A .Q P = B .P Q ⊂≠ C .Q P ⊂≠ D .以上皆错(周1二12)12.已知集合1220{,,,}A a a a =,其中0(1,2,,20)k a k >=,集合{(,)|,B a b a A =∈,}b A a b A ∈-∈,则集合B 中的元素至多有 .(周3一9)9.不等式1ax a x->的解集为M ,且2M ∉,则a 的取值范围为 . (周3一10)10.下列选项中,使不等式21x x <<成立的x 的取值范围是 .(综5一3)3.若B A ⋂中恰含有一个整数,则实数a 的取值范围是 .二. 不等式与方程(导6三1)1.若不等式26ax +<的解集为()1,2-,则实数a = .(导4三2)2.已知不等式20ax bx c ++>的解集为{|24}x x <<,求不等式20cx bx a ++<的解集 ..(跟8-5)5.设函数mx x x f 241)(2-+-=的定义域为)6,2(-,求实数m 的取值范围;(周10-3)3.设,,a b c 为实数,()()2(),f x x a x bx c =+++()()2()11g x ax cx bx =+++记集合{}|()0,,S x f x x R ==∈{}|()0,T x g x x R ==∈,若,S T 分别为集合,S T 的元素个数,则下列结论可能成立的是( )A .1S =且2T =B .3S =且1T =C .2S =且3T =D .3S =且3T =三. 定义域与值域(周6二12)12.已知f (x )的定义域是[0,4],则(1)(1)f x f x ++-的定义域______________; (1)f x +的定义域是[0,4],则(21)f x -的定义域为______________.(跟20-7)7.设函数21212)(-+=xx x f ,[]x 表示不超过x 的最大整数,则函数[][])()(x f x f y -+=的值域为 .四. 奇偶性(周6-4)4.定义两种运算:22ba b a -=⊕,2)(b a b a -=⊗,则函数2)2(2)(-⊗⊕=x xx f 为( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数(综5-7)7.设ax x f x++=)110lg()(是偶函数,xx bx g 24)(-=是奇函数,则b a +的值为 .(跟19-7)7. 已知函数()3)1f x x =+,则1(lg 2)(lg )2f f += . (跟19-13)13.已知函数21()log 1x f x x x -=-++.(1)求11()()20142014f f +-的值; (跟20-8)8.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递减.若实数a 满足212(log )(log )2(1)f a f f a ≤+,则a 的取值范围是 .(周5-7)7. 已知函数()f x 满足()()1f x f x ⋅-=,()f x 0>恒成立,则函数()1()()1f xg x f x -=+是( ) A.奇函数 B.偶函数 C.既奇又偶函数 D. 非奇非偶函数(周7-5)5.若定义在R 上的函数()x f 满足:对任意12,x x ∈R 有1212()()()1f x x f x f x +=++,则下列说法一定正确的是( )A. ()x f 为奇函数B.()x f 为偶函数C. ()1+x f 为奇函数D. ()1+x f 为偶函数 (周5-13)13.已知函数()f x 是R 上的奇函数,且对任意x 都有()(2)f x f x =+。
经典高一必修一数学错题

已知集合A={x²+4ax-4a+3=0},B={x丨x²+(a-1)x+a²=0},C={x丨x²+2ax-2a=0},其中至少有一个集合不是空集,试求实数a的取值范围。
设全集U={(x,y)x∈R,y∈R},N={(x,y)丨y-3/x-2=1},M={(x,y)丨y≠x+1},那Cu(M∪N)= ()AφB{(2,3)}C(2,3)D{(x,y)丨y=x+1}若集合A₁,A₂满足A₁∪A₂=A,则称(A₁,A₂)为集合A的一个分拆,并规定,只有A₁=A₂时,(A₁,A₂)和(A₂,A₁)为集合的同一种分拆,则集合A={a,b,c}的不同分拆总数是()A27 B26 C9 D8设u为全集,则下列几种说法中,错误的个数是()①若A∩B=φ,则(Cu A)∪(Cu B)=u②若A∪B=u,则(Cu A)∩(Cu B)=φ③A∪B=φ,则A=BA1 B2 C3 D0如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的的集合是()A(M∩P)∩S B(M∩P)∪S C(M∩P)∩CuS D(M∩P)∪CuS已知A={x丨x²-a x+a²-19=0},B={x丨x²-5x+6=0},是否存在a,使A、B满足下列三个条件:①A≠B②A∪B=B;③φ⊈(A∩B)?若存在,求出a的值;若不存在,请说明理由。
若A,B,C为三个集合,A∪B=B∩C,则一定有()AA⊆CBC⊆ACA≠CDA≠已知全集I,集合A,B满足A∩B=B,A∪B=B,则必定有()AB⊆ABB⊇ACA=BD不能确定已知两个正整数集合A={a₁,a₂,a₃,a₄},满足①a₁<a₂<a₃<a₄;②A∪B所有元素之和为124;③A∩B={a₁,a₄},且a₁﹢a₄=10,求集合A。
设集合M={x丨m≤x≤m﹢3/4},N={x丨n﹣1/3≤x≤n},且M,N都是集合{x丨0≤x≤1}的子集,如果把b﹣a叫做集合{x丨a≤x≤b}的“长度”,那么集合M∩N的长度的最小值是()A2/3B5/12C1/3D1/12某班举行数、理、化三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,求全班人数。
高一数学必修1错题集-2

16、设f(x)是R上的奇函数,且当x属于(0,正无穷)时,f(x)=x (2+x),求函数f(x)的解析式。
当x<0时,-x>0-f(x)=f(-x)=-x(2-x),f(x)=x(2-x)当x=0,f(0)=f(-0)=-f(0),f(0)=0,都适合两个表达式于是,f(x)=x(2+x),x>=0x(2-x),x<017、已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1;①求f(x)的解析式;②在区[-1,2]间上求y(x)的最值①二次函数且f(0)=1设f(x)=ax^2+bx+c∵f(0)=c=1,∴c=1∵f(x)满足f(x+1)-f(x)=2x∴a(x+1)^2+b(x+1)+1-ax^2-bx-1=2xax^2+2ax+a+bx+b+1-ax^2-bx-1=2x2ax+a+b=2x2ax-2x+a+b=0(2a-2)x+(a+b)=0∴2a=2,a+b=0∴a=1,b=-1∴f(x)=x^2-x+1②f(x)=(x-1/2)^2+3/4∵x∈[-1,2]∴x=1/2时,f(x)取得最小值3/4当x=-1或x=2时f(x)的值相等且为最大值318、已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=x-2.(1)求f(x)的解析式;(2)若2x+f(x+1)≤5,求x的范围(1)当x<0时f(x)=-f(-x)=-(-x-2)=x+2(2)分区间讨论:当x>-1时,x+1>0,则有:2x+f(x+1)=2x+x+1-2=3x-1<=5,x<=2当x<-1时,x+1<0,则有:2x+f(x+1)=2x+x+1+2=3x+3<=5,x<=2/3因此x的取值范围是:(-∞,-1)∪(-1,2]19、已知函数f(x)=alog2x+blog3x+2,且f(1/200)=4,求f(200)的值f(1/200)=-alog2200-blog3200 +2=4所以alog2200+blog3200=-2f(200)=alog2200+blog3200+2=-2+2=020、已知log189=a,18b=5,求log3645.思路分析:18b=5log185=b,将log3645如何化为以18为底的对数成为解决本题的关键.解:解法一:∵18b=5,∴log185=b,于是log3645==== =.解法二:由于log189=a,18b=5log185=b,因此,log3645===.解法三:由于log189=a,18b=5,因此,=a,blg18=lg5.∴log3645=====.21、若log4(x+2y)+log4(x-2y)=1,则|x|-|y|的最小值是_________.∙。
人教版数学必修一错题集

