OV7670使用说明和程序讲解
OV7670带FIFO的CMOS摄像头使用说明

OV7670带FIFO的CMOS摄像头使用说明OV7670是一款带有FIFO的CMOS摄像头芯片,广泛应用于各种嵌入式系统中。
它具有低功耗、高灵敏度和高图像质量等特点,适合于图像采集和处理应用。
以下是OV7670带FIFO的CMOS摄像头的使用说明。
一、硬件连接1.连接供电:将模块的VCC引脚连接到3.3V的电源,GND引脚连接到地。
2.数据传输:-使用I2C协议进行配置:将模块的SDA引脚连接到主控芯片的SDA 引脚,SCL引脚连接到主控芯片的SCL引脚。
-使用FIFO模式进行数据传输:将模块的FIFO_WR引脚连接到主控芯片的写使能引脚,FIFO_RD引脚连接到主控芯片的读使能引脚,FIFO_WE 引脚连接到主控芯片的写时钟引脚,FIFO_OE引脚连接到主控芯片的读时钟引脚,FIFO_RST引脚连接到主控芯片的复位引脚,DATA引脚连接到主控芯片的数据引脚。
二、软件配置1.I2C配置:通过I2C协议对OV7670进行配置。
首先初始化I2C总线,然后发送配置指令给OV7670的I2C地址,通过写入特定的寄存器来配置图像参数,如分辨率、亮度、对比度等。
2.FIFO配置:通过FIFO模式进行数据传输。
首先对OV7670进行FIFO模式的配置,设置FIFO的像素格式、帧率等参数。
然后初始化主控芯片的访问FIFO的接口,设置读写使能信号并根据需要配置写时钟和读时钟。
最后,在读取FIFO数据之前,先进行FIFO的复位以确保数据的正确读取。
三、数据采集和处理1.数据采集:通过FIFO模式进行数据采集,将摄像头拍摄到的图像数据存储到FIFO缓存中。
2. 数据处理:从FIFO缓存中读取图像数据,并进行相关的图像处理操作,如图像解码、颜色空间转换、图像滤波等。
可以使用各种图像处理算法和库来实现不同的功能,如OpenCV等。
四、常见问题和解决方案1.图像质量问题:如果发现图像质量差,可以尝试调整摄像头的参数,如增加亮度、对比度等,或者使用图像后处理算法进行图像增强。
OV使用说明和程序讲解

OV使用说明和程序讲解OV是一个非常强大的开源计算机视觉库,用于图像处理、目标检测、分割和识别等任务。
它的使用说明和程序讲解将围绕以下几个方面展开:安装、导入、基本功能、目标检测和图像分割。
一、安装要使用OV,首先需要安装它的Python库。
可以使用pip命令来安装:```pythonpip install opencv-python```安装完成后,可以导入ov库开始使用。
二、导入导入OV库的语法如下:```pythonimport cv2 as ov```这样就可以开始使用OV库的所有功能。
三、基本功能OV提供了许多基本图像处理功能,包括读取和显示图像、调整大小、旋转和翻转等。
1.读取图像:```pythonimage = ov.imread('image.jpg')```2.显示图像:```pythonov.imshow('Image', image)ov.waitKey(0)```3.调整大小:```pythonresized_image = ov.resize(image, (new_width, new_height)) ```4.旋转图像:```pythonrotation_matrix = ov.getRotationMatrix2D((image_width / 2, image_height / 2), rotation_angle, scale)rotated_image = ov.warpAffine(image, rotation_matrix, (image_width, image_height))```5.翻转图像:```pythonflipped_image = ov.flip(image, flip_code)```四、目标检测OV还提供了目标检测的功能,可以在图像中检测出特定目标的位置和边界框。
1.加载目标检测器:```pythondetector = ov.CascadeClassifier('cascade.xml')```2.检测目标:```pythonobjects = detector.detectMultiScale(image, scaleFactor, minNeighbors, flags, minSize, maxSize)for (x, y, width, height) in objects:ov.rectangle(image, (x, y), (x + width, y + height), (0, 255, 0), 2)```五、图像分割OV还可以进行图像分割,将图像分成多个区域,以便进一步分析和处理。
OV7670的SCCB波形记录

