第6次课: 乘法原理

合集下载

高中数学新教材选择性必修第三册《6.1分类加法原理和分步乘法原理》课件

高中数学新教材选择性必修第三册《6.1分类加法原理和分步乘法原理》课件

§6.1 分类加法计数原理与分步乘法计数原理(二)
学习目标
巩固分类加法计数原理和分步乘法计数原理,并能应用这两个计数 原理解决实际问题.
问题导学
新知探究 点点落实
1.两计数原理的联系 分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同 方法的种数问题. 2.两计数原理的区别 分类加法计数原理针对的是分类 问题,其中各种方法相互独立,用其中任 何一种方法都可以做完这件事,分类要做到 不重不漏;分步乘法计数原理 针对的是分步 问题,各个步骤中的方法相互依存,只有各个步骤都完成才 算做完这件事,分步要做到步骤 完整 .
反思与感悟
对于组数问题,应掌握以下原则: (1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键. 一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素) 优先的策略分步完成;如果正面分类较多,可采用间接法求解. (2)要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.
(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长, 有多少种不同的选法? 解 由题设知共有三类: 第1类,从(1)班男生中任选一名学生,有30种不同选法; 第2类,从(2)班男生中任选一名学生,有30种不同选法; 第3类,从(3)班女生中任选一名学生,有20种不同选法. 由分类加法计数原理知,不同的选法共有N=30+30+20=80(种).
§6.1 分类加法计数原理与分步乘法计数原理(一)
学习目标
1.理解分类加法计数原理与分类乘法计数原理. 2.会用这两个原理分析和解决一些简单的实际计数问题.
问题导学
新知探究 点点落实
知识点一 分类加法计数原理 第十二届全运会在中国辽宁盛大召开,一名志愿者从济南赶赴沈阳为游客 提供导游服务,每天有7个航班,6列火车. 思考1 该志愿者从济南到沈阳的方案可分几类? 答案 两类,即乘飞机、坐火车. 思考2 这几类方案中各有几种方法? 答案 第1类方案(乘飞机)有7种方法,第2类方案(坐火车)有6种方法. 思考3 该志愿者从济南到沈阳共有多少种不同的方法? 答案 共有7+6=13种不同的方法.

结构力学课件 第6章 图乘法

结构力学课件 第6章 图乘法

三、注意事项: 注意事项:
1.若 Aω与 1.若 取负值
yc
在杆件的同侧,取正值;反之, 在杆件的同侧,取正值;反之,
2.当图乘法的适用条件不满足时的处理方法: 当图乘法的适用条件不满足时的处理方法: 当图乘法的适用条件不满足时的处理方法 a)曲杆或EI=EI(x)时,只能用积分法求位移; )曲杆或 只能用积分法求位移; ( ) b)当EI分段为常数或单位弯矩图、荷载弯矩图均非 ) 分段为常数或单位弯矩图、 分段为常数或单位弯矩图 直线时, 直线时,应分段图乘再叠加 3.yc应取自直线图中。若两图均为直线图形,也可 应取自直线图中。若两图均为直线图形, 图的面积乘其形心所对应的M 用 M 图的面积乘其形心所对应的 P 图的竖标来计 算。
2
yc = h
1 2 ql 2 = × × ×l×h ∆ CD = ∑ EI EI 3 8 qhl 3 = (→ ← ) 12 EI
ω yc
为常数,求刚架A点的竖向位 例 3. 已知 EI 为常数,求刚架 点的竖向位 并绘出刚架的变形曲线。 移 ∆ Ay ,并绘出刚架的变形曲线。
F
解:作荷载内力图和单位荷载内力图
M=1
M P图
∆ CV
300 × 6 2 = × ×6× 2 2 3 1 2 − × 6 × 45 × 3 = 6660 3
6
M A图
Fp=1
M C图
为常数, 例 5. 已知 EI 为常数,求 ∆Cy 。 q
A
l 2
C
B
l 2
解:作荷载内力图和单位荷载内力图
ql 2 2
A
ql 2 8
C
l 2
1
B A
二、图乘法原理
MM P 图乘法求位移的一般 ds 表达式为 ∫ EI 1 ∆=∑ Aω yC 1 = ∫ MM P ds EI EI