知识点:互异性1、已知由21,,x x三个实数构成一个集合,求x应满足的条件.答案:根据集合元素的互异性,得2211,xxx x≠⎧⎪≠⎨⎪≠⎩所以x∈R且1,0x x≠±≠.知识点:元素与集合的关系集合的表示法2、下面有四个命题,正确命题的个数为( )(1)集合N中最小的数是1;(2)若a-不属于N,则a属于N;(3)若,a b∈∈N N,则a b+的最小值为2;(4)212x x+=的解可表示为{}1,1.A.0 B.1 C.2 D.3 答案:A解析:[(1)最小的数应该是 0,(2)反例:0.5-∉N,且0.5∉N,(3)当0a=,1,1b a b=+=,(4)由元素的互异性知(4)错.]小结集合可以用大写的字母表示,但自然数集、正整数集、整数集、有理数集、实数集有专用字母表示,一定要牢记,以防混淆.知识点:集合相等3、已知{}2|1,P x x a a==+∈R,{}2|45,Q x x a a a==-+∈R,则P与Q的关系为________.答案:P=Q解析:解析22211,45(2)11 x a x a a a=+≥=-+=-+≥Q,{|1}P Q x x∴==≥. 知识点:集合相等4、设2*{|1,}M x x a a==+∈N,2(|45,}P y y b b b==-+∈*N,则下列关系正确的是 ( ) A. M= PB.M P≠⊂C.P M≠⊂D. M与P没有公共元素答案:B解析:[2,12,5,10,a x a ∈∴=+=*N Q ….M P≠⊂∴.]知识点:集合相等5、集合相等:只要构成两个集合的元素是________的,就称这两个集合是相等的. 答案:一样知识点:集合中元素的个数 空集定义 交集的概念 6、已知集合{}2|210A x mx x =∈-+=R ,在下列条件下分别求实数m 的取值范围.(1)A =∅; (2)A 恰有两个子集;(3)1(,2).2A ≠∅I答案:答案见解析 解析:解(1)若A =∅,则关于x 的方程2210mx x -+=没有实数解,所以0m ≠,且440m ∆=-<,所以1m >.(2)若 A 恰有两个子集,则 A 为单元素集,所以关于x 的方程2210mx x -+=恰有一个实数解,讨论:①当0m =时,12x =,满足题意;②当0m≠时,440,m ∆=-=所以 1.m =综上所述,m 的集合为(0,1}(3)若1(,2)2A ≠∅I ,则关于x 的方程221mx x =-在区间1(,2)2内有解,这等价于当1(,2)2x ∈时,求2m x =-22111(1)x x =--的值域,知识点:交集的运算性质7、若{|A x y ==,2{|1}B y y x ==+,则A B I =________ 答案:[)1,+∞解析:解析 由{A x y ==,{}21B y y x ==+,得[)1,A =-+∞,[)1,B =+∞,[)1,A B ∴=+∞I知识点:补集的运算性质 8、若全集U =R ,集合{}{}|1|0A x x x x =≥≤U ,则______.U A =ð答案:{}|01x x <<解析:解析 在数轴上表示出集合A ,如图所示.则 U {|01}.A x x ∴=<<ð知识点:函数的概念9、判断下列对应是否为集合A 到集合B 的函数. (1),{|0}A B x x ==>R ,:||f x y x →=;(2)A B ==Z Z ,,2:f x y x →=;(3),,A B ==Z Z :f x y →=(4){|11}A x x =-≤≤,{0},:0.B f x y =→=答案:答案见解析 解析:解(1)A 中的元素0在B 中没有对应元素,故不是集合到集合的函数.(2)对于集合A 中的任意一个整数,按照对应关系2:f x y x →=在集合B 中都有唯一一个确定的整数与其对应,故是集合A 到集合B 的函数.(3)集合A 中的负整数没有平方根,故在集合B 中没有对应的元素,故不是集合A 到集合B 的函数. (4)对于集合A 中任意一个实数,按照对应关系:0f x y →=在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数. 知识点:函数的概念 10、下列对应: ①,M N +==R N ,对应关系f:“对集合 M 中的元素.取绝对值与 N 中的元素对应”;②{1,1,2,2}M=--,N= (1,4},对应关系f:x→2,,;y x x M y N=∈∈③M={三角形},{|0}N x x=>,对应关系f:“对M中的三角形求面积与N 中元素对应”.是集合M到集合N上的函数的有 ( )A.1个B.2个C.3个D.0个答案:A知识点:一些简单函数的单调性11、函数1yx=的单调递减区间为________________.答案:(,0)-∞和(0,)+∞知识点:函数具备奇偶性的前提:函数定义域关于原点对称定义法判定函数奇偶性12、判断下列函数哪些是偶函数.(1)2 ()1 f x x=+;(2)2(),[1,3] f x x x=∈-;(3)()0.f x=答案:答案见解析解析:小结利用定义法判断函数是不是偶函数时,首先应看函数定义域是否关于原点对称,即对于定义域内的任意一个x,则x-也一定是定义域内的一个自变量.解(1)由解析式可知函数的定义域为R,由于22()()11=f x x x-=-+=+()f x,所以函数为偶函数.(2)由于函数的定义域不关于原点对称,故函数不是偶函数.(3)函数的定义域为R,由于()0()f x f x-==,所以函数为偶函数.知识点:定义法判定函数奇偶性13、判断下列函数是否为偶函数.(1)()(1)(1) f x x x=+-;(2)32 ().1x x f xx-=-答案:答案见解析解析:解(1)函数的定义域为R,因函数2()(1)(1)1f x x x x=+-=-,又因22()()11()f x x x f x-=--=-=所以函数为偶函数.(2)函数32()1x xf xx-=-不是偶函数,因为它的定义域为{|1)x x x∈≠R且,并不关于原点对称.知识点:数形结合法求函数最值由函数图像求函数最值定义法判定函数奇偶性14、已知函数2()||1,.f x x x a a=+-+∈R(1)试判断()f x的奇偶性;(2)若1122a-≤≤,求()f x的最小值.答案:答案见解析解析:解(1)当a=时,函数2()()||1() f x x x f x -=-+-+=,此时,()f x为偶函数.当a≠时,22()1,()2||1f a a f a a a=+-=++,()(),()()f a f a f a f a≠-≠--,此时,()f x为非奇非偶函数.(2)当x a≤时,2()1f x x x a=-++=213()24x a-++;12a≤Q,故函数()f x在(,]a-∞上单调递减。
高一必修1数学错题集

1、设集合 M={x|x2-x<0},N={x||x|<2},则…()A.M∩N=B.M∩N=MC.M∪N=MD.M∪N=R参考答案与解析:解:M={x|0<J<1},N={x|-2<x<2},MN.∴M∩N=M,M∪N=N.答案:B主要考察知识点:集合2、下列四个集合中,是空集的是( )A. {x|x+3=3}B. {(x, y)| y2=-x2, x、y∈R}C. {x|x2≤0}D. {x|x2-x+1=0}参考答案与解析:解析:空集指不含任何元素的集合.答案:D3、下列说法:①空集没有子集;②空集是任何集合的真子集;③任何集合最少有两个不同子集;④{x|x2+1=0,x∈R};⑤{3n-1|n∈Z}={3n+2|n∈Z}.其中说确的有( )A.0个B.1个C.2个D.3个参考答案与解析:解析:空集、子集、真子集是本题考查的重点,要明确空集是除了它自身之外的任何一个集合的真子集,当然是任何集合的子集.根据集合的含义、性质和运算法则逐一判断真假.空集也有子集,是它本身,所以①不正确;空集不是它自身的真子集,所以②也是不正确的;空集就只有一个子集,所以③也是不正确的;因为空集是任何集合的子集,所以④是正确的;设A={3n-1|n∈Z},B={3n+2|n∈Z},则A={3n-1|n∈Z}={3(k+1)-1|(k+1)∈Z}={3k+2|k∈Z}=B={3n+2|n∈Z},所以⑤也是正确的.因此,选C.答案:C主要考察知识点:集合4、函数f(x)=-1的定义域是( )A.x≤1或x≥-3B.(-∞,1)∪[-3,+∞)C.-3≤x≤1D.[-3,1]参考答案与解析:思路解析:考查函数的定义域.由1-x≥0,x+3≥0可知,-3≤x≤1,所以原函数的定义域为[-3,1],故选D.答案:D主要考察知识点:函数5、下列各组函数中,表示同一个函数的是()A.y=x-1和y=B.y=x0和y=1C.f(x)=x2和g(x)=(x+1)2D.f(x)=和g(x)=参考答案与解析:解析:A中两函数定义域不同;B中y=x0=1(x≠0)与y=1的定义域不同;C 中两函数的对应关系不同;D中f(x)==1(x>0),g(x)==1(x>0).∴D正确.答案:D主要考察知识点:函数6、函数f(x)=若f(x)=3,则x的值是()A.1B.±C.,1D.参考答案与解析:解析:若x+2=3,则x=1(-∞,-1),应舍去.若x2=3,则x=±,∵-(-1,2),应舍去.若2x=3,∴x=[2,+∞),应舍去.∴x=.应选D.答案:D主要考察知识点:函数7、如下图,可表示函数y=f(x)的图象的只可能是()参考答案与解析:D主要考察知识点:函数8、设b>0,二次函数y=ax2+bx+a2-1的图象是下列图象之一,则a的值为()A.1B.-1C.-1-52D.-1+52参考答案与解析:解析:令y=f(x),若函数的图象为第一个图形或第二个图形,对称轴为y 轴,即b=0,不合题意;若函数的图象为第三个图形,由对称轴的位置可得->0,由于b>0,所以a<0,符合题意.又f(0)=0,解得a=-1.若函数的图象为第四个图形,则->0,由于b>0,所以a<0,函数的图象开口应该向下,不符合题意.因此,a=-1.答案:B主要考察知识点:函数9、在下列选项中,可表示函数y=f(x)的图象的只可能是( )您的答案:C参考答案与解析:解析:判断一幅图象表示的是不是函数的图象,关键是在图象中能不能找到一个x对应两个或两个以上的y,如果一个x对应两个以上的y,那么这个图象表示的就不是函数的图象.A的图象表示的不是函数的图象,∵存在一个自变量x的取值(如:x=0)有两个y与之对应,不符合函数的定义.因此A不正确;B的图象是关于x轴对称也不符合函数的定义.因此B也不正确;C的图象是关于原点对称,但是当自变量x=0时,有两个y值与之对应,不符合函数的定义.∴C选项也不正确;D表示的图象符合函数的定义,因此它表示的是函数的图象.因此选D.答案:D主要考察知识点:函数10、甲、乙两人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B地,又知甲骑自行车比乙骑自行车的速度快,并且两人骑车速度均比跑步速度快.若某人离开A地的距离s与所用时间t的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙的图象为( )A. 甲是图①,乙是图②B. 甲是图①,乙是图④C. 甲是图③,乙是图②D. 甲是图③,乙是图④参考答案与解析:B主要考察知识点:映射与函数11、设a、b都是非零实数,y=++可能的取值组成的集合为()A.