OV7670的SCCB波形记录OV7670是一种具有SCCB(Serial Camera Control Bus)接口的图像传感器。
SCCB是一种串行的、双向的、主从模式下的总线协议,用于控制和配置摄像头的相关参数。
本文将记录OV7670的SCCB波形,分析不同控制命令的传输过程。
OV7670的SCCB总线使用两条线进行传输,即SDA(Serial Data Line)和SCL(Serial Clock Line)。
SDA负责数据的传输,而SCL则提供时钟信号。
SCCB的通信过程包括起始条件、地址传输、数据传输和停止条件。
首先,我们记录起始条件的波形。
起始条件是指在传输数据之前首先发送一个低电平到高电平的跳变来表示传输开始。
在波形上可以看到SCL在高电平状态,而SDA发生从高电平到低电平的跳变。
这个跳变表示起始条件的建立。
接下来是地址传输的波形。
地址传输用于确定要访问的寄存器或摄像头的内存地址。
先发送设备地址,然后发送寄存器地址。
设备地址是通过SDA线传输的,而时钟信号由SCL提供。
通过观察SCL和SDA信号的变化,我们可以找到传输过程中的起始、终止和数据位。
然后是数据传输的波形。
数据传输用于读取或写入寄存器的内容。
在读取时,先发送设备地址和寄存器地址,然后摄像头返回数据。
在写入时,先发送设备地址和寄存器地址,然后发送要写入的数据。
我们可以通过观察SCL和SDA信号的变化来确定传输过程中的数据位。
最后是停止条件的波形。
停止条件是指在传输数据之后发送一个高电平到低电平的跳变来表示传输结束。
在波形上可以看到SCL在高电平状态,而SDA发生从低电平到高电平的跳变。
这个跳变表示停止条件的建立。
通过对OV7670的SCCB波形的记录和分析,我们可以了解SCCB协议的传输过程。
这对于理解OV7670的工作原理和调试可能的问题很有帮助。
而具体的SCCB波形记录由于篇幅限制无法在此详述,请参考相关的技术文档和资料。
OV7670调试

OV7670 的SCCB (I2C)调试1.几个基本概念A)在数据传输阶段,SDA的变化只能在SCK为低电平的时候,如果在SCK高电平的时候有SDA的变化,则可能表示的是I2C的Start或者StopB)Start:当SCK为高时,SDA从高跳变到低表示I2C总线的StartC)Stop:当SCK为高时,SDA从低跳变到高表示总线的StopD)ACK:每次传输8个bit以后,接收方都会有一个回应,如果为低表示ACK,表示OK,如果为高表示NACK,但不表示就有问题,比如Master接收Slave的数据的过程中不想接收了,就可以发送NACKE)地址 Address:在寻址段,在7位格式的地址中,发送的8位数据前七位为地址,如下图中的0x42, 最后一位表示此次发起的是读还是写,读为高电平,写为低电平。
F)子地址 SubAddress:这个东东在I2C的规范里面其实是没有的,不过很多厂家都喜欢整这个,其实就是地址段后面的一个或者两个自己的数据(一般使用写入R/W=0)。
比如俺们以前的BB没有这个概率,现在新的BB有了这个概念,还支持8位和16位。
1.一个写时序下面是一个写的地址段,加两个数据段的波形,先发送芯片ID,0x42和R/W=0, 然后发送两个写入的数据:0x32,0xb6。
1.一个写加一个读先写一个地址段,0x42,然后写入(RW=0)subaddress 0x0B。
然后重新启动一次传输,发送地址段,0x42, 读取之前写入的subaddress里面的值,读出的值为0x76,因为Master此时为receiver,要终止传输了,所以Master给Salve的回应为NACK。
也就是SCCB规范里面的一个2-phase write加一个2-phase read.4.最后来一个总线上没有设备的波形,上拉很弱。
OV7670的SCCB波形记录

OV7670的SCCB波形记录OV7670是一款基于SCCB(串行摄像头控制总线)协议的摄像头模块,它可以通过SCCB协议与主控设备进行通信和控制。
在本文中,我将为你记录OV7670的SCCB波形,以便更好地理解其通信原理和工作机制。
SCCB协议是一种针对摄像头模块的串行通信协议,类似于I2C协议。
它通过两根信号线(SIOC和SIOD)实现主控设备与摄像头模块之间的数据传输和控制。
下面是一份OV7670的SCCB波形记录:1.启动信号:在开始进行SCCB通信之前,主控设备需要发送一个启动信号,以表明接下来要进行SCCB通信。
启动信号由SIOC引脚拉低,SIOD引脚先拉高再拉低构成。
2.设备地址:主控设备需要发送一个设备地址,以指定要控制的摄像头模块。
设备地址由SIOC引脚拉高,SIOD引脚先拉高再拉低构成。
3.寄存器地址:主控设备需要发送一个寄存器地址,以指定要写入或读取的寄存器。