小学数学 加乘原理综合应用 完整版教案 例题+练习+答案

小学数学 加乘原理综合应用 完整版教案 例题+练习+答案

加乘原理在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....来完成,这....的独立步骤几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.例题精讲第一板块、简单加乘原理综合应用【例题1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有2+3=5种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有3×2=6种方法.【巩固】从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?从北京转道上海到广州一共有3×3=9种方法,从北京转道武汉到广州一共也有3×3=9种方法供选择,从北京直接去广州有2种方法,所以一共有9+9+2=20种方法.【例题2】从智慧学校到王明家有3条路可走,从王明家到张老师家有2条路可走,从智慧学校到张老师家有3条路可走,那么从智慧学校到张老师家共有多少种走法?根据乘法原理,经过王明家到张老师家的走法一共有3×2=6种方法,从智慧学校直接去张老师家一共有3条路可走,根据加法原理,一共有6+3=9种走法.【巩固】如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?丁丙乙甲从甲地到丙地有两种方法:第一类,从甲地经过乙地到丙地,根据乘法原理,走法一共有4×2=8种方法,;第二类,从甲地经过丁地到丙地,一共有3×3=9种方法.根据加法原理,一共有8+9=17种走法.【例题3】如下图,八面体有12条棱,6个顶点.一只蚂蚁从顶点A 出发,沿棱爬行,要求恰好经过每一个顶点一次.问共有多少种不同的走法?F E DCBA走完6个顶点,有5个步骤,可分为两大类:①第二次走C 点:就是意味着从A 点出发,我们要先走F ,D ,E ,B 中间的一点,再经过C 点,但之后只能走D ,B 点,最后选择后面两点.有4×1×2×1×1=8种(从F 到C 的话,是不能到E 的);②第二次不走C :有4×2×2×2×1=32种(同理,F 不能到E);共计:8+32=40种.【巩固】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=47.【例题4】某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂一面,二面或三面,并且不同的顺序,不同的位置表示不同的信号.一共可以表示出多少种不同的信号?(6级)由于每次可挂一面、二面或三面旗子,我们可以根据旗杆上旗子的面数分三类考虑:第一类第一类,可以从四种颜色中任选一种,有4种表示法;第二类,要分两步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法.根据乘法原理,共有4×3=12种表示法;第三类,要分三步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法;第三步,第三面旗子可从剩下的两种颜色中选一种,有2种选法.根据乘法原理,共有4×3×2=24种表示法.根据加法原理,一共可以表示出4+12+24=40种不同的信号.【巩固】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?分3种情况:⑴取出一面,有5种信号;⑵取出两面:可以表示5×4=20种信号;⑶取出三面:可以表示:5×4×3=60种信号;由加法原理,一共可以表示:5+20+60=85种信号.第三类,三种颜色:4×3×2=24所以,根据加法原理,一共可以表示2+36+24=62种不同的信号.(二)白棋打头的信号,后两面旗有4×4=16种情况.所以白棋不打头的信号有62-16=46种.【例题5】小红和小明举行象棋比赛,按比赛规定,谁先胜头两局谁赢,如果没有胜头两局,谁先胜三局谁赢.共有种可能的情况.小红和小明如果有谁胜了头两局,则胜者赢,此时共2种情况;如果没有人胜头两局,即头两局中两人各胜一局,则最少再进行两局、最多再进行三局,必有一人胜三局,如果只需再进行两局,则这两局的胜者为同一人,对此共有2×2=4种情况;如果还需进行三局,则后三局中有一人胜两局,另一人只胜一局,且这一局不能为最后一局,只能为第三局或第四局,此时共有2×2×2=8种情况,所以共有2+4+8=14种情况.【巩固】过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么,妈妈送出这5件礼物共有种方法.若将遥控汽车给小强,则学习机要给小玉,此时另外3个孩子在剩余5件礼物中任选3件,有5×4×3=60种方法;若将遥控车给小玉,则智力拼图要给小强,此时也有60种方法;若遥控车既不给小强、也不给小玉,则智力拼图要给小强,学习机要给小玉,此时仍然有60种方法.所以共有60+60+60=180种方法.【例题6】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?可以分三种情况来考虑:⑴3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有3×2×1=6种不同的排列,此时有6×2=12种订法.⑵3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.⑶3所学校订的报纸数量都相同,只有100,100,100一种订法.由加法原理,不同的订法一共有12+6+1=19种.【巩固】玩具厂生产一种玩具棒,共4节,用红、黄、蓝三种颜色给每节涂色.这家厂共可生产________种颜色不同的玩具棒.每节有3种涂法,共有涂法3×3×3×3=81(种).但上述81种涂法中,有些涂法属于重复计算,这是因为有些游戏棒倒过来放时的颜色与顺着放时的颜色一样,却被我们当做两种颜色计算了两次.可以发现只有游戏棒的颜色关于中点对称时才没有被重复计算,关于中点对称的游戏棒有3×3×1×1=9(种).故玩具棒最多有(81+9)÷2=45种不同的颜色.【例题7】奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由5个字母a、b、c、d、e组成,并且所有的单词都有着如下的规律,⑴字母e不打头,⑵单词中每个字母a后边必然紧跟着字母b,⑶c 和d不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?分为三种:第一种:有两个a的情况只有abab1种第二种,有一个a的情况,又分3类第一类,在第一个位置,则b在第二个位置,后边的排列有4×4=16种,减去c、d同时出现的两种,总共有14种,第二类,在第二个位置,则b在第三个位置,总共有3×4-2=10种.第三类,在第三个位置,则b在第四个位置,总共有3×4-2=10种.第三种,没有a的情况:分别计算没有c的情况:2×3×3×3=54种.没有d的情况:2×3×3×3=54种.没有c、d的情况:1×2×2×2=8种.由容斥原理得到一共有54+54-8=100种.所以,根据加法原理,一共有1+14+10+10+100=135种.【巩固】从6名运动员中选出4人参加4×100接力赛,求满足下列条件的参赛方案各有多少种:⑴甲不能跑第一棒和第四棒;⑵甲不能跑第一棒,乙不能跑第二棒⑴先确定第一棒和第四棒,第一棒是除甲以外的任何人,有5种选择,第四棒有4种选择,剩下的四人中随意选择2个人跑第二、第三棒,有4×3=12种,由乘法原理,共有:5×4×12=240种参赛方案⑵先不考虑甲乙的特殊要求,从6名队员中随意选择4人参赛,有6×5×4×3=360种选择.考虑若甲跑第一棒,其余5人随意选择3人参赛,对应5×4×3=60种选择,考虑若乙跑第二棒,也对应5×4×3=60种选择,但是从360种中减去两个60种的时候,重复减了一次甲跑第一棒且乙跑第二棒的情况,这种情况下,对应于第一棒第二棒已确定只需从剩下的4人选择2人参赛的4×3=12种方案,所以,一共有360-60×2+12=252种不同参赛方案.第二板块、加乘原理与数字问题【例题1】由数字1,2,3可以组成多少个没有重复数字的数?因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有3×2=6个;⑶组成三位数:与组成二位数道理相同,有3×2=6个三位数;所以,根据加法原理,一共可组成3+6+6=15个数.【巩固】用数字0,1,2,3,4可以组成多少个小于1000的自然数?小于1000的自然数有三类.第一类是0和一位数,有5个;第二类是两位数,有4×5=20个;第三类是三位数,有4×5×5=100个,共有5+20+100=125个.【例题2】由数字0,1,3,9可以组成多少个无重复数字的自然数?满足条件的数可以分为4类:一位、二位、三位、四位数.第一类,组成0和一位数,有4个(0不是一位数,最小的一位数是1);第二类,组成二位数,有3×3=9个;第三类,组成三位数,有3×3×2=18个;第四类,组成四位数,有3×3×2×1=18个.由加法原理,一共可以组成4+9+18+18=49个数.【巩固】用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?分为三类,一位数时,0和一位数共有5个;二位数时,为4×4=16个,三位数时,为:4×4×3=48个,由加法原理,一共可以组成5+16+48=69个小于1000的没有重复数字的自然数.【例题3】用0~9这十个数字可组成多少个无重复数字的四位数.无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.(方法一)分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法;第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法;由乘法原理,共有满足条件的四位数9×9×8×7=4536个.(方法二)组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个;第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.由加法原理,共有满足条件的四位数3024+1512=4536个.【巩固】用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?分为两类:个位数字为0的有3×2=6个,个位数字为 2的有2×2=4个,由加法原理,一共有:6+4=10个没有重复数字的四位偶数.【例题4】某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,只要考虑6的位置即可,6可以随意选择四个位置,其余位置方1,共有4种选择.第二种中,先考虑放2,有4种选择,再考虑5的位置,有3种选择,剩下的位置放1,共有4×3=12种选择,同理,第三、第四、第五种都有12种选择,最后一种与第一种相似,3的位置有四种选择,其余位置放2,共有4种选择.由加法原理,一共可以组成4+12+12+12+12+4=56个不同的四位数,即为确保打开保险柜至少要试56次.【巩固】从1到500的所有自然数中,不含有数字4的自然数有多少个?从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有3×9×9=243个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3×9×9+1=244个.所以一共有8+8×9+3×9×9+1=324个不含4的自然数.【例题5】从1到100的所有自然数中,不含有数字4的自然数有多少个?从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有个不含4的8+8×9+1=81自然数.【巩固】从1到300的所有自然数中,不含有数字2的自然数有多少个?