{3}B.{3,2,1}C.{3,1,-1}D.{3,-1}参考答案与解析:解析:根据两个字母的符号分类讨论即可得出答案D,在讨论的过程中,注意集合元素的互异性.答案:D主要考察知识点:集合12、下列说法中,正确的命题个数是( )①-2是16的四次方根②正数的n次方根有两个③a的n次方根就是④=a(a≥0)A.1B.2C.3D.4参考答案与解析:解析:从n次方根和n次根式的概念入手,认清各概念与各符号之间的关系.(1)是正确的.由(-2)4=16可验证.(2)不正确,要对n分奇偶讨论.(3)不正确,a的n次方根可能有一个值,可能有两个值,而只表示一个确定的值,它叫根式.(4)正确,根据根式运算的依据,当n为奇数时,=a是正确的,当n为偶数时,若a≥0,则有=a.综上,当a≥0时,无论n为何值均有=a成立.答案: B主要考察知识点:指数与指数函数参考答案与解析:解析:此函数可以看成是以u=(x+1)(x-3)与y=(-1) u复合而成的函数,显然y=(-1) u单调递减,所以求层函数也是递减区间即可,借助二次函数图象可知它在(-∞,1)上满足要求.答案:B主要考察知识点:指数与指数函数13、把根式-2改写成分数指数幂的形式为( )A. B.C. D.参考答案与解析:思路解析:考查根式与分数指数幂的转化.原式可化为 =.故选A.答案:A主要考察知识点:指数与指数函数14、化简()-4等于( )A. B. C. D.参考答案与解析:解析:原式====.答案:A主要考察知识点:指数与指数函数15、下列命题中,错误的是()A.当n为奇数时,=xB.当n为偶数时,=xC.当n为奇数时,=xD.当n为偶数时,=x参考答案与解析:解析:由对根式性质中奇偶条件限制的理解,很容易知道选B. 答案:B16、函数y=(a2-3a+3)a x是指数函数,则有()A.a=1或a=2B.a=1C.a=2D.a>0,且a≠1参考答案与解析:解析:由指数函数的定义解得a=2.答案:C主要考察知识点:指数与指数函数17、函数y=-e x的图象()A.与函数y=e x的图象关于y轴对称B.与函数y=e x的图象关于坐标原点对称C.与函数y=e -x的图象关于y轴对称D.与函数y=e -x的图象关于坐标原点对称参考答案与解析:解析:y=f(-x)的图象与y=f(x)的图象关于y轴对称;y=-f(x)与y=f(x)的图象之间关于x轴对称,y=f(-x)与y=f(x)的图象之间关于原点对称.所以选D.答案:D主要考察知识点:指数与指数函数18、如果函数f(x)=(a 2-1) x在R上是减函数,那么实数a的取值围是( )A. |a|>1B. |a|<2C. |a|>3D.1<|a|<参考答案与解析:解析:由函数f(x)=(a2-1)x的定义域是R且是单调函数,可知底数必须大于零且不等于1,因此该函数是一个指数函数,由指数函数的性质可得0<a2-1<1,解得1<|a|<.答案:D主要考察知识点:指数与指数函数19、设f(x)=,若0<a<1,试求:(1)f(a)+f(1-a)的值;(2) f()+f()+f()+…+f()的值..参考答案与解析:解:(1)f(a)+f(1-a)=+=+=+=+==1.(2)f()+f()+f()+…+f()=[f()+f()]+[f()+f()]+…+[f()+f()]=500×1=500.主要考察知识点:指数与指数函数20、函数y=(-1) (x+1)(x-3)的单调递增区间是( )A. (1, +∞)B. (-∞, 1)C. (1, 3)D. (-1, 1)您的答案:C参考答案与解析:解析:此函数可以看成是以u=(x+1)(x-3)与y=(-1) u复合而成的函数,显然y=(-1) u单调递减,所以求层函数也是递减区间即可,借助二次函数图象可知它在(-∞,1)上满足要求.答案:B主要考察知识点:指数与指数函数21、函数y=(2m-1) x是指数函数,则m的取值围是__________.参考答案与解析:解析:考查指数函数的概念.据指数函数的定义,y=a x中的底数a约定a>0且a≠1.故此2m-1>0且2m-1≠1,所以m>且m≠1.答案:m>且m≠1主要考察知识点:指数与指数函数。
(完整)高一数学必修一易错题集锦答案
高一数学必修一易错题集锦答案1. 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2}3 。
已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个)解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。
4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围.解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则a -11∈A ,1≠a 且1∉A.⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒ 21∈A ⇒ 2∈A∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ a -11∈A ⇒ a--1111∈A ⇒111---a a∈A ,即1-a 1∈A⑷由⑶知a∈A 时,a -11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a -11②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a 1③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.7 设M ={a ,b ,c },N ={-2,0,2},求(1)从M 到N 的映射种数;(2)从M 到N 的映射满足 f (a)>f (b)≥f(c),试确定这样的映射f 的种数. 解:(1)由于M ={a ,b ,c },N ={-2,0,2},结合映射的概念,有一共有27个映射(2)符合条件的映射共有4个0222,2,2,0,0,2220a a a ab b b bc c c c →→→→⎧⎧⎧⎧⎪⎪⎪⎪→-→-→→⎨⎨⎨⎨⎪⎪⎪⎪→-→-→-→⎩⎩⎩⎩8.已知函数()f x 的定义域为[0,1],求函数(1)f x +的定义域解:由于函数()f x 的定义域为[0,1],即01x ≤≤∴(1)f x +满足011x ∴≤+≤ 10x -≤≤,∴(1)f x +的定义域是[-1,0]9根据条件求下列各函数的解析式:(1)已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x .(2)已知1)f x x x =+,求()f x(3)若()f x 满足1()2(),f x f ax x +=求()f x解:(1)本题知道函数的类型,可采用待定系数法求解设()f x =2(0)ax bx c a ++≠由于(0)0f =得2()f x ax bx =+,又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++即 22(2)(1)1ax a b x a b ax b x ++++=+++211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩ 因此:()f x =21122x x +(2)本题属于复合函数解析式问题,可采用换元法求解设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥∴()f x =21x - (1x ≥)(3)由于()f x 为抽象函数,可以用消参法求解用1x 代x 可得:11()2(),f f x a x x +=与 1()2()f x f ax x +=联列可消去1()f x 得:()f x =233a axx -.点评:求函数解析式(1)若已知函数()f x 的类型,常采用待定系数法;(2)若已知[()]f g x 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法. 10 已知x y x 62322=+,试求22y x +的最大值.分析:要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值.解 由 x y x 62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y xx y 又,29)3(2132322222+--=+-=+x x x x y x∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+--点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-=1(0),1(1)u x x x u u =+≥=-≥,29)3(2132322222+--=+-=+∴x x x x y x ∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题.. 11设()f x 是R 上的函数,且满足(0)1,f =并且对任意的实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的表达式.解法一:由(0)1,f =()()(21)f x y f x y x y -=--+,设x y =,得(0)()(21)f f x x x x =--+,所以()f x =21x x ++解法二:令0x =,得(0)(0)(1)f y f y y -=--+即()1(1)f y y y -=--+又将y -用x 代换到上式中得()f x =21x x ++点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定. 12判断函数1()(1)1xf x x x -=++.