寄存器地址由SIOC引脚拉高,SIOD引脚先拉高再拉低构成。
4.写入数据:主控设备将要写入的数据发送给摄像头模块。
写入数据由SIOC引脚拉高,SIOD引脚的高低电平表示二进制数据的1和0。
5.等待应答:主控设备在发送完写入数据后,需要等待摄像头模块发送应答信号。
应答信号由摄像头模块通过SIOD引脚拉低来表示。
6.读取数据:主控设备需要读取摄像头模块的数据时,向摄像头模块发送一个读取命令。
读取命令由SIOC引脚拉高,SIOD引脚先拉低再拉高构成。
7.读取数据应答:摄像头模块在收到读取命令后,会发送要读取的数据给主控设备。
读取的数据由SIOC引脚拉高,SIOD引脚的高低电平表示二进制数据的1和0。
以上是OV7670的SCCB通信过程中的一些重要波形记录。
通过这些波形,我们可以清楚地了解到每个步骤的具体控制信号和数据传输情况。
这有助于我们更好地理解OV7670和SCCB协议的工作原理,并可以根据需要进行相关的控制和操作。
总结起来,OV7670的SCCB波形记录包括启动信号、设备地址、寄存器地址、写入数据、等待应答、读取数据和读取数据应答等几个重要步骤的信号和数据情况。
OV7670摄像头彻底解读

4 / 23
2013‐2‐21
[艾曼电子技术文档 HTTP:// ]
二、 OV7670 摄像头怎么用
1. 摄像头硬件电路
数据传输的终止
图 8 SCCB 终止信号 tPSC 是 SCCB——E 上升沿,SIO_D 保持逻辑高电平的时间,最小为 15ns; tPSA 是 SIO_D 上升沿,SCCB_E 必须保持低电平的时间,最小为 0ns。
2.3 SCCB 写时序
写时序由 3 相构成。先写设备地址,再写寄存器地址,最后写寄存器的值,即 ID‐Address + SUB‐Address + W‐Data。OV7670 的设备地址为 0x42,最后一位用来判断读写,即读的时候为 0x43。
2 / 23
2013‐2‐21
[艾曼电子技术文档 HTTP:// ]
15
DVDD
Power
Power supply (VDD-C= 1.8 VDC + 10%) for digital output drive
16
HREF
Output
HREF output
Power Down Mode Selection - active high, internal
U1
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 D1 D2 E1 E2 E3 E4 E5 F1 F2 F3 F4 F5
AVDD SIO_D SIO_C D1 D3 PWDN VREF2 AGND D0 D2 DVDD VREF1 VSYNC HREF PCLK STROBE XCLK D7 D5 DOVDD RESET# DOGND D6 D4
OV7670照相模组硬件应用指南1.01 OVT

O
V
Co
修改日期:2007-12-12 版本: 1.06
nf
OmniVision 公司机密
id e
nt
ia l
OV7670 照相模组硬件应用指南
Table of Contents
1. OV7670 模组参考设计................................................................................................................... 3 注:...................................................................................................................................................... 3 1.PWDN 和 RESET 不用时,应接地.................................................................................................3 2. OV7670 模组接口参考设计........................................................................................................... 4 2.1 引脚定义...............................................................................................................................