从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含2的有1、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含2;三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:1×9×9=81个,还要加上300;根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有8+72+82=162个.【例题6】自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?两个相同的数字是8时,另一个8有3个位置可选,其余两个位置有9×8=72种填法,有3×9×8=216个数;两个相同的数字不是8时,相同的数字有9种选法,不同的数字有8种选法,并有3个位置可放,有9×8×3=216个数.由加法原理,共有3×9×8+9×8×3=432个数.【巩固】在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?若相同的数是1,则另一个1可以出现在个、十、百位中的任一个位置上,剩下的两个位置分别有9个和8个数可选,有3×9×8=216个;若相同的数是2,有3×8=24个;同理,相同的数是0,3,4,5,6,7,8,9时,各有 24个,所以,符合题意的数共有216+9×24=432个【例题7】用数字1,2组成一个八位数,其中至少连续四位都是1的有多少个?将4个1看成一个整体,其余4个数有5种情况:4个2、3个2、2个2、1个2和没有2;①4个2时,4个1可以有5种插法;②3个2时,3个2和1个1共有4种排法,每一种排法有4种插法,共有4×4=16种;③2个2时,2个2和2个1共有6种排法,每一种排法有3种插法,共有6×3=18种;④1个2时,1个2和3个1共有4种排法,每一种排法有2种插法,共有4×2=8种;⑤没有2时,只有1种;所以,总共有:5+16+18+8+1=48个.答:至少连续四位都是1的有48个.【巩固】七位数的各位数字之和为60,这样的七位数一共有多少个?七位数数字之和最多可以为9×7=63.63-60=3.七位数的可能数字组合为:①9,9,9,9,9,9,6.第一种情况只需要确定6的位置即可.所以有6种情况.②9,9,9,9,9,8,7.第二种情况只需要确定8和7的位置,数字即确定.8有7个位置,7有6个位置.所以第二种情况可以组成的7位数有7×6=42个.③9,9,9,9,8,8,8,第三种情况,3个8的位置确定即7位数也确定.三个8的位置放置共有7×6×5=210种.三个相同的8放置会产生3×2×1=6种重复的放置方式.所以3个8和4个9组成的不同的七位数共有210÷6=35种.所以数字和为60的七位数共有35+42+7=84.【例题8】从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?2个数的和能被4整除,可以根据被4除的余数分为两类:第一类:余数分别为0,0.1~40中能被4整除的数共有40÷4=10(个),10个中选2个,有10×9÷2=45(种)取法;第二类:余数分别为1,3.1~40中被4除余1,余3的数也分别都有10个,有10×10=100(种)取法;第三类:余数分别为2,2.同第一类,有45种取法.根据加法原理,共有45+100+45=190(种)取法.【巩固】在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有多少种不同的取法?两个数的和是3的倍数有两种情况,或者两个数都是3的倍数,或有1个除以3余1,另一个除以3余2.1~10中能被3整除的有3个数,取两个有3种取法;除以3余1的有4个数,除以3余2的有3个数,各取1个有3×4=12种取法.根据加法原理,共有取法:3+12=15种.【例题9】1到60这60个自然数中,选取两个数,使它们的乘积是被5除余2的偶数,问,一共有多少种选法?两个数的乘积被5除余2有两类情况,一类是两个数被5除分别余1和2,另一类是两个数被5除分别余3和4,只要两个乘数中有一个是偶数就能使乘积也为偶数.1到60这60个自然数中,被5除余1、2、3、4的偶数各有6个,被5除余1、2、3、4的奇数也各有6个,所以符合条件的选取方式一共有(6×6+6×6+6×6+6×6)+(6×6+6×6)=216种.【巩固】一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少? 我们将回文数分为一位、二位、三位、…、六位来逐组计算.所有的一位数均是“回文数”,即有9个;在二位数中,必须为aa形式的,即有9个(因为首位不能为0,下同);在三位数中,必须为aba(a、b可相同,在本题中,不同的字母代表的数可以相同)形式的,即有9×10 =90个;在四位数中,必须为abba形式的,即有9×10个;在五位数中,必须为abcda形式的,即有9×10×10=900个;在六位数中,必须为abccba形式的,即有9×10×10=900个.所以共有9 + 9 + 90 + 90 + 900 + 900 = 1998个,最大的为999999,其次为998899,再次为997799.而第1996个数为倒数第3个数,即为997799.所以,从一位到六位的回文数一共有1998个,其中的第1996个数是997799.【例题10】如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.因为要求“填在黑格里的数比它旁边的两个数都大”,所以填入黑格中的数不能够太小,否则就不满足条件.通过枚举法可知填入黑格里的数只有两类:第一类,填在黑格里的数是5和4;第二类,填在黑格里的数是5和3.接下来就根据这两类进行计数:第一类,填在黑格里的数是5和4时,分为以下几步:第一步,第一个黑格可从5和4中任选一个,有2种选法;第二步,第二个黑格可从5和4中剩下的一个数选择,只有1种选法;第三步,第一个白格可从1,2,3中任意选一个,有3种选法.第四步,第二个白格从1,2,3剩下的两个数中任选一个,有2种选法;第五步,最后一个白格只有1种选法.根据乘法原理,一共有(2×1)×(3×2×1)=12种.第二类,填在黑格里的数是5和3时,黑格中有两种填法,此时白格也有两种填法,根据乘法原理,不同的填法有2×2=4种.所以,根据加法原理,不同的填法共有12+4=16种.【巩固】在如图所示1×5的格子中填入1,2,3,4,5,6,7,8中的五个数,要求填入的数各不相同,并且填在黑格里的数比它旁边的两个数都大.共有种不同的填法.如果取出来的五个数是1、2、3、4、5,则共有不同填法16种.从8个数中选出5个数,共有8×7×6÷(3×2×1)=56中选法,所以共16×56=896种.【例题11】从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有种选法.由于要求选出的数中不存在某个自然数是另一个自然数的2倍,可以先根据2倍关系将1~12进行如下分组:(1,2,4,8);(3,4,12);(5,10);(7);(9);(11).由于第一组最多可选出2个数,第二组最多可选出2个数,其余四组最多各可选出1个数,所以最多可选出8个数.现在要求选出7个数,所以恰好有一组选出的数比它最多可选出的数少一个.⑴如果是第一组少一个,也就是说第一组选1个,第二组选2个,其余四组各选1个,此时有4×1×2×1×1×1=8种选法;⑵如果是第二组少一个,也就是说第一组选2个,其余五组各选一个,此时第一组有3种选法,根据乘法原理,有3×3×2×1×1×1=18种选法;⑶如果是第三组少一个,也就是说第一组选2个,第二组选2个,第三组不选,其余三组各选1个,有3×1×1×1×1×1=3种选法;⑷如果是第四、五、六组中的某一组少一个,由于这三组地位相同,所以各有3×1×2×1×1×1=6种选法.根据加法原理,共有8+18+3+6×3=47种不同的选法.【巩固】从1到999这999个自然数中有个数的各位数字之和能被4整除.由于在一个数的前面写上几个0不影响这个数的各位数字之和,所以可以将1到999中的一位数和两位数的前面补上两个或一个0,使之成为一个三位数.现在相当于要求001到999中各位数字之和能被4整除的数的个数.一个数除以4的余数可能为0,1,2,3,0~9中除以4余0的数有3个,除以4余1的也有3个,除以4余2和3的各有2个.三个数的和要能被4整除,必须要求它们除以4的余数的和能被4整除,余数的情况有如下5种:0+0+0;0+1+3;0+2+2;1+1+2;2+3+3.⑴如果是0+0+0,即3个数除以4的余数都是0,则每位上都有3种选择,共有3×3×3=27种可能,但是注意到其中也包含了000这个数,应予排除,所以此时共有27-1=26个;⑵如果是0+1+3,即3个数除以4的余数分别为0,1,3,而在3个位置上的排列有3×2×1=6种,所以此时有3×3×2×6=108个;⑶如果是0+2+2,即3个数除以4的余数分别为0,2,2,在3个位置上的排列有3种,所以此时有3×2×2×3=36个;⑷如果是1+1+2,即3个数除以4的余数分别为1,1,2,在3个位置上的排列有3种,所以此时有3×3×2×3=54个;⑸如果是2+3+3,即3个数除以4的余数分别为2,3,3,在3个位置上的排列有3种,此时有2×2×2×3=24个.根据加法原理,共有26+108+36+54+24=248.【例题12】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个数字同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后再由加法原理即可求解.两个正方体向上的一面数字之和为偶数的共有3×3+3×3=18种不同的情形.【巩固】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?要使两个数字之和为奇数,只要这两个数字的奇偶性不同,即这两个数字一个为奇数,另一个为偶数,由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现偶数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.【例题13】有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?方法一:要使两个骰子的点数之和为偶数,只要这两个点数的奇偶性相同,可以分为两步:第一步第一个骰子随意掷有6种可能的点数;第二步当第一个骰子的点数确定了以后,第二个骰子的点数只能是与第一个骰子的点数相同奇偶性的3种可能的点数.根据乘法原理,向上一面的点数之和为偶数的情形有6×3=18(种).方法二:要使两个骰子点数之和为偶数,只要这两个点数的奇偶性相同,所以,可以分为两类:第一类:两个数字同为奇数.有3×3=9(种)不同的情形.第二类:两个数字同为偶数.类似第一类,也有3×3=9(种)不同的情形.根据加法原理,向上一面点数之和为偶数的情形共有9+9=18(种).方法三:随意掷两个骰子,总共有6×6=36(种)不同的情形.因为两个骰子点数之和为奇数与偶数的可能性是一样的,所以,点数之和为偶数的情形有36÷2=18(种).【巩固】有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?方法一:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.可以分为三步:第一步,第一个骰子随意掷有6种可能的点数;第二步,当第一个骰子的点数确定了以后,第二个骰子的点数还是奇数偶数都有可能所有也有6种可能的点数;第三步,当前两个骰子的点数即奇偶性都确定了之后第三个骰子点数的奇偶性就确定了所以只有3种可能的点数.根据乘法原理,向上一面的点数之和为偶数的情形有6×6×3=108(种).方法二:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.所以,要分两大类来考虑:第一类:三个点数同为偶数.由于掷骰子可认为是一个一个地掷.每掷一个骰子出现偶数点数都有3种可能.由乘法原理,这类共有3×3×3=27(种)不同的情形.。