解:1()(1)1x f x x x -=++有意义时必须满足10111xx x -≥⇒-<≤+即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数13 判断22()log (1)f x x x =++的奇偶性.正解:方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log22++-x x =-)(x f ∴)(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f =01log )1()1[(log 2222==++-⋅++x x x x)()(x f x f -=- ∴)(x f 是奇函数14函数y=245x x --的单调增区间是_________. 解:y=245x x --的定义域是[5,1]-,又2()54g x x x =--在区间[5,2]--上增函数,在区间[2,1]-是减函数,所以y=245x x --的增区间是[5,2]--15已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x<6,又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 16 作出下列函数的图像(1)y=|x-2|(x +1);(2)|lg |10x y =.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.在变换函数解析式中运用了转化变换和分类讨论的思想.解:(1)当x ≥2时,即x-2≥0时,当x <2时,即x-2<0时,所以⎪⎪⎩⎪⎪⎨⎧<+--≥--=)2(49)21()2(49)21(22x x x x y这是分段函数,每段函数图像可根据二次函数图像作出(见图)(2)当x ≥1时,lgx ≥0,y =10lgx=x ;当0<x <1时,lgx <0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图)点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x ,y 的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像.17若f(x)= 21++x ax 在区间(-2,+∞)上是增函数,求a 的取值范围解:设12121212112,()()22ax ax x x f x f x x x ++-<<-=-++12211212121221121122121212(1)(2)(1)(2)(2)(2)(22)(22)(2)(2)22(21)()(2)(2)(2)(2)ax x ax x x x ax x ax x ax x ax x x x ax x ax x a x xx x x x ++-++=+++++-+++=++--+--==++++由f (x )=21++x ax 在区间(-2,+∞)上是增函数得12()()0f x f x -<210a ∴-> ∴a >21点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉.18已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xy yx ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减解:证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0.∴f (x )在(-1,1)上为减函数.点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高. 如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是解题的焦点.19已知18log 9,185,ba ==求36log 45解:∵185,b =∴18log 5b =∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b ab a b a aa a++++=====+-++20知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是 解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0∴ax u -=2在[0,1]上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1又由于x 在[0,1]上时 )2(log ax y a -=有意义,ax u -=2又是减函数,∴x =1时,ax u -=2取最小值是a u -=2min >0即可, ∴a <2综上可知所求的取值范围是1<a <221已知函数()log (3)a f x ax =-.(1)当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.(2)是否存在这样的实数a 使得函数()f x 在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明.解:(1)由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1a a >≠显然,函数g(x)= ax -3在[0,2]上为减函数,从而g(2)=32a ->0得到a <32∴a 的取值范围是(0,1)∪(1,32)(2)假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1∴a =32此时3()log (3)2a f x x =-当2x =时,()f x 没有意义,故这样的实数不存在.点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.22已知函数f (x )=1421lg 2+-⋅++a a ax x , 其中a 为常数,若当x ∈(-∞, 1]时, f (x )有意义,求实数a 的取值范围.分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”. 解:14212+-⋅++a a ax x >0, 且a 2-a +1=(a -21)2+43>0,∴ 1+2x +4x ·a >0, a >)2141(x x +-,当x ∈(-∞, 1]时, y =x 41与y =x 21都是减函数,∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2141(x x +-max =-43,∴ a >-43, 故a 的取值范围是(-43, +∞).点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(x x +-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法.23若1133(1)(32)a a --+<-,试求a 的取值范围.解:∵幂函数13y x -=有两个单调区间,∴根据1a +和32a -的正、负情况,有以下关系10320.132a a a a +>⎧⎪->⎨⎪+>-⎩① 10320.132a a a a +<⎧⎪-<⎨⎪+>-⎩② 10.320a a +<⎧⎨->⎩③解三个不等式组:①得23<a <32,②无解,③a <-1∴a 的取值范围是(-∞,-1)∪(23,32)点评:幂函数13y x -=有两个单调区间,在本题中相当重要,不少学生可能在解题中误认为132a a +>-,从而导致解题错误.24 已知a>0 且a ≠1 ,f (log a x ) = 12-a a(x -x 1)(1)求f(x);(2)判断f(x)的奇偶性与单调性;(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2 ) < 0 ,求m 的集合M . 分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=log a x(t ∈R),则).(),(1)(),(1)(,22R x a a a a x f a a a a t f a x xx t t t ∈--=∴--==--,101,.)(,10,)(,01,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=---a a x f a a a x u a aa x f R x x f a a a a x f x x x x 或无论综上为增函数类似可判断时当为增函数时当为奇函数且f(x)在R 上都是增函数.)1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在.211111111122<<⇒⎪⎩⎪⎨⎧-<-<-<-<-<-∴m m m m m点评:对含字母指数的单调性,要对字母进行讨论.对本例的③不需要代入f (x )的表达式可求出m 的取值范围,请同学们细心体会.25已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围. 解:设()f x 的最小值为()g a(1)当22a-<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;(2) 当[2,2]2a-∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2又-4≤a ≤4,故-4≤a ≤2;(3)22a->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4故-7≤a <-4综上,得-7≤a ≤226已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 解:设2()1f x mx x =++,(1)当m =0时方程的根为-1,不满足条件.(2)当m ≠0∵210mx x ++=有且只有一根在区间(0,1)内又(0)f =1>0∴有两种可能情形①(1)0f <得m <-2 或者②1(1)02f m =-且0<<1得m 不存在综上所得,m <-227.是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.解:令2()(23)(31)f x x k x k =+---那么由条件得到2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解即不存在满足条件的k 值.28已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).解:设F (x )=()f x -121[()()]2f x f x +,则方程 ()f x =121[()()]2f x f x + ①与方程 F (x )=0 ② 等价 ∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在. 29试确定方程322420x x x --+=最小根所在的区间,并使区间两个端点是两个连续的整数.分析:只要构造函数()f x =32242x x x --+,计算()f x 的自变量x 取整数值时的函数值,根据其符号,确定方程根的个数及根的分布. 解:令()f x =32242x x x --+∵(3)f -=-54-9+12+2=-49<0 (2)f -=-16-4+8+2=-10<0 (1)f -=-2-1+4+2=3>0,,(0)f =0-0-0+2=2>0 (1)f =2-1-4+2=-1<0, (2)f =16-4-8+2=6>0根据(2)f -·(1)f -<0,(0)f ·(1)f <0,(1)f ·(2)f <0 可知()f x 的零点分别在区间(-2,-1),(0,1),(1,2)内.因为方程是一个一元三次方程,所以它最多有三个根,所以原方程的最小根在区间(-2,-1)内.点评:计算一元高次函数值可借助于计算器来完成,在实数范围内一元n 次方程最多有n 个实根,当然本题也可以用因式分解方法来解.32242x x x --+221(21)2(21)2()(2)212()(2)(2)2x x x x x x x x =---=--=-所以32242x x x --+=0有三个根:12,22-30设二次函数2()(0),f x ax bx c a =++>方程0)(=-x x f 的两个根21,x x ,满足0<21x x <a1<. (1)当),0(1x x ∈时,证明1)(x x f x <<;(2)设函数2()(0),f x ax bx c a =++>的图像关于直线0x x =对称,证明:210x x <. 分析:(1)用作差比较法证明不等式1)(x x f x <<;(2)函数2()(0),f x ax bx c a =++>图像关于直线0x x =对称,实际直线0x x =就是二次函数的对称轴,即abx 20-=,然后用已知条件证明不等式即可. 证明:(1)依题意,设))(()()(21x x x x a x x f x F --=-= 当),0(1x x ∈时,由于21x x <,∴0))((21>--x x x x ,又0>a ∴))(()()(21x x x x a x x f x F --=-=>0即)(x f x <)1)(()1)(()()]([)(2121111ax x x ax ax x x x F x x x F x x x f x -->-+-=--=+-=-∵0<21x x x <<a1<.∴01,021>->-ax x x ∴0)(1>-x f x 综合得1)(x x f x << (2)依题意知a b x 20-=,又ab x x 121--=+ ∴aax ax a x x a a bx 2121)(221210-+=-+=-=∵,012<-ax ∴22110x a ax x =<点评:解决本题的关健有三:一是用作差比较法证明不等式;二是正确选择二次函数的表达式,即本题选用两根式表示;三要知道二次函数的图像关于直线对称,此直线为二次函数的对称轴,即ab x 20-= 31已知函数0)1(),1(2)(2=<<++=f b c c bx x x f ,且方程01)(=+x f 有实根. (1)求证:-3<c ≤-1,b ≥0.(2)若m 是方程01)(=+x f 的一个实根,判断)4(-m f 的正负并加以证明 分析:(1)题中条件涉及不等关系的有1<<b c 和方程01)(=+x f 有实根.及一个等式0)1(=f ,通过适当代换及不等式性质可解得;(2)本小题只要判断)4(-m f 的符号,因而只要研究出4-m 值的范围即可定出)4(-m f 符号. (1)证明:由0)1(=f ,得1+2b+c=0,解得21+-=c b ,又1<<b c , 1c c >+->21解得313-<<-c , 又由于方程01)(=+x f 有实根,即0122=+++c bx x 有实根, 故0)1(442≥+-=∆c b 即0)1(4)1(2≥+-+c c 解得3≥c 或1-≤c ∴13≤<-c ,由21+-=c b ,得b ≥0. (2)c bx x x f ++=2)(2=)1)(()1(2--=++-x c x c x c x ∵01)(<-=m f ,∴c<m<1(如图) ∴c —4<m —4<—3<c. ∴)4(-m f 的符号为正.点评:二次函数值的符号,可以求出其值判断,也可以灵活运用二次函数的图像及性质解题.32定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论; (3)设()()()(){}()({}22,1,,21,A x y f x f y f B x y f ax y a R =⋅>=-=∈,若A B ⋂=∅,试确定a 的取值范围.(4)试举出一个满足条件的函数()f x .解:(1)在()()()f m n f m f n +=⋅中,令1,0m n ==.得:()()()110f f f =⋅.因为()10f ≠,所以,()01f =.(2)要判断()f x 的单调性,可任取12,x x R ∈,且设12x x <.在已知条件()()()f m n f m f n +=⋅中,若取21,m n x m x +==,则已知条件可化为:()()()2121f x f x f x x =⋅-.由于210x x ->,所以()2110f x x >->.为比较()()21f x f x 、的大小,只需考虑()1f x 的正负即可.在()()()f m n f m f n +=⋅中,令m x =,n x =-,则得()()1f x f x ⋅-=. ∵ 0x >时,()01f x <<, ∴ 当0x <时,()()110f x f x =>>-.又()01f =,所以,综上,可知,对于任意1x R ∈,均有()10f x >. ∴ ()()()()2112110f x f x f x f x x -=--<⎡⎤⎣⎦. ∴ 函数()f x 在R 上单调递减.(3)首先利用()f x 的单调性,将有关函数值的不等式转化为不含f 的式子.()()()222211f x f y f x y ⋅>+<即,(()210f ax y f -==,即20ax y -+=.由A B ⋂=∅,所以,直线20ax y -+=与圆面221x y +<无公共点.所以,2211a ≥+.解得 11a -≤≤.(4)如()12xf x ⎛⎫= ⎪⎝⎭.点评:根据题意,将一般问题特殊化,也即选取适当的特值(如本题中令1,0m n ==;以及21,m n x m x +==等)是解决有关抽象函数问题的非常重要的手段;另外,如果能找到一个适合题目条件的函数,则有助于问题的思考和解决. 33设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(2)(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.点评:(1)探索函数的奇偶性,可依据定义,通过)()(x f x f =-代入有1||1||)(22+-+=+--+-a x x a x x ,即||||a x a x -=+可得,当0=a 时,||||a x a x -=+,函数)()(x f x f =-函数为偶函数. 通过)()(x f x f -=-可得 1||1||)(22----=+--+-a x x a x x 化得 ||||222a x a x x -++=+此式不管0=a 还是0≠a 都不恒成立,所以函数不可能是奇函数.(2)由于本题中含有绝对值,需要去掉,故分类讨论,既要对二次函数值域的研究方法熟练掌握,又要将结论综合,对学生的综合运用数学知识能力及数学思想作了较好的考查.34某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其它费用为每月130元. (1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数; (2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?分析:本题题目的篇幅较长,所给条件零散杂乱,为此,不仅需要划分段落层次,弄清每一层次独立的含义和相互间的关系,更需要抓住矛盾的主要方面.由题目的问题找到关键词——“收支平衡”、“还清所有债务”,不难想到,均与“利润”相关.从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题.为此,首先应该建立利润与职工人数、月销售量q 、单位商品的销售价p 之间的关系,然后,通过研究解析式,来对问题作出解答.由于销售量和各种支出均以月为单位计量,所以,先考虑月利润. 解:(1)设该店的月利润为S 元,有职工m 名.则()4010060013200S q p m =-⨯--.124584060q p81又由图可知:()()2140, 405882 5881p p q p p -+≤≤⎧⎪=⎨-+<≤⎪⎩. 所以,()()()()()()21404010060013200 4058824010060013200 58<81p p m p S p p m p -+-⨯--≤≤⎧⎪=⎨-+-⨯--≤⎪⎩ 由已知,当52p =时,0S =,即()()214040100600132000p p m -+-⨯--=,解得50m =.即此时该店有50名职工.(2)若该店只安排40名职工,则月利润()()()()()()21404010037200 4058824010037200 58<81p p p S p p p -+-⨯-≤≤⎧⎪=⎨-+-⨯-≤⎪⎩. 当4058p ≤≤时,求得55p =时,S 取最大值7800元. 当5881p <≤时,求得61p =时,S 取最大值6900元. 综上,当55p =时,S 有最大值7800元.设该店最早可在n 年后还清债务,依题意,有 1278002680002000000n ⨯--≥. 解得5n ≥.所以,该店最早可在5年后还清债务,此时消费品的单价定为55元.点评:求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题. (3)数理关:运用恰当的数学方法去解决已建立的数学模型.。
高一上册数学必修一易错题集
初高中链接: 1、因式分解()()128222++-+x x x x()()8323222----x x x x2、解不等式(1)1113>+-x x ; (2)1212<++x x ; (3)02322>--x x高一易错题集:1. 函数()()R x x f y ∈=为偶函数,则其函数必经过点( )A. ()()a f a ---,B. ()()a f a -,C. ⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛a f a 1,D. ()()a f a ,-2. 已知函数()⎩⎨⎧<≥=0,0,22x x x x x f ,则()[]=-2f f ____________3. 函数86-=x y 单调减区间是________________.4. 若b a ==3lg ,2lg ,则=12log 5_________.(用b a ,表示)5. 若函数()x f 满足()()x f x f =+4,当()1,0∈x 时,()x x f 2=,则()23log 2f =_____________.6. 若A b a ==53,且211=+ba 则=A ___________ 7. 定义在R 上的函数()x f 满足()()x f x f =+6,当13-<≤-x 时,()()22+-=x x f ,当31<≤-x 时,()x x f =.则()()()()=+⋯+++2014321f f f f ________________. 8. 若()21++=x ax x f 在区间()+∞-,2上是减函数,则a 的取值范围是____________. 9. 判断下列函数的奇偶性:(1)()()012≠+=a x axx f (2)()()00≠≠+=b a xbax x f 且(3)()⎪⎩⎪⎨⎧>+-<+=)0()0(22x x x x x x x f ()()01||2≠+-+=a a x x x f10. 已知函数()xax x x f ++=22,若对任意的[)()0,,1>+∞∈x f x 恒成立,求a 的取值范围.11. 讨论函数()12-=x axx f 在()1,1-时的单调性,其中a 是非零实数.12. 设函数()()R a R x a x x x f ∈∈--=,||2 (1)若()x f 为偶函数,求实数a 的值;(2)已知0≥a ,若对任意R x ∈都有()1-≥x f 恒成立,求实数a 的取值范围.13. 已知函数()xx x f 4+= (1)试判断并证明函数()x f 分别在区间(]2,0和区间[)+∞,2上的单调性; (2)求函数()x f 在区间()+∞,0上的最小值.14. 是否存在实数a 使()a ax x x f +-=22的定义域[]1,1-,值域为[]2,2-?若存在,求出a 的值;若不存在,说明理由。
高中_必修一生物错题集
必修一生物错题集一选择题1.除病毒外,生物体构造和功能的根本单位是A.细胞B.组织C.器官D.系统A.生物圈B.生态系统C.群落D.种群A.施莱登B.施旺C.达尔文D.施莱登和施旺4.当显微镜镜筒下降时,操作显微镜人的眼睛应注视着A.镜筒B.目镜C.物镜与装片间的距离D.ABC中任一均可5.以下元素中,都是属于大量元素的是A.C、H、O、B B.N、P、S、Cu C.C、H、O、Ca D.N、P、S、Fe A.糖原B.蛋白质C.脂质D.水①核酸②DNA ③RNA ④蛋白质⑤脂质⑥糖类A.①④B.②⑤C.③⑥D.②④8.以下各种糖类物质中,既存在于动物细胞内又存在于植物细胞内的是A.淀粉和核糖B.葡萄糖、核糖和麦芽糖C.核糖、脱氧核糖和葡萄糖D.糖原、乳糖、蔗糖9.刚收获的粮食要摊开晾晒一段时间以去除一局部水分;粮食入库储存前,还要再晒一下。
请说明去除的水分在细胞中主要以哪种形式存在A.结合水B.自由水C.重水D.蒸馏水10.组成细胞膜的以下各种化学物质中,含量最多的是A.蛋白质B.水C.脂质D.糖类A.酵母菌B.大肠杆菌C.霉菌D.衣藻12.科学家在利用无土栽培法培养一些名贵花卉时,培养液中添加了多种必需化学元素。
其配方如下:离子K+Na+Mg2+Ca2+NO3-H2PO4-SO42-Zn2+培养液浓度1 1 12 1 1(mmol/L)其中花卉根细胞吸收最少的离子是A.Ca2+B.SO42-C.Zn2+D.H2PO4-13.如下图为一种蛋白质的肽链构造示意图,那么该蛋白质分子包括几条肽链,多少个肽键A.1、123 B.1、124 C.8、116 D.8、12414.在洋葱根尖细胞中,组成核酸的碱基、五碳糖、核苷酸各有几种A.4、2、2 B.5、2、8 C.5、2、2 D.4、4、815.淀粉、脂肪、胰岛素和DNA共有的化学元素是A.C、H、O B.C、H、O、NC.C、H、O、N、P D.C、H、O、N、P、SA.Ca2+和Mg2+B.Fe2+和Mg2+C.Fe3+和Na+D.Ca2+和Na+A.都是蛋白质B.前者是固醇,后者是蛋白质C.都是固醇D.前者是蛋白质,后者是固醇18.①②③④⑤是使用操作显微镜的几个步骤。
物理高一必修一错题
一、运动1.一足球以12m/s的速度飞来,被一脚踢回,踢出时速度大小为24m/s,球与脚的接触时间为0.1s,则此过程中足球的加速度为A.120m/s2,方向与踢出方向相同B.120m/s2,方向与飞来方向相同C.360m/s2,方向与踢出方向相同D.360m/s2,方向与飞来方向相同(P227)2如图所示,从水平匀速飞行的运输机上向外自由释放一个物体,不计空气阻力,在物体落过程中,下列说法正确的是多选A.从飞机上看,物体做直线运动B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动(P227)3.一根轻质细线将2个薄铁垫圈A、B连接起来,一同学用手固定B,此时A、B间距为3L,A距地面为L,如图所示。
由静止释放A、B,不计空气阻力,从释放开始到A落地历时t1,A落地前瞬间速率为v1,从A落地到B落在A上历时t2,B落在A上前瞬间速率为v2,则A.t1 > t2B.t1 = t2C.v1∶v2 = 1∶2D.v1∶v2 = 1∶3(P227)4某列车离开车站后做匀加速运动,从某时刻开始计时,前1s内的位移为10m,前2s的位移为25m,则前3s的位移为().5.一辆以20m/s的汽车,突然急刹车,a=8m/s2,则刹车后的3秒内的位移和3s 时的速度()6. 水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R。
在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,-l)和(0,0)点。
已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动:B平行于x轴朝x轴正向匀速运动。
在两车此后运动的过程中,标记R在某时刻通过点(l, l)。
假定橡皮筋的伸长是均匀的,求B运动速度的大小。
解:设B车速度大小为v。
如图,标记R在时刻t通过点K(l,l),此时A、B 的位置分别为H、G。
由运动学公式,H的纵坐标y A、G的横坐标x B分别为①②在开始运动时,R到A和B的距离之比为2:1,即OE:OF=2:1由于橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1,因此,在时刻t有HG:KG=2:1 ③由于∽,有HG:KG=x B:(x B-l) ④HG:KG=(y A+l):(2l) ⑤由③④⑤式得⑥⑦联立①②⑥⑦式得⑧7. 近来,我国多个城市开始重点治理“中国式过马路”行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一易错题集锦1. 已知集合M={y |y =x 2+1,x∈R},N={y|y =x +1,x∈R},则M∩N=( ) 2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .3.已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个)4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围.5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.6 设A 是实数集,满足若a∈A,则a-11∈A ,1≠a 且1ÏA.⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a1∈A.⑷求证:集合A 中至少含有三个不同的元素.7.已知函数()f x 的定义域为[0,1],求函数(1)f x +的定义域8.根据条件求下列各函数的解析式:(1)已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x . (2)已知1)2f x x x +=+()f x(3)若()f x 满足1()2(),f x f ax x+=求()f x9.设()f x 是R 上的函数,且满足(0)1,f =并且对任意的实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的表达式.10.判断2()log (f x x =的奇偶性.11.已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.12.若f(x)=21++x ax 在区间(-2,+∞)上是增函数,求a 的取值范围13.已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减14.已知18log 9,185,ba ==求36log 4515.已知函数()log (3)a f x ax =-.(1)当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.(2)是否存在这样的实数a 使得函数()f x 在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.16.若1133(1)(32)a a --+<-,试求a 的取值范围.17.已知a>0 且a ≠1 ,f (log a x ) =12-a a (x -x 1)(1)求f(x);(2)判断f(x)的奇偶性与单调性;(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2 ) < 0 ,求m 的集合M .18.已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围.19.已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围.20.是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.21.已知函数0)1(),1(2)(2=<<++=f b c c bx x x f ,且方程01)(=+x f 有实根.(1)求证:-3<c ≤-1,b ≥0. (2)若m 是方程01)(=+x f 的一个实根,判断)4(-m f 的正负并加以证明32定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论;(3) ()()()(){}()({}22,1,,1,A x y f x f y f B x y f ax y a R =⋅>=-+=∈,若A B ⋂=∅,试确定a 的取值范围.33设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈(1)讨论)(x f 的奇偶性;(2)求)(x f 的最小值.34某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).(1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数;(2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?1.解:M={y |y =x 2+1,x∈R}={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R}. ∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R}、{(x ,y )|y =x 2+1,x ∈R},这三个集合是不同的. 2.解:∵A∪B=A ∴BA 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2}3.解:∵m ∈A, ∴设m =2a 1,a 1∈Z, 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。
4.解:①当B≠时,即p +1≤2p-1p≥2.由BA 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3 ②当B=时,即p +1>2p -1p <2. 由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.5.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式. 解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.6.解:⑴2∈AÞ-1∈AÞ21∈AÞ2∈A ∴ A 中至少还有两个元素:-1和21 ⑵如果A 为单元素集合,则a =a-11即12+-a a =0 该方程无实数解,故在实数范围内,A 不可能是单元素集 ⑶a∈A Þa-11∈A Þa--1111∈AÞ111---a a ∈A ,即1-a 1∈A⑷由⑶知a∈A 时,a-11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a-11②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a 1 ③若1-a 1=a-11,即a2-a+1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素. 7. 解:由于函数()f x 的定义域为[0,1],即01x ≤≤∴(1)f x +满足011x ∴≤+≤10x -≤≤,∴(1)f x +的定义域是[-1,0]8. 解:(1)本题知道函数的类型,可采用待定系数法求解设()f x =2(0)ax bx c a ++≠由于(0)0f =得2()f x ax bx =+,又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++,即 22(2)(1)1ax a b x a b ax b x ++++=+++211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩因此:()f x =21122x x +(2)本题属于复合函数解析式问题,可采用换元法求解 设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥∴()f x =21x - (1x ≥)(3)由于()f x 为抽象函数,可以用消参法求解用1x代x 可得:11()2(),f f x a x x +=与 1()2()f x f ax x+=,联列可消去1()f x 得:()f x =233a axx -. 点评:求函数解析式(1)若已知函数()f x 的类型,常采用待定系数法;(2)若已知[()]f g x 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法. 9. 解法一:由(0)1,f =()()(21)f x y f x y x y -=--+,设x y =,得(0)()(21)f f x x x x =--+,所以()f x =21x x ++解法二:令0x=,得(0)(0)(1)f y f y y -=--+即()1(1)f y y y -=--+,又将y -用x代换到上式中得()f x =21x x ++点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定. 10.方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log 22++-x x =-)(x f )(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f =01log )1()1[(log 2222==++-⋅++x x x x ∴)()(x f x f -=-∴)(x f 是奇函数11. 解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x <6,又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6},12. 解:设12121212112,()()22ax ax x x f x f x x x ++-<<-=-++1(0),1(1)u x u u =≥=-≥12211212121221121122121212(1)(2)(1)(2)(2)(2)(22)(22)(2)(2)22(21)()(2)(2)(2)(2)ax x ax x x x ax x ax x ax x ax x x x ax x ax x a x x x x x x ++-++=+++++-+++=++--+--==++++由f (x )=21++x ax 在区间(-2,+∞)上是增函数得12()()0f x f x -<210a ∴-> ∴a >21 13.解:证明:(1)由f (x )+f (y )=f (xy y x ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0.∴f (x )在(-1,1)上为减函数.点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高. 