OV7670摄像头彻底解读

4 / 23
2013‐2‐21
[艾曼电子技术文档 HTTP:// ]
二、 OV7670 摄像头怎么用
1. 摄像头硬件电路
13
Y7
Output
14 DOVDD
Power
功能定义 Output bit[0] - LSB for 10-bit RGB only
Output bit[1] - for 10-bit RGB only Output bit[4] Output bit[3] Output bit[5]
Output bit[2] - LSB for 8-bit YUV Output bit[6]
END <= 0;
end
//Start
6'd1 : begin
SCLK <= 1;
I2C_BIT <= 1;
ACKW1 <= 1; ACKW2 <= 1; ACKW3 <= 1;
END <= 0;
end
6'd2 : I2C_BIT <= 0;
//I2C_SDAT = 0
6'd3 : SCLK <= 0;
6'd8 : I2C_BIT <= I2C_WDATA[19]; //Bit4
6'd9 : I2C_BIT <= I2C_WDATA[18]; //Bit3
6'd10 : I2C_BIT <= I2C_WDATA[17]; //Bit2
6'd11 : I2C_BIT <= I2C_WDATA[16]; //Bit1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
38.1 OV7670 简介
OV7670 是 OV(OmniVision)公司生产的一颗 1/6 寸的 CMOS VGA 图像传感器。该传 感器体积小、工作电压低,提供单片 VGA 摄像头和影像处理器的所有功能。通过 SCCB 总 线控制,可以输出整帧、子采样、取窗口等方式的各种分辨率 8 位影像数据。该产品 VGA 图像最高达到 30 帧/秒。用户可以完全控制图像质量、数据格式和传输方式。所有图像处理 功能过程包括伽玛曲线、白平衡、度、色度等都可以通过 SCCB 接口编程。OmmiVision 图 像传感器应用独有的传感器技术,通过减少或消除光学或电子缺陷如固定图案噪声、托尾、 浮散等,提高图像质量,得到清晰的稳定的彩色图像。
第三十八章 摄像头实验
ALIENTEK 精英 STM32 开发板板载了一个摄像头接口(P6),该接口可以用来连接 ALIENTEK OV7670 摄像头模块。本章,我们将使用 STM32 驱动 ALIENTEK OV7670 摄像头 模块,实现摄像头功能。本章分为如下几个部分:
38.1 OV7670 简介 38.2 硬件设计 38.3 软件设计 38.4 下载验证
图 38.1.3 OV7670 帧时序 上图清楚的表示了 OV7670 在 VGA 模式下的数据输出,注意,图中的 HSYNC 和 HREF 其实是同一个引脚产生的信号,只是在不同场合下面,使用不同的信号方式,我们本章用到 的是 HREF。 因为 OV7670 的像素时钟(PCLK)最高可达 24Mhz,我们用 STM32F103ZET6 的 IO 口直接抓取,是非常困难的,也十分占耗 CPU(可以通过降低 PCLK 输出频率,来实现 IO 口抓取,但是不推荐)。所以,本章我们并不是采取直接抓取来自 OV7670 的数据,而是通 过 FIFO 读取,ALIENTEK OV7670 摄像头模块自带了一个 FIFO 芯片,用于暂存图像数据, 有了这个芯片,我们就可以很方便的获取图像数据了,而不再需要单片机具有高速 IO,也 不会耗费多少 CPU,可以说,只要是个单片机,都可以通过 ALIENTEK OV7670 摄像头模