经典题库-乘法原理的应用【附详答】

经典题库-乘法原理的应用【附详答】

经典题库-乘法原理的应用知识框架图计数原理乘法原理 1简单乘法原理的应用2较复杂的乘法原理应用1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n 个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A 种不同的方法,第二步有B 种不同的方法,……,第n 步有N 种不同的方法.那么完成这件事情一共有A ×B ×……×N 种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N 个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘教学目标 知识要点四、乘法原理的考题类型 1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色的方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.1、简单乘法原理的应用【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法?(2级)【解析】 把可能出现的情况全部考虑进去.第一步 第二步由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C地有多少种不同的走法?(2级)【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A 地经B 地去C 地,共有5×3=15种方法.【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?(2级)A 村村 C 村中A 村村 C 村北南 C 村村A村例题精讲【解析】 从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【巩固】 在下图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?(2级)【解析】 甲虫要从A 点沿着线段爬到B 点,需要经过两步,第一步是从A 点到C 点,一共有3种走法;第二步是从C 点到B 点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【例 3】 在右图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?(4级)【解析】 从A 点沿着线段爬到B 点需要分成三步进行,第一步,从A 点到C 点,一共有3种走法;第二步,从C 点到D 点,有1种走法;第三步,从D 点到B 点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【巩固】 在右图中,一只蚂蚁要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?(4级)【解析】 解这道题时千万不要受铺垫题目的影响,第一步,A 点到C 点的走法是3种;第二步,从C 点到D 点,有1种走法;但第三步,从D 点到B 点的走法并不是3种,由D 出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【巩固】 在右图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?(4级)【解析】 从A 点沿着线段爬到B 点需要分成三步进行,第一步,从A 点到C 点,一共有3种走法;第二步,从C 点到D 点,一共也有3种走法;第三步,从D 点到B 点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.CB ADC B A B DC AD C B A【巩固】 在右图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法? (6级)【解析】 解这道题时千万不要受铺垫题目的影响,A 点到C 点的走法不是3种,而是4种,C 点到B 点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【例 4】 按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?(4级)【解析】 1、造一个句子必须包含三个部分,即人、交通工具、目的地.2、那么这个句子可以分成三个部分;第一个步——选择人物,有三种选择;第二步——选择交通工具,有三种选择;第三个步——选择目的地,有三种选择.3、根据乘法原理:3×3×3=27.【例 5】 题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?(4级)【解析】 从该题库每一类试卷中分三步各选一道题,每一步分别有30、40、45种选法.根据乘法原理,一共有30×40×45=54000种不同的选法,所以一共可以组成54000种不同试卷.【巩固】 文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)【解析】 完成这件事需要两步:一步是从女生中选1人,有4种选法;另一步是从男生中选1人,有3种选法.因此,由乘法原理,选出1男1女的方法有3412⨯=种.还可以用乘法的意义来理解这道题:男生有3种选法,每选定1个男生,再选1个女生,对应着4种选法,即3个男生,每个男生对应4种选女生的方法,因此选出1男1女共有3412⨯=种方法.【巩固】 小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?(4级)【解析】 小丸子搭配服装分四步.第一步选帽子,由于不戴帽子可以看作戴了顶空帽子,所以有516+=种选法;第二步选上衣,有10种选法;第三步选裤子,有8种选法;第四步选皮鞋,有6种选法.根据乘法原理,四种服装中各取一个搭配.一共有5110862880+⨯⨯⨯=()种选法,所以一共可以组成2880种不同搭配.【例 6】 要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?(4级)【解析】 第一步选出学习先进集体一共有6种方法,第二步选出体育先进集体一共有6种方法,第三步选出卫生先进集体一共有6种评选方法,根据乘法原理,一共有666216⨯⨯=种评选方法.【巩固】 从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?(4级)【解析】 第一步选出学习先进集体共有6种方法,第二步从剩下班级中选出体育先进集体共有5种方法,第CBA三步选出卫生先进集体只剩有4种评选方法,根据乘法原理,共有6×5×4=120种评选方法.【例 7】 从全班20人中选出3名学生排队,一共有多少种排法?(4级)【解析】 分三步,分别挑选第一人,第二人,第三人,分别有20,19,18种挑选法,一共有2019186840⨯⨯=种排法.【例 8】 五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有多少种不同的排法?(6级)【解析】 五位同学的排列方式共有5×4×3×2×1=120(种).如果将相邻的贝贝和妮妮看作一人,那么四人的排列方式共有4×3×2×1=24(种);因为贝贝和妮妮可以交换位置,所以贝贝和妮妮相邻的排列方式有24×2=48(种);贝贝和妮妮不相邻的排列方式有120-48=72(种).【巩固】 10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?(6级)【解析】 两人相邻的情况有10种,第三个人不能与他们相邻,所以对于每一种来说,只剩6个人可选,10×6=60(种)共有60种不同的选法.【例 9】 “数学”这个词的英文单词是“MATH ”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?(4级)【解析】 为了完成对单词“MATH ”的染色,我们可以按字母次序,把这个染色过程分四步依次完成: 第1步——对字母“M ”染色,此时有5种颜色可以选择;第2步——对字母“A ”染色,由于字母“M ”已经用过一种颜色,所以对字母“A ”染色只有4种颜色可以选择;第3步——对字母“T ”染色,由于字母“M ”和“A ”已经用去了2种颜色,所以对字母“T ”染色只剩3种颜色可以选择;第4步——对字母“H ”,染色,由于字母“M ”、“A ”和“T ”已经用去了3种颜色,所以对字母“H ”染色只有2种颜色可以选择.由乘法原理,共可以得到5432120⨯⨯⨯=种不同的染色方式.【小结】下面的这棵枚举树清晰地揭示了利用乘法原理分步计数的过程:思考一下,如果不要求“每个字母染的颜色都不一样”,会有多少种不同的染色方式?每个字母都有5种颜色可选,那么染色方式一共有5×5×5×5=625种染色方式.【巩固】 “IMO ”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法?(4级)【解析】 第一步写“I ”有5种方法,第二步写“M ”有4种方法,第三步写“O ”有3种方法,共有54360⨯⨯=种方法.【例 10】 “学习改变命运”这六个字要用6种不同颜色来写,现只有6种不同颜色的笔,问共有多少种不同的写法?(4级)紫紫绿蓝绿紫H TAM【解析】第一步写“学”有6种方法,第二步写“习”有5种方法,第三步写“改”有4种方法,第四步写“变”有3种方法,第五步写“命”有2种方法,第六步写“运”有1种方法,根据乘法原理,一共有654321720⨯⨯⨯⨯⨯=种方法.【巩固】有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色不能相同,有多少种不同的方法?(4级)【解析】写第一个字有6种选择,以后每写一个字,只要保证不与前一个字相同就行了,都有5种选择,所以,有65555518750⨯⨯⨯⨯⨯=种写法.【巩固】用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?(4级)【解析】第一个字有5种写法,第二个字有4种写法,第三个字也是4种写法,同理后面的字也是4种写法,共有5×4×4×4=320种.2、较复杂的乘法原理应用【例 11】北京到上海之间一共有6个站,车站应该准备多少种不同的车票?(往返车票算不同的两种) (6级)【解析】京沪线上中间六个站连北京上海两站一共有8个站,不同的车票上起点站可以有8种,相同的起点站又可以配7种不同的终点站,所以一共要准备8×7=56种不同的车票.【巩固】(难度等级※※※)一条线段上除了两个端点还有6个点,那么这段线段上可以有多少条线段?(6级)【解析】将这条线段看作是京沪线,点是车站,那么,每一条线段都对应两张来回车票,所以线段的总数是56÷2=28条线段.【巩固】某次大连与庄河路线的火车,一共有6个停车点,铁路局要为这条路线准备多少种不同的车票?(6级)【解析】不同的车票上起点站可以有6种,相同的起点站又可以配5种不同的终点站,所以一共要准备⨯=种不同的车票.6530【巩固】北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?(6级)【解析】京广线上一共有12个站,其中有四个大站,卧铺车的起点可以有四种,不同的起点站都可以配11个不同的终点站,所以铁路局要准备4×11=44种不同的车票.【例 12】⑴由数字1、2可以组成多少个两位数?⑵由数字1、2可以组成多少个没有重复数字的两位数?(6级)【解析】⑴组成两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,有2种方法.根据乘法原理,由数字1、2可以组成2×2=4个两位数,即11,12,21,22.⑵组成没有重复数字的两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,因为要组成没有重复数字的两位数,因此十位上用的数字个位上不能再用,因此第二步只有1种方法,由乘法原理,能组成2×1=2个两位数,即12,21.【巩固】用数字0,1,2,3,4可以组成多少个:⑴三位数?⑵没有重复数字的三位数?(6级)【解析】⑴组成三位数可分三步完成.第一步,确定百位上的数字,因为百位不能为0,所以只有4种选.⑵也分三步完成.第一步,百位上有4种选择;第二步确定十位,除了百位上已使用的数字不能用,其他四个数字都可以,所以有4种方法;第三步确定个位,除了百位和十位上已使用过的数字,还有3种选择.根据乘法原理,可以组成44348⨯⨯=个没有重复数字的三位数.【巩固】⑴由3、6、9这3个数字可以组成多少个没有重复数字的三位数?⑵由3、6、9这3个数字可以组成多少个三位数?(6级)【解析】⑴分三步完成:第一步排百位上的数,有3种方法;第二步排十位上的数,有2种方法;第三步,排个位上的数,有1种方法,由乘法原理,3、6、9这3个数字可以组成3216⨯⨯=个没有重复数字的三位数.⑵分三步完成,即分别排百位、十位、个位上的数字,每步有3种方法,由乘法原理,由3、6、9这3个数字一共可以组成33327⨯⨯=个三位数.【例 13】有五张卡,分别写有数字1、2、4、5、8.现从中取出3张卡片,并排放在一起,组成一个三位数,问:可以组成多少个不同的偶数?(6级)【解析】分三步取出卡片.首先因为组成的三位数是偶数,个位数字只能是偶数,所以先选取最右边的也就是个位数位置上的卡片,有2、4、8三种不同的选择;第二步在其余的4张卡片中任取一张,放在最左边的位置上,也就是百位数的位置上,有4种不同的选法;最后从剩下的3张卡片中选取一张,放在中间十位数的位置上,有3种不同的选择.根据乘法原理,可以组成3×4×3=36个不同的三位偶数.【例 14】有5张卡,分别写有数字2,3,4,5,6.如果允许6可以作9用,那么从中任意取出3张卡片,并排放在一起.问⑴可以组成多少个不同的三位数?⑵可以组成多少个不同的三位偶数?(6级)【解析】⑴先考虑6只能当6的情况最后总的个数只要在这个基础上乘以2就可以了,分三步取出卡片: 第一步确定百位,有5种选择;第二步确定十位,除了百位上已使用的数字不能用,其他4个数字都可以,所以有4种方法;第三步确定个位,除了百位和十位上已使用过的数字,还有3种选择.根据乘法原理,考虑6可以当作9,可以组成5432120⨯⨯⨯=(个)不同的三位数.⑵先考虑6只能当6的情况,分三步取出卡片.首先因为组成的三位数是偶数,个位数字只能是偶数,所以先选取最右边的也就是个位数位置上的卡片,有2、4、6三种不同的选择;第二步在其余的4张卡片中任取一张,放在十位数的位置上,有4种不同的选法;最后从剩下的3张卡片中选取一张,放在百位数的位置上,有3种不同的选择.根据乘法原理,6只是6时,可以组成34336⨯⨯=(个)不同的三位偶数.这时候算所求的三位偶数并不是简单乘以2就可以的,因为如果个位是6的话变成9就不再是偶数,多乘的还需要减去,个位是6一共有4312⨯=(个)不同的三位偶数,所以,可以组成3621260⨯-=(个)不同的三位偶数.【例 15】用1、2、3这三个数字可以组成多少个不同的三位数?如果按从小到大的顺序排列,213是第几个数?(6级)【解析】排百位、十位、个位依次有3种、2种、1种方法,故一共有3×2×1=6(种)方法,即可以组成6个不同三位数.它们依次为123,132,213,231,312,321.故213是第3个数.【巩固】有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字和等于12.将所有这样的四位数从小到大依次排列,第35个为.(6级)【解析】4个互不相同且不为0的数字之和等于12,只有两种可能:1+2+3+6或者1+2+4+5.根据乘法原理,每种情况可组成4×3×2×1=24个不同的四位数,一共可组成48个不同的四位数.要求从小到大排列的第35个数,即求从大到小排列的第14个数.我们从千位最大的数开始往下数:千位最大可以取6,而千位是6的数共有3×2=6个;接下来是5,千位为5的数也有6个.所以第13个数应为4521,第14个是4512,答案为4512.【例 16】将1332,332,32,2这四个数的10个数码一个一个的划掉,要求先划位数最多的数的最小数码,共有多少种不同的划法?(8级)【解析】从小到大一步一步的分步划,遇到出现岔路的情况分类考虑.从位数最多的1332开始:⑴划掉1332中的1,剩下332,332,32,2四个数;⑵划掉位数最多的332中的2,有2种不同的顺序,划掉后剩下33,33,32,2四个数;⑶划掉32中的2,剩下33,33,3,2;⑷两个33中,各划掉一个3,有4×2=8种划掉的顺序,之后剩下3,3,3,2四个数;⑸划掉2后,剩下3,3,3,有3×2=6种划掉的顺序.根据乘法原理,共有不同的划法:2×8×6=96种.【巩固】一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉.问:能吃掉678的三位数共有多少个?(6级)【解析】即求百位数不小于6,十位数不小于7,个位不小于8的自然数.百位数不小于6,有4种;十位数不小于7,有3种;个位不小于8,有2种.由乘法原理,能吃掉678的三位数共有43224⨯⨯=种.【例 17】如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么,这样的四位数最多能有多少个?(8级)【解析】四位数的千位数字是1.由于这个四位数与三位数的相同位数上的数字之和小于19,所以这个四位数与三位数的相同位数上的数字之和均等于9.这两个数的其他数字均不能为8.四位数的百位数字a可在0、2、3、4、5、6、7中选择(不能是9),有7种选择,这时三位数的百位数字是9a-;四位数的十位数字b可在剩下的6个数字中选择,三位数的十位数字是9b-.四位数的个位数字c可在剩下的4个数字中选择,三位数的个位数字是9c-.因此,根据乘法原理,这样的四位数有764=168⨯⨯个.【例 18】用1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数?(8级)【解析】1) 9×8×7=504个.2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个;(减去有2个数字差是1的情况,括号里8个数分别表示这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况).【例 19】电子表用11:35表示11点35分,用06:05表示6点5分,那么2点到10点之间电子表中出现无重复数字的时刻有________次.(8级)【解析】根据题意,在2点到10点之间,表示小时数的二位数字前一位只能为0,后一位可以为2~9;表示分钟数的二位数字前一位可以为0~5,后一位可以为0~9,再考虑到无重复数字,当时间为2点多、3点多、4点多或5点多时,每一种情况下,表示分钟数的两位数字中前一位有624-=种选择,后一位数字有1037⨯=种可能,比如02:ab时,a可以为1,3,4,5,b就-=种选择,此时有4728剩下1037⨯=种.-=种可以选择.所以这几种情况下共有284112类似分析可知,当时间为6点多、7点多、8点多、9点多时,每种情况下都有5735⨯=种,共有⨯=种.354140所以共112140252+=种.【例 20】(2008年西城实验考题)在1,2,3,……,7,8的任意排列中,使得相邻两数互质的排列方式共有______ 种.(8级)【解析】这8个数之间如果有公因子,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!24=种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有43224⨯⨯=种,所以一共有243241728⨯⨯=种.【例 21】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.(8级)【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【例 22】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法? (6级)【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?(6级)【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择; 第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择.共有4322296⨯⨯⨯⨯=种着色方法.7654321DCB AED C BA。

初中数学重点梳理:加法原理和乘法原理

初中数学重点梳理:加法原理和乘法原理

加法原理和乘法原理知识定位加法原理和乘法原理是计数研究中最常用、也是最基本的两个原理.所谓计数,就是数数,把一些对象的具体数目数出来.当然,情况简单时可以一个一个地数.如果数目较大时,一个一个地数是不可行的,利用加法原理和乘法原理,可以帮助我们计数.知识梳理知识梳理1.加法原理完成一件工作有n种方式,用第1种方式完成有m1种方法,用第2种方式完成有m2种方法,…,用第n种方式完成有m n种方法,那么,完成这件工作总共有m+m2+…+m n1种方法.例如,从A城到B城有三种交通工具:火车、汽车、飞机.坐火车每天有2个班次;坐汽车每天有3个班次;乘飞机每天只有1个班次,那么,从A城到B 城的方法共有2+3+1=6种.知识梳理2.乘法原理完成一件工作共需n个步骤:完成第1个步骤有m1种方法,完成第2个步骤有m2种方法,…,完成第n个步骤有m n种方法,那么,完成这一件工作共有m·m2·…·m n1种方法.例如,从A城到B城中间必须经过C城,从A城到C城共有3条路线(设为a,b,c),从C城到B城共有2条路线(设为m,t),那么,从A城到B城共有3×2=6条路线,它们是:am,at,bm,bt,cm,ct.下面我们通过一些例子来说明这两个原理在计数中的应用.例题精讲【试题来源】【题目】利用数字1,2,3,4,5共可组成(1)多少个数字不重复的三位数?(2)多少个数字不重复的三位偶数?(3)多少个数字不重复的偶数?【答案】(1)60 (2)24 (3)130【解析】(1)百位数有5种选择;十位数有4种选择;个位数有3种选择.所以共有5×40×3=60个数字不重复的三位数.(2)先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数.(3)分为5种情况:一位偶数,只有两个:2和4.二位偶数,共有8个:12,32,42,52,14,24,34,54.三位偶数由上述(2)中求得为24个.四位偶数共有2×(4×3×2)=48个.括号外面的2表示个位数有2种选择(2或4).五位偶数共有2×(4×3×2×1)=48个.由加法原理,偶数的个数共有2+8+24+48+48=130.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1到300的自然数中,完全不含有数字3的有多少个?【答案】242【解析】解法1将符合要求的自然数分为以下三类:(1)一位数,有1,2,4,5,6,7,8,9共8个.(2)二位数,在十位上出现的数字有1,2,4,5,6,7,8,98种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8×9=72个.(3)三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0,1,2,4,5,6,7,8,9九种情形,故三位数有2×9×9=162个.因此,从1到300的自然数中完全不含数字3的共有8+72+162=242个.解法2将0到299的整数都看成三位数,其中数字3不出现的,百位数字可以是0,1或2三种情况.十位数字与个位数字均有九种,因此除去0共有3×9×9-1=242(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】在小于10000的自然数中,含有数字1的数有多少个?【答案】3439【解析】不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为9×9×9×9=6561,其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个.【知识点】加法原理和乘法原理【适用场合】当堂练习题【难度系数】3【试题来源】【题目】求正整数1400的正因数的个数.【答案】24【解析】因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积1400=23527所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:(1)取23的正因数是20,21,22,33,共3+1种;(2)取52的正因数是50,51,52,共2+1种;(3)取7的正因数是70,71,共1+1种.所以1400的正因数个数为(3+1)×(2+1)×(1+1)=24.说明利用本题的方法,可得如下结果:若p i是质数,a i是正整数(i=1,2,…,r),则数的不同的正因数的个数是(a1+1)(a2+1)…(ar+1).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求五位数中至少出现一个6,而被3整除的数的个数.【答案】12504【解析】要使一个数能被3整除,只要确保该数各数位的和是3的倍数即可:于是分别讨论如下:(1)从左向右计,如果最后一个6出现在第5位,即a5=6,那么a2,a3,a4可以是0,1,2,3,4,5,6,7,8,9这十个数字之一,但a1不能是任意的,它是由a2+a3+a4+a5被3除后的余数所决定.因此,为了保证a1+a2+a3+a4+a5能被3整除,a1只有3种可能,根据乘法原理,5位数中最后一位是6,而被3整除的数有3×10×10×10=3000(个).(2)最后一个6出现在第四位,即a4=6,于是a5只有9种可能(因为a5不能等于6),a2,a3各有10种可能,为了保证a1+a2+a3+a4+a5被3整除,a1有3种可能.根据乘法原理,属于这一类的5位数有3×10×10×9=2700(个).(3)最后一个6出现在第3位,即a3=6,被3整除的数应有3×10×9×9=2430(个).(4)最后一个6出现在第2位,即a2=6,被3整除的数应有3×9×9×9=2187(个).(5)a1=6,被3整除的数应有3×9×9×9=2187(个).根据加法原理,5位数中至少出现一个6而被3整除的数应有3000+2700+2430+2187+2187=12504(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,A,B,C,D,E五个区域分别用红、蓝、黄、白、绿五种颜色中的某一种着色.如果使相邻的区域着不同的颜色,问有多少种不同的着色方式?【答案】360【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域A,B同色,故共有3种着色方式;(4)区域D因不能与区域A,C同色,故共有3种着色方式;(5)区域E因不能与区域A,C,D同色,故共有2种着色方式.于是,根据乘法原理共有5×4×3×3×2=360种不同的着色方式.【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】在6×6的棋盘上剪下一个由四个小方格组成的凸字形,如图1-64,有多少种不同的剪法?【答案】64【解析】我们把凸字形上面那个小方格称为它的头,每个凸字形有并且只有一个头.凸字形可以分为两类:第一类凸字形的头在棋盘的边框,但是棋盘的四个角是不能充当凸字形的头的.于是,边框上(不是角)的小方格共有4×4=16个,每一个都是一个凸字形的头,所以,这类凸字形有16个.第二类凸字形的头在棋盘的内部,棋盘内部的每一个小方格可以作为4个凸字形的头(即头朝上,头朝下,头朝左,头朝右),所以,这类凸字形有4×(4×4)=64(个).由加法原理知,有16+64=80种不同的凸字形剪法.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】把数、理、化、语、英5本参考书,排成一行放在书架上.(1)化学不放在第1位,共有多少种不同排法?(2)语文与数学必须相邻,共有多少种不同排法?(3)物理与化学不得相邻,共有多少种不同排法?(4)文科书与理科书交叉排放,共有多少种不同排法?【答案】(1)96 (2)48 (3)72 (4)12【解析】【知识点】加法原理和乘法原理【适用场合】课后两周练习【难度系数】3【试题来源】【题目】在一个圆周上有10个点,把它们两两相连,问共有多少条不同的线段?【答案】45【解析】【知识点】加法原理和乘法原理【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】用1,2,3,4,5,6,7这七个数,(1)可以组成多少个数字不重复的五位奇数?(2)可以组成多少个数字不重复的五位奇数,但1不在百位上?【答案】(1)1440 (2)1260【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1,2,3,4,5这五个数字中任取三个数组成一个三位数,问共可得到多少个不同的三位数?【答案】60【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】由1,2,3,4,5,6这六个数字能组成多少个大于34500的五位数?【答案】420【解析】【知识点】加法原理和乘法原理【适用场合】阶段测验【难度系数】3【试题来源】【题目】今有一角币一张,两角币一张,伍角币一张,一元币四张,伍元币两张,用这些纸币任意付款,可以付出不同数额的款子共有多少种?【答案】119【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】将三封信投到5个邮筒中的某几个中去,有多少种不同的投法?【答案】125【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】从字母a,a,a,b,c,d,e中任选3个排成一行,共有多少种不同的排法?【答案】73【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3。

高级课第9讲:6、7的乘法口诀

高级课第9讲:6、7的乘法口诀

第九讲——6-7的乘法口诀【给爸爸妈妈的话】今天这节课就只学习6—7的乘法⼝诀,先看关于六七的整个乘法⼝诀,全部有18句,但⼤部分已经学过了,只剩下五句乘法⼝诀了。

不过,学过了还是会有遗忘和记混的现象,这很正常。

只要把忘记的,还有记混的,多重新算⼏次就可以了,不但可以更正错误,反⽽可以加深对乘法的理解。

这节课别看只有五句,但难度可以不低,需要孩⼦较⾼的计算能⼒。

还是老办法,慢慢来,鼓励孩⼦用自⼰喜欢的计算⽅法,每道题都要算⼀遍,有些特别难算的⼝诀倒可以使用联想的记忆⽅式给记下来。

我们说,尽量用算的⽅式去算乘法⼝诀,但也不能太死板机械,孩⼦理解了乘法原理,个别难算的⼝诀通过记忆的⽅式还是可以的。

下面是6的乘法口诀,看看有多少已经学过了,把忘了的还有没有算过的乘法口诀,再反复算几遍。

1×6=2×6=3×6=4×6=6×6=6×7=6×8=6×9=不用写答案,用乘法口诀反复计算。

3×6= 1×6= 4×6=6×2= 6×6= 7×6=5×6= 6×8= 6×9=2×6= 6×3= 6×7=下面是7的乘法口诀,看看有多少已经学过了,把忘了的还有没有算过的乘法口诀,再反复算几遍。

1×7=2×7=4×7=5×7=6×7=7×7=7×8=7×9=不用写答案,用乘法口诀反复计算。

3×7= 1×7= 4×7=7×2= 7×6= 7×6=5×7= 7×8= 7×9=2×7= 7×3= 7×7=不用写答案,用乘法口诀反复计算。

数学 加法原理和乘法原理教学设计

加法原理和乘法原理教学目标正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.教学重点和难点重点:加法原理和乘法原理.难点:加法原理和乘法原理的准确应用.教学用具投影仪.教学过程设计(一)引入新课从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.今天我们先学习两个基本原理.(二)讲授新课1.介绍两个基本原理先考虑下面的问题:问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.这个问题可以总结为下面的一个基本原理(打出片子——加法原理):加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m 种不同的方法.n请大家再来考虑下面的问题(打出片子——问题2):问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C 村又各有2种不同的走法,因此,从A村经B村去C 村共有3×2=6种不同的走法.一般地,有如下基本原理(找出片子——乘法原理):乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.2.浅释两个基本原理两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.比较两个基本原理,想一想,它们有什么区别?两个基本原理的区别在于:一个与分类有关,一个与分步有关.看下面的分析是否正确(打出片子——题1,题2):题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.1~10中一共有N=4+2+1=7个合数.题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?第一步从A村到B村有3种走法,第二步从B 村到C村有2种走法,共有N=3×2=6种不同走法.题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.也就是说:类类互斥,步步独立.(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)(三)应用举例现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N =4×5×5=100.答:可以组成100个三位整数.教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础.(四)归纳小结归纳什么时候用加法原理、什么时候用乘法原理:分类时用加法原理,分步时用乘法原理.应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.(五)课堂练习P222:练习1~4.(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)(六)布置作业P222:练习5,6,7.补充题:1.在所有的两位数中,个位数字小于十位数字的共有多少个?(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.(提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.(1)N=5+2+3;(2)N=5×2+5×3+2×3)。

高思数学_4年级上-第17讲-乘法原理进阶(彩色)

101在上一讲中,我们学习了加法原理及较简单的乘法原理.要想把过程分成几个步骤从而应用乘法原理,必须保证各步骤之间满足下面三个要求:1.每步都只是整件事情的一个部分,必须全部完成才能做完这件事;2.步骤之间要有先后顺序,先确定好一步,再做下一步,直到最后.3.做完一步时,这一步的结果很可能会影响后面步骤的结果,但一定不能影响后面步骤的方法数.如果这一步的不同结果会导致后面某一步的方法数不同,就不能直接用乘法原理计算.102分析以染绿、蓝两种颜色;而当它染绿色(蓝色)时,回收废纸的垃圾桶只能染蓝色(绿色).因此先染回收塑料的垃圾桶时,会影响染回收废纸的垃圾桶的染色方法数,就不能直接用乘法原理计算了.那么我们应该先给哪个垃圾桶染色呢?练习1.把1分、2分、5分、1角的硬币各一枚排成一排,其中1分硬币不在两边,共有多少种排硬币的方法?分析 我们应该把这五部分按照什么顺序染色呢?如果我们按照A 、E 、C 、B 、D 的顺序染色,能直接用乘法原理计算染色的方法吗?练习2.把A 、B 、C 、D 这四部分用四种不同的颜色染色,且相邻的部分不能使用同一种颜色,向右依次标明:染成红、绿、蓝这纸的垃圾桶不能染成红色,一共有多少种染色方法?种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问:例题2不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?在上面的染色问题中,我们只要能保证前面步骤的染色结果不会影响到后面步骤染色的方法数,就是合理的分步方法.大家试着多找出几种合理的分步方法,看看有没有什么规律可循. 四色定理 四色定理的内容是:“对于任何一张地图,只用四种颜色,就可以把有相邻边界的国家染上不同的颜色.”四色问题的提出来自英国.1852年,在大学读书的格斯里向他的老师、著名数学家摩根提出了这个问题,摩根没有能找到解决这个问题的途径.“四色问题”提出以后,最初并没有引起广泛的重视,许多数学家低估了它的难度.就连素以谦虚著称的德国数论专家闵可夫斯基在大学上拓扑课时也说:四色问题之所以一直没有获得解决,那仅仅是由于没有一流的数学家来解决它.说罢,他拿起粉笔,竟要当堂给学生推导出来,结果没有成功.下一节课他又去试,还是没有成功.过了几个星期,仍无进展.有一天,他刚跨进教室,适逢天上雷声大作,震耳欲聋.他马上对学生说:“上天在责备我自大,我也无法解决四色问题.”这样,四色问题就成了世界最著名的问题之一.100多年中,“四色问题”使数学家们深为困扰.没有人能证明它,也没有人推翻它.电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了四色猜想的证明进程.就在1976年6月,哈肯与阿佩尔在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿次判断,终于完成了四色定理的证明,轰动了世界.AD CB 的小圆圈染色,每个小圆圈只能染一种颜色.请问:种不同的染法?称,一共有多少种不同的染法?104分析 染色过程应该分成几步?练习3.如图,用红、蓝两种颜色来给图中的小圆圈染色,每个小圆圈只能染一种颜色.请问:如果要求染色结果关于中间那条竖线左右对称,一共有多少种不同的染法?分析 本题中汽车A 和汽车E 有特殊要求,我们应该优先考虑有特殊要求的位置.应该按照什么顺序给这五辆车分配司机呢?练习4.甲、乙、丙、丁四个人要住进A 、B 、C 、D 四间房间,每个房间住一个人,其中甲不住A 房间,丙只住D 房间.请问:这四个人住进四个房间有多少种住法?分析 容易看出,每行只能有一枚棋子,每列也只能有一枚棋子.我们可以把不同型号的汽车.会驾驶汽车三人中的某一人驾驶,一共有多少种不同的安排方案?例题4内,每个方格只能放一枚,任何两枚棋子都不能在同一行或同一列.一共有多少种不同的放法?例题5105放四枚棋子的过程分成四步,每一步放一枚棋子.你知道每一步分别有多少种放棋子的方法吗?练习5.将一枚白子和一枚黑子放在棋盘线的交叉点上,但不能在同一条横线或竖线上(下图是一个可能的方法).问:共有多少种不同的放法?在做数字谜问题时,我们总是希望寻找合适的突破口,这样能尽可能多地填出确定的数字.即使在没有更多突破口时,也要从可能情况较少的地方入手分析.对于较复杂的乘法原理问题,我们在分步时也要优先考虑可选择情况较少的步骤,尽可能地让前面步骤的结果不影响后面步骤选择的方法数.本讲知识点汇总一、应用乘法原理时,某一步的结果可以影响后面步骤的结果,但一定不能影响后面步骤的方法数.二、对于染色问题等较复杂的乘法原理问题,在分步时要优先考虑可选择情况较少的步骤,必须让前面步骤的结果不影响后面步骤选择的方法数.中都只有一枚棋子,这样的放法共有多少种?106作业1.五个座位排成一排,小高、墨莫、萱萱、阿呆、阿瓜每人选一个座位坐下,其中每个座位只能坐一个人,且萱萱不坐在中间的位置.请问:这五个人有多少种坐法?2.把A 、B 、C 、D 、E 这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问:这幅图共有多少种不同的染色方法?3.如图,用红、黄、蓝三种颜色来给图中的小圆圈染色,每个小圆圈只能染一种颜色,而且要求角上的四个圆圈必须染相同的颜色.请问:一共有多少种不同的染法?4.甲、乙、丙、丁四个人排成一队,甲不能当排头,乙不当排头也不当排尾,共有多少种不同的排法?5.在44×的方格中放黑棋子和白棋子各一枚,要求两枚棋子既不在同一行也不在同一列,问:共有多少种放法?A B C DE。

六年级排列与组合(加法原理与乘法原理)

在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从A 地道B 地,可以乘火车,也可以乘汽车或乘轮船。

一天中,火车有4班,汽车有3班,轮船有2班。

那么从A 地道B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有3条道路。

从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。

➢ 加法原理:为了完成一件事,有几类方法。

第一类方法中有1m 种不同的方法,第二类方法中有2m 种不同的方法…….第n 类方法中有n m 种不同的方法。

那么,完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法。

➢ 乘法原理:为了完成一件事,需要n 个步骤。

做第一步有1m 种不同的方法,做第二步有2m 种不同的方法……做第n 步有n m 种不同的方法。

那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法。

【例题1】每天从武汉到北京去,有4班火车,2班飞机,1班汽车。

请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法?解:4+2+1=7(种)【拓展1】学校开展读书竞赛活动,小明要从4本故事书、2本文艺书、3本科技书里任意选取一本书,共有多少种不同的选法?【例题2】如图,从家村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路。

小华从甲村经乙村、丙村去丁村,共有多少种不同的走法?【拓展2】(2008年第六届“走进美妙的数学花园”中国青少年解题技能展示大赛试题)在右图的每个方格中各放1枚围棋子(黑子或白子),共有多少种不同的放法?【例题3】数学活动课上,张老师要求同学们用0、1、2、3这四个数字组成三位数,请问:(1)可以组成多少个没有重复数字的三位数?(2)可以组成多少个不相等的三位数?解:(1)3×3×2=18(个)(3)3×4×4=48(个)【拓展3】用1、2、3、4这四个数可以组成多少个没有重复数字的四位数?【例题4】十把钥匙开十把锁。

加乘原理与容斥原理

加乘原理与容斥原理The document was prepared on January 2, 2021专题五1 加乘原理一、加乘原理1、加法原理:为了完成一件事,有几类方法.第一类方法中有1m 种不同的方法,第二类方法中有2m 种不同的方法…….第n 类方法中有n m 种不同的方法.那么,完成这件事共有:12n N m m m =++⋅⋅⋅+种不同的方法.2、乘法原理:为了完成一件事,需要n 个步骤.做第一步有1m 种不同的方法,做第二步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么,完成这件事共有:12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法.二、应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.4加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 5乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”例题1、如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法例题2、有一个三层书架,第一层放了15本书,第二层放了10本漫画书,第三层放了5本科普书,并且这些书各不相同,请问:(1)如果从所有的书中任取1本,共有多少种不同的取法(2)如果从每一层中各取一本,共有多少种不同的取法(3)如果从中取2本不同类别的书,共有多少种不同的取法例题2、运动会中有4个跑步的比赛项目,分别为50米、100米、200米、400米,规定每个参赛只能参加其中的一项,甲、乙、丙、丁四名同学报名参加这四个项目,请问:(1)如果每名同学都可以任意报这4个项目,一共有多少种报名方法(2)如果这四名同学所报的项目各不相同,一共有多少种报名方法例题4、用数字0,1,2,3,4可以组成多少个小于1000的自然数例题5、用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数例题6、如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式1、王老师从重庆到南京,他可以乘飞机、汽车直接到达,也可以先到武汉,再由武汉到南京.他从重庆到武汉可乘船,也可乘火车;又从武汉到南京可以乘船、火车或者飞机,如图.那么王老师从重庆到南京有多少种不同走法呢2级2、如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择3、四张卡片上写有2、4、7、8,从中任取三张卡片,排成一行,就可以组成一个三位数,请问:一共可以组成多少个不同的三位数其中有多少个不同的三位奇数4、由数字0,1,3,9可以组成多少个无重复数字的自然数5、地图上有A,B,C,D四个国家如下图,现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法6、用4种不同的颜色给下图涂色,使相邻的长方形颜色不同,有多少种不同的涂色方法在计数时,必须注意无一重复,无一遗漏.为了使重叠部分不被重复计算,中公教育专家研究出一种新的计数方法.这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理.一、容斥原理1:两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次.二、容斥原理2:三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次.例题1、在一个办公室中,有7个人爱喝茶,10个人爱喝咖啡,3个人既爱喝茶又爱喝咖啡.如果每个人都至少爱喝茶或咖啡中的一种,那么这个办公室共有多少人例题2、某餐厅有27道招牌菜,小明吃过其中的13道,小红吃过其中的7道,而且有2道菜是两个人都吃过的,请问:有多少道菜招牌菜是两人都没有吃过的例题3、五年级二班有40名同学,其中有25人没参加数学小组,有18人参加航模小组,有10人两个小组都参加,那么只参加了这两个小组之一的学生共有多少人例题4、三位基金经理投资若干只股票,张经理买过其中66只,王经理买过其中40只,李经理买过其中23只.张经理和王经理都买过的有17只,王经理和李经理都买过的有13只,李经理和张经理都买过的有9只,三个人都买过的有6只,请问:这三位经理一共买过多少只股票例题5、森林里住着一群小白兔,每只小白兔都爱吃萝卜、白菜和青草中的一种或几种,爱吃萝卜的小白兔中有12只不爱吃白菜;爱吃白菜的小白兔中23只不爱吃青草;爱吃青草的小白兔中有34只不爱吃萝卜.如果三种食物都爱吃的小白兔有5只,那么这群小白兔一共有多少只例题6、渔乡小学举行长跑和游泳比赛,共305人参加.参加长跑的有150名男生和90名女生,参加游泳比赛的有120名男生和70名女生,有110名男生两项比赛都参加了,请问:只参加游泳比赛而没有参加长跑比赛的女生有多少人1、暑假里,萱萱和小高一起讨论“金陵十八景”,他们发现十八景中的每一处都有人去过,而且有五处是两个人都去过的.如果萱萱去过其中的十二景,那么小高去过其中的几景2、在一群小朋友中,有12人看过动画片黑猫警长,有21人看过动画片大闹天宫,并且有8个两部动画片都看过,请问:至少看过其中一部的小朋友有多少人3、一群小朋友共有40人,他们都喜欢吃馒头或者米饭中的一种或两种,喜欢吃馒头的有30人,两种都喜欢吃的有7人,那么喜欢吃米饭的有多少人4、五年级一班有45个学生参加期末考试,成绩公布后,数学满分的有10人,数学及语文均得满分的有3人,这两门课都没有的满分的有29人,请问:语文成绩得满分的有多少人5、在一个有30人组成的合唱队中,每个人都爱喝红茶、绿茶、花茶中的一种或几种,其中有10个人爱喝红茶,12个人不爱红茶却爱喝绿茶,请问:只爱喝花茶的有多少人6、光明小学五年级课外活动有体育、音乐、书法三个小组,参加的人数分别是54人、46人、36人.同时参加体育小组和音乐小组的有4人,同时参加体育小组和书法小组的有7人,同时参加音乐小组和书法小组有10人,三个小组都参加的有2人.光明小学五年级参加课外活动的一共有多少人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聪明屋:房间内有三盏灯,房外有三个开关,在房子外面看不到里面的东西。你只能进
门一次,问:你怎么判断哪个开关控制哪个灯?


乘法原理

一、考点、热点分析
在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而
在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将
讨论的乘法原理来解决.
例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可
以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津
共有多少种不同的走法?
分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走

法,即:
第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种

走法:
注意到 3×1=3.
如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:

共有六种走法,注意到3×2=6.
在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷
举法对于讨论方法数不太多的问题是很有效的.
在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有
的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.
一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二
步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有
N=m1×m2×…×mn种不同的方法.
这就是乘法原理.

二、典型例题
例1 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种
不同的买法?

例2 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和
点不得重复经过.问:这只甲虫最多有几种不同的走法?

例3 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多
少种不同的取法?

例4 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米
跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?

例5 由数字0、1、2、3组成三位数,问:
①可组成多少个不相等的三位数?
②可组成多少个没有重复数字的三位数?
例6 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
例7 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列
只能出现一个棋子.问:共有多少种不同的放法?

例8 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一
张,至多取9张,那么,共可以配成多少种不同的钱数?

三、习题巩固
1 .某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙
地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?

2. 如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个
点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这
样的三角形?
3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?
4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人
可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?

5.由数字1、2、3、4、5、6、7、8可组成多少个
①三位数?
②三位偶数?
③没有重复数字的三位偶数?
④百位为8的没有重复数字的三位数?
⑤百位为8的没有重复数字的三位偶数?

6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并
且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?

四、习题练习
1、用一张5元,一张2元,一张1元的人民币,可以组成种不同的币值.
2.学校食堂星期一的主食和副食如下:
如果一种主食搭配一种副食,有几种不同的搭配方法?

3.小明有3件不同的上衣,2条不同的裤子,若上衣和裤子搭配着穿,共有多少
种不同的搭配方法

4.(如图)杨明从家经过新华书店到达黄晓东家,一共有
( )条路可以走.

5.一个篮球队,五名队员A,B,C,D,E,由于某种原因,C不能做中锋,D不
能做控球后卫,而其余3个可以分配到五个位置的任何一个上,共有种不同的站
法.
6.用7,2,0,8,3,1可以组成多少个:
(1)没有重复数字的三位数;
(2)没有重复数字的三位奇数;
(3)没有重复数字,且比500小的三位数.

相关文档
最新文档