如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是解题的焦点.14. 解:∵185,b=∴18log 5b =∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b a b a b aa a a++++=====+-++15. 分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明.解:(1)由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1aa >≠显然,函数g(x)= ax -3在[0,2]上为减函数,从而g(2)=32a ->0得到a <32 ∴a 的取值范围是(0,1)∪(1,32)(2)假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1 ∴a =32此时3()log (3)2a f x x =-当2x =时,()f x 没有意义,故这样的实数不存在.点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.16. 解:∵幂函数13y x -=有两个单调区间,∴根据1a +和32a -的正、负情况,有以下关系10320.132a a a a +>⎧⎪->⎨⎪+>-⎩①10320.132a a a a +<⎧⎪-<⎨⎪+>-⎩②10.320a a +<⎧⎨->⎩③ 解三个不等式组:①得23<a <32,②无解,③a <-1 ∴a 的取值范围是(-∞,-1)∪(23,32)17. 分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问. 解:(1)令t=log a x(t ∈R),则).(),(1)(),(1)(,22R x a a a a x f a a a a t f a x x x tt t ∈--=∴--==-- ,101,.)(,10,)(,01,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=---a a x f a a a x u a a a x f R x x f a a a a x f x x xx 或无论综上为增函数类似可判断时当为增函数时当为奇函数且 f(x)在R 上都是增函数.)1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在 .211111111122<<⇒⎪⎩⎪⎨⎧-<-<-<-<-<-∴m m m m m 点评:对含字母指数的单调性,要对字母进行讨论. 18. 解:设()f x 的最小值为()g a(1)当22a-<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;(2) 当[2,2]2a-∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2,又-4≤a ≤4,故-4≤a ≤2; (3)22a->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4,故-7≤a <-4 综上,得-7≤a ≤219. 解:设2()1f x mx x =++,(1)当m =0时方程的根为-1,不满足条件.(2)当m ≠0∵210mx x ++=有且只有一根在区间(0,1)内,又(0)f =1>0∴有两种可能情形①(1)0f <得m <-2 ②1(1)02f m =-且0<<1得m 不存在 综上所得,m <-220. 解:令2()(23)(31)f x x k x k =+---那么由条件得到2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解 即不存在满足条件的k 值.21. 分析:(1)题中条件涉及不等关系的有1<<b c和方程01)(=+x f 有实根. 及一个等式0)1(=f ,通过适当代换及不等式性质可解得;(2)本小题只要判断)4(-m f 的符号,因而只要研究出4-m 值的范围即可定出)4(-m f 符号.7 证明:由0)1(=f ,得1+2b+c=0,解得21+-=c b ,又1<<b c ,1c c >+->21 解得313-<<-c ,又由于方程01)(=+x f 有实根,即0122=+++c bx x 有实根, 故0)1(442≥+-=∆c b 即0)1(4)1(2≥+-+c c 解得3≥c 或1-≤c∴13≤<-c ,由21+-=c b ,得b ≥0. (2)c bx x x f ++=2)(2=)1)(()1(2--=++-x c x c x c x ∵01)(<-=m f ,∴c<m<1(如图)∴c —4<m —4<—3<c.∴)4(-m f 的符号为正.点评:二次函数值的符号,可以求出其值判断,也可以灵活运用二次函数的图像及性质解题.22. 解:(1)在()()()f m n f m f n +=⋅中,令1,0m n ==.得:()()()110f f f =⋅.因为()10f ≠,所以,()01f =.(2)要判断()f x 的单调性,可任取12,x x R ∈,且设12x x <.在已知条件()()()f m n f m f n +=⋅中,若取21,m n x m x +==,则已知条件可化为:()()()2121f x f x f x x =⋅-.由于210x x ->,所以()2110f x x >->.为比较()()21f x f x 、的大小,只需考虑()1f x 的正负即可.在()()()f m n f m f n +=⋅中,令m x =,n x =-,则得()()1f x f x ⋅-=.∵ 0x >时,()01f x <<,∴ 当0x <时,()()110f x f x =>>-.又()01f =,所以,综上,可知,对于任意1x R ∈,均有()10f x >. ∴ ()()()()2112110f x f x f x f x x -=--<⎡⎤⎣⎦.∴ 函数()f x 在R 上单调递减.(3)首先利用()f x 的单调性,将有关函数值的不等式转化为不含f 的式子.()()()222211f x f y f x y ⋅>+<即,(()10f ax y f -+==,即0ax y -+=. 由A B ⋂=∅,所以,直线0ax y -+=与圆面221x y +<无公共点.1≥.解得11a -≤≤.点评:根据题意,将一般问题特殊化,也即选取适当的特值是解决有关抽象函数问题的非常重要的手段;另外,如果能找到一个适合题目条件的函数,则有助于问题的思考和解决.23. 解:(1)当0=a时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数 当0≠a时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠ 此时)(x f 既不是奇函数,也不是偶函数(2)(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f . 若21>a,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f 若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f . 综上,当21-≤a 时,函数)(x f 的最小值为a -43,当2121≤<-a 时,函数)(x f 的最小值为12+a ,当21>a 时,函数)(x f 的最小值为a +43. 点评:(1)探索函数的奇偶性,可依据定义,通过)()(x f x f =-代入有1||1||)(22+-+=+--+-a x x a x x ,即||||a x a x -=+ 可得,当0=a 时,||||a x a x -=+,函数)()(x f x f =-函数为偶函数.通过)()(x f x f -=-可得 1||1||)(22----=+--+-a x x a x x 化得||||222a x a x x -++=+此式不管0=a 还是0≠a 都不恒成立,所以函数不可能是奇函数. (2)由于本题中含有绝对值,需要去掉,故分类讨论,既要对二次函数值域的研究方法熟练掌握,又要将结论综合,对学生的综合运用数学知识能力及数学思想作了较好的考查.24.解:(1)设该店的月利润为S 元,有职工m 名.则()4010060013200S q p m =-⨯--.又由图可知:()()2140, 405882 5881p p q p p -+≤≤⎧⎪=⎨-+<≤⎪⎩. 所以,()()()()()()21404010060013200 4058824010060013200 58<81p p m p S p p m p -+-⨯--≤≤⎧⎪=⎨-+-⨯--≤⎪⎩由已知,当52p =时,0S =,即()()214040100600132000p p m -+-⨯--=,解得50m =.(2)若该店只安排40名职工,则月利润()()()()()()21404010037200 4058824010037200 58<81p p p S p p p -+-⨯-≤≤⎧⎪=⎨-+-⨯-≤⎪⎩. 当4058p ≤≤时,求得55p =时,S 取最大值7800元.当5881p <≤时,求得61p =时,S 取最大值6900元.综上,当55p =时,S 有最大值7800元.设该店最早可在n 年后还清债务,依题意,有1278002680002000000n ⨯--≥.解得5n ≥.所以,该店最早可在5年后还清债务,此时消费品的单价定为55元.点评:求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题.(3)数理关:运用恰当的数学方法去解决已建立的数学模型.如有侵权请联系告知删除,感谢你们的配合!。