模拟信号处理所有模拟功能,并包括:自动增益(AGC)和自动白平衡(AWB)。 4.A/D 转换(A/D) 原始的信号经过模拟处理器模块之后 ,分 G 和 BR 两路进入一个 10 位的 A/D 转换器, A/D 转换器工作在 12M 频率,与像素频率完全同步(转换的频率和帧率有关)。 除 A/D 转换器外,该模块还有以下三个功能: 黑电平校正(BLC) U/V 通道延迟 A/D 范围控制 A/D 范围乘积和 A/D 的范围控制共同设置 A/D 的范围和最大值,允许用户根据应用调 整图片的亮度。 5.测试图案发生器(Test Pattern Generator) 测试图案发生器功能包括:八色彩色条图案、渐变至黑白彩色条图案和输出脚移位“1”。 6.数字处理器(DSP) 这个部分控制由原始信号插值到 RGB 信号的过程,并控制一些图像质量: 边缘锐化(二维高通滤波器) 颜色空间转换( 原始信号到 RGB 或者 YUV/YCbYCr) RGB 色彩矩阵以消除串扰 色相和饱和度的控制 黑/白点补偿 降噪 镜头补偿 可编程的伽玛 十位到八位数据转换 7.缩放功能(Image Scaler) 这个模块按照预先设置的要求输出数据格式,能将 YUV/RGB 信号从 VGA 缩小到 CIF 以下的任何尺寸。 8.数字视频接口(Digital Video Port) 通过寄存器 COM2[1:0],调节 IOL/IOH 的驱动电流,以适应用户的负载。 9.SCCB 接口(SCCB Interface) SCCB 接口控制图像传感器芯片的运行,详细使用方 法参照光盘的《OmniVision Technologies Seril Camera Control Bus(SCCB) Specification》这个文档 10.LED 和闪光灯的输出控制(LED and Storbe Flash Control Output) OV7670 有闪光灯模式,可以控制外接闪光灯或闪光 LED 的工作。 OV7670 的寄存器通过 SCCB 时序访问并设置,SCCB 时序和 IIC 时序十分类似,在本 章我们不做介绍,请大家参考光盘的相关文档。 接下来我们介绍一下 OV7670 的图像数据输出格式。首先我们简单介绍几个定义: VGA,即分辨率为 640*480 的输出模式; QVGA,即分辨率为 320*240 的输出格式,也就是本章我们需要用到的格式; QQVGA,即分辨率为 160*120 的输出格式; PCLK,即像素时钟,一个 PCLK 时钟,输出一个像素(或半个像素)。 VSYNC,即帧同步信号。 HREF /HSYNC,即行同步信号。 OV7670 的图像数据输出(通过 D[7:0])就是在 PCLK,VSYNC 和 HREF/ HSYNC 的控 制下进行的。首先看看行输出时序,如图 38.1.2 所示:
校准等自动控制功能。同时支持色饱和度、色相、伽马、锐度等设置。 支持闪光灯 支持图像缩放 OV7670 的功能框图图如图 38.1.1 所示:
图 38.1.1 OV7670 功能框图 OV7670 传感器包括如下一些功能模块。 1.感光整列(Image Array) OV7670 总共有 656*488 个像素,其中 640*480 个有效(即有效像素为 30W)。 2.时序发生器(Video Timing Generator) 时序发生器具有Байду номын сангаас功能包括:整列控制和帧率发生(7 种不同格式输出)、内部信号发 生器和分布、帧率时序、自动曝光控制、输出外部时序(VSYNC、HREF/HSYNC 和 PCLK)。 3.模拟信号处理(Analog Processing)
OV7670 的特点有: 高灵敏度、低电压适合嵌入式应用 标准的 SCCB 接口,兼容 IIC 接口 支持 RawRGB、RGB(GBR4:2:2,RGB565/RGB555/RGB444),YUV(4:2:2)和 YCbCr
(4:2:2)输出格式 支持 VGA、CIF,和从 CIF 到 40*30 的各种尺寸输出 支持自动曝光控制、自动增益控制、自动白平衡、自动消除灯光条纹、自动黑电平
图 38.1.2 OV7670 行输出时序 从上图可以看出,图像数据在 HREF 为高的时候输出,当 HREF 变高后,每一个 PCLK 时钟,输出一个字节数据。比如我们采用 VGA 时序,RGB565 格式输出,每 2 个字节组成 一个像素的颜色(高字节在前,低字节在后),这样每行输出总共有 640*2 个 PCLK 周期, 输出 640*2 个字节。 再来看看帧时序(VGA 模式),如图 38.1